PHYSICAL REVIEW E 97, 042221 (2018)

Stability and self-organization of planetary systems

Renato Pakter and Yan Levin
Instituto de Fisica, UFRGS, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil

® (Received 1 November 2017; revised manuscript received 26 February 2018; published 30 April 2018)

We show that stability of planetary systems is intimately connected with their internal order. An arbitrary initial
distribution of planets is susceptible to catastrophic events in which planets either collide or are ejected from the
planetary system. These instabilities are a fundamental consequence of chaotic dynamics and of Arnold diffusion
characteristic of many body gravitational interactions. To ensure stability over astronomical time scale of a
realistic planetary system—in which planets have masses comparable to those of planets in the solar system—the

motion must be quasiperiodic. A dynamical mechanism is proposed which naturally evolves a planetary system
to a quasiperiodic state from an arbitrary initial condition. A planetary self-organization predicted by the theory

is similar to the one found in our solar system.
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I. INTRODUCTION

Stability of the solar system has been a subject of great
debate since the time that Isaac Newton first wrote his famous
law of universal gravitation [1]. Newton realized that the
interaction between planets will perturb their orbits from a
simple elliptical shape postulated by Kepler. Over millions
of years these small perturbations will accumulate leading
to catastrophic events such as collisions between planets or
ejection of planets from the solar system [2]. Newton’s solution
to this difficulty was to invoke divine intervention in which
God would adjust the planetary orbits to keep the solar system
stable. Newton’s contemporary, Leibnitz, objected strongly to
Newton’s theological solution: “Was God an inferior watch-
maker,” he demanded, “who could not get things right from the
beginning?” [3] Over the centuries the question of stability has
attracted the attention of both physicists and mathematicians,
without a definite solution. An apparently unrelated puzzle is a
seeming regularity of spacing of planetary orbits [4]; see Fig. 1.
In 1766 Titius noticed that the orbits of then known planets
followed a geometric sequence, if a “missing” planet was
inserted between Mars and Jupiter [5]. Subsequent discovery
of the asteroid belt and of Uranus at the positions predicted
by the Titius-Bode “law” gave further credence to the belief
that there is a hidden order in the solar system. The modern
version of the Titius-Bode law can be written as r,, = ro1.7",
with n = 1 being Mercury, n = 2 Venus, n = 3 Earth, etc.;
see Fig. 1. The normalization ry = 0.2294 a.u. was chosen
so that n = 1 corresponds exactly to the orbit of Mercury in
astronomical units (AU) [6].

In this paper we will show that stability of planetary systems
isintimately connected with their internal order. The dynamical
simulations demonstrate that a generic arrangement of planets
is unstable to small perturbations resulting from interplanetary
interactions which lead to catastrophic events. We argue that
a planetary system will remain stable over astronomical time
scales only if its dynamics is quasiperiodic. Indeed various
near commensurabilities have been observed for satellites and
planets in the solar system [7,8] and already in 1970 Hill
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suggested that there is a dynamical origin to the Titius-Bode
law [9]. In this paper we will argue that a specific requirement
of quasiperiodicity results in a planetary distribution almost
identical to the one observed in the solar system. Furthermore,
we will provide a dynamical mechanism that leads to sponta-
neous self-organization of a planetary system into a periodic
state. This is different from other approaches used previously
to explain mass distribution in the solar system which rely
either on statistics or hydrodynamic instabilities [6,10-12].
Even if such approaches can account for geometrical pro-
gression of planetary distances, they cannot explain stability
of planetary systems. The Titius-Bode law is not a condition
of stability, but rather a consequence of self-organization, as
will be demonstrated in the present paper. Finally we should
mention that according to Kolmogorov-Arnold-Moser (KAM)
theorem there is a dense set of initial conditions for a many
body gravitational system that lead to stable quasiperiodic
trajectories. However, as was already demonstrated by Henon
in 1966, the KAM stability only applies to planetary systems
with unrealistically small planetary masses of less than 107320
of solar mass [13]. A generic initial condition for a realistic
planetary system will, therefore, result in a chaotic dynamics,
such that in the infinite time limit planets will either collide or
will be ejected from the system.

II. THEORY

The stability of planetary systems is an outstanding prob-
lem. Since Newton’s gravitational potential is bound from
above and is unbound from below [14,15], orbits of planets
are in general unstable—some planets can gain enough kinetic
energy to escape altogether from the planetary system [16,17],
while others will fall into the sun or collide with each other;
see Fig. 2. This type of instability driven by chaos and Arnold
diffusion [18] is a fundamental characteristic of many body
celestial dynamics. On the other hand, it is possible to find very
special initial conditions—corresponding to a set of measure
zero, since the KAM theorem does not apply to realistic
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FIG. 1. Mean radii of planets in our solar system on a semilog
scale: (Me) Mercury, (V) Venus, (E) Earth, (Ma) Mars, (Ast) Asteroid
belt, (J) Jupiter, (S) Saturn, (U) Uranus, (N) Neptune, and (P) Pluto.
Straight line is the modern version of Titius-Bode law.

planetary systems [ 13]—for which the dynamics of a nonlinear
interacting system is purely periodic. These periodic solutions
will persist indefinitely, with the relative configuration of
planets repeating itself after a synodic period of time 7. The
fundamental difficulty is to obtain initial conditions which
lead to periodic dynamics of a fully interacting gravitational
system. Furthermore, since the probability that a planetary
system will be “born” with planets at precisely the correct
positions is highly improbable, there must be a mechanism
that makes a planetary system evolve towards a stable periodic
orbit. Motivated by the theories of control of chaos[19,20],
we suggest that periodic orbits can be stabilized by energy
nonconserving perturbations [21]. Such perturbations could
have originated from the interaction of newborn planetesimals
with the gas and dust of the protoplanetary disk. The angular
frequency of dust particles at a distance r from the star has a
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FIG. 2. Radial coordinate evolution of eight planets of mass
0.005M originally distributed uniformly between 1 and 8 AU in
their respective Keplerian orbits. After a short time we start seeing
catastrophic events (the almost vertical trajectories) in which planets
begin to be ejected from the planetary system. The resulting planetary
system remains with only two planets.

simple Keplerian form [22,23]

GM
60(")=\/r—3, e

where M is the star mass and G is Newton’s gravitational
constant. For concreteness we will take the star mass to be that
of our sun and will measure all the distances in astronomical
units and time in Earth years. To simplify the calculations we
will suppose that all the planetary orbits are restricted to the
ecliptic plane and all planets have the same mass m. To speed
up the simulations we will take the planetary mass m to be
a few times that of Jupiter. We will see, however, that our
conclusions do not depend on the planetary mass as long as it
is much smaller than the star mass.

Newton’s equations of motion for the coordinates x and y
of a planet i are
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where r; = /x? + y? is the distance of i th planet from the star

and r;; = \/ (x; —x;j Y+(—y j)z is the separation between
planet i and planet j. The purely angular force f ,9 = ff@,
where 8 is the unit angular vector, is responsible for the inter-
action of a planet i with the residual dust of the protoplanetary
disk. Here we will use a simple phenomenological expression
for such nonconservative force: if the angular velocity of a
planet is lower than the Keplerian velocity of the surrounding
dust in the same orbit, the planet will gain energy from dust; if
the planetary velocity is larger than the velocity of dust, it will
lose energy. The simplest possible mathematical expression
with this characteristic is

f}e :—ﬁ(r,-w(r;)—v?)|:L—mzvfl”i:|, 3)

i

where B is a small phenomenological constant which controls
the interaction between dust and planets, vid“St = r;w(r;) is the
angular velocity of dust at the location of planet i, and v/ is
the angular velocity of the planet i,

vig _ ViXi — yixi- )
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The expression Eq. (3) is analogous to viscous dissipation of
an object in a rotating fluid. The term in square brackets of
Eq. (3) is included so that the nonconservative force “turns
off” when the net planetary angular momentum reaches a
predetermined value L. This is designed to model a progressive
depletion of dust or gas from the protoplanetary disk which
will result in a continuously decreasing value of f?. In our
simulations we used 8 = 107> — 1072 AU2. To integrate the
equations numerically we employed a Runge-Kutta algorithm
with adaptive time step that uses embedded fifth order and
sixth order Runge-Kutta estimates to compute the solution
and the relative error [24]. To speed up the simulation and
avoid numerical instabilities the singular form of the Newton’s
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FIG. 3. Temporal evolution of radial coordinates of three planets
under the action of Eq. (3). The dynamics is very complex with two
of the planets switching their relative order in the sequence.

gravitational potential between the planets is regularized to

Qd? —2dr? + r*)Gm?

V()= - —

forr <d,
X 5)

G
V(ir)=— m forr > d,

where d is an arbitrary short distance cutoff whose precise
value does not affect our conclusions. In our simulations we
used d on the order of 1073 a.u. With this modification, we
do not need to introduce any specific “collision model,” since
the integrator will have enough resolution to deal with the
fast dynamics resulting from catastrophic planetary collisions.
Indeed, the dynamics of planets interacting through Eq. (5)
can result in planetary collision in which two or more tra-
jectories merge into one. We shall call such events “planetary
coalescence,” which are analogous to nonelastic collisions. The
advantage of regularized Newton potential Eq. (5) is that such
singular events can be handled using the adaptive step size
Runge-Kutta integrator without any numerical instabilities.

We stress that our goal is to find the simplest possible
mechanism that can drive a planetary system towards a stable
quasiperiodic state. During the formation of the solar system,
more complicated gravitational, electromagnetic, and colli-
sional processes have certainly taken place. Here, however, our
aim is to provide a proof of concept that energy nonconserving
perturbation can drive a planetary system into a self-organized
quasiperiodic state. In the simulations we observe that the
angular force given by Eq. (3) leads to a self-organized periodic
stateif 8 — Oandr — oo. Inpractice, however, the simulation
time is finite, so that 8 cannot be too small. In Fig. 3 we show
the dynamical evolution described by Egs. (2) of a system with
three planets, initially placed in Keplerian orbits uniformly
distributed from 1 AU to 3 AU.

We see that the dynamics is very complex, but after t =
10* yr, this planetary system relaxes to a periodic state with
synodic period T = 1.6 yr, in which adjacent planetary orbits
exhibit a perfect synchronization, with the time between two
consecutive perihelions—anomalistic period—increasing in
the ratio of 2:1; see Fig. 4. The mean orbital distance of each
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FIG. 4. Temporal evolution of the radial coordinates of the three
planet system of Fig. 3 after a self-organized periodic state has been
established.

planet in this synchronized state follows the Titius-Bode law
r, ~ 1.69"%; see Fig. 5.

In Fig. 6 we show a periodic orbit to which a planetary sys-
tem with four planets evolves. From the figure we see that the
orbits of planets once again exhibit a perfect synchronization,
with the anomalistic period of adjacent planets increasing in
the ratio of 2:1. To make this observation more quantitative we
define a radial and an angular winding number:

Neri 14
of = lim —22= (),
t—00 t
No() (6)
a)ie = lim gt ,
t—00

where Npe;i(?) is the number of times that the orbit of planet i
passes through a perihelion during a time interval #, and Ny (?)
is the number of times that the planet i completes a full rotation
around the star. It is important to keep in mind that because of
the interplanetary gravitational attraction the dynamics is very
complicated, with the orbit of a planet precessing around the
star. The planetary year, therefore, will not be equal to the
anomalistic period, amount of time between two consecutive

ORBITAL RADIUS (AU)
s

FIG. 5. Mean radial distance from the star of three planets for
different initial conditions (symbols), after the self-organized periodic
state is established. In all cases the final planetary distribution follows
the Titius-Bode law r,, ~ 1.69", shown by parallel lines.
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FIG. 6. Temporal evolution of radial coordinates of planets in a
self-organized periodic planetary system with four planets. Note that
the orbits of adjacent planets exhibit a perfect 2:1 synchronization.

perihelions. This dichotomy is clearly demonstrated by the
normalized radial and angular winding numbers (winding
number of planet i divided by the winding number of the
outermost planet), see Table I, which shows a perfect 2:1
synchronization of anomalistic periods of adjacent orbits,
but no synchronization of rotational periods. Furthermore,
Fig. 7 shows that the mean planetary distances from the star
in this self-organized planetary system follow a geometric
progression—Titius-Bode law—r, ~ 1.67", very similar to
the one observed in our solar system. The synodic period for
this planetary systemis 7 = 2.2 yr.

We next study a planetary system which starts with nine
planets of mass m = 0.002M uniformly distributed from 1 AU
to 9 AU. After a period of dynamical evolution this system once
again self-organized into a complex periodic structure. During
the evolution, planets 1 and 2 collided producing a new planet
of mass 2m. This planet, in turn, formed a binary with the
planet 3. Planets 4 and 5 also collided forming a new planet of
mass 2m, as did planets 6 and 7. The resulting planetary system
contains six planets with synodic period 7 = 6.5 yr. In spite
of a distinct mass distribution and a very complex dynamics,
the planetary distances are found to, once again, follow a
geometric progression r, ~ 1.63"; see Fig. 8. Furthermore, the
radial winding numbers indicate a perfect 2:1 synchronization
between anomalistic periods, while the orbital periods do not
show any clear structure; see Table II. Finally, we should note
that it is very difficult to obtain large planetary systems, even
if we start with a very large number of planetesimals; very
quickly most of them will either fall into the sun, coalesce, or
will be ejected. The final planetary system will have only a
small number of planets. In spite of a diligent effort we were

TABLE I. Normalized radial and angular winding numbers of a
four planet system.

Planet 1 2 3 4
w, 1.000 2.000 4.000 8.000
Wy 1.000 2.275 4.827 9.929

ORBITAL RADIUS (AU)
>

FIG. 7. Mean radial distance of four planets from the star, which
agrees precisely with the Titius-Bode law, the solid line.

not able to find a stable planetary system with more than six
planets.

III. CONCLUSIONS

We have shown that stability of planetary systems is in-
timately connected with the orbital arrangement of planets.
An arbitrary initial distribution of planets is susceptible to
catastrophic events in which planets are ejected from the
planetary system or collide with each other. These catastrophic
events are an unavoidable consequence of chaotic dynamics
and of Arnold diffusion characteristic of celestial mechanics
in the + — oo limit. We note that even if the planets are
placed at radial positions consistent with the Titius-Bode law,
a planetary system will still, in general, be unstable unless the
orbits of planets are properly synchronized and the dynamics
is periodic. In this paper we presented a mechanism which
leads to self-organization of a planetary system into a stable
periodic state. The mechanism proposed is probably not unique
and should rather be viewed as a proof of concept which
demonstrates that energy nonconserving perturbations can
drive a planetary system into a self-organized periodic state

—
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FIG. 8. Mean radial planetary distance from the star in a self-
organized system which originally contained nine planets. Various
planets have collided forming new planets of mass 2m, so that only
five distinct radial positions appear in the plot. These follow the Titius-
Bode distribution.
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TABLE II. Radial and angular winding numbers of a self-organized system with nine planets.

Planet 1 2 3 4 5 6 7 8 9
y 1.000 1.000 1.000 2.000 2.000 4.000 4.000 8.000 16.000
wy 1.000 1.000 1.000 2.146 2.146 4.439 4.439 9.024 18.195

from an arbitrary initial condition. In such a state anomalistic
periods between all planets are synchronized, while orbital
periods do not indicate any synchronous structure. When the
anomalistic periods between the radially adjacent planets are
synchronized in the 2:1 ratio, the mean orbital distance is
found to follow a geometric progression, 7, ~ 1.7"; the same
as the one observed in our solar system. In principle, however,
there is no a priori reason why all the planets should have
2:1 synchronization, and indeed other synchronized states are
possible. For such planetary systems the Titius-Bode law will
not be valid. We stress again that it is the anomalistic, and
not the orbital periods which show synchronous behavior in
the self-organized state. Indeed, if orbital periods would be
synchronized, the explanation of the Titus-Bode law would
be quite straightforward. For small planetary masses, the
planetary year is related to the length of the semimajor axis

through Kepler’s law T2 ~ a3; if the planetary years would be
locked in 2:1 resonance, the ratio of a semimajor axis would
then follow a geometric progression r, ~ 22*/3 ~ 1.5874",
which is very similar to the observed Titus-Bode law. However,
Tables I and II show that there is no synchrony of orbital
periods and only anomalistic periods that are synchronized.
Therefore, this simple argument cannot be used to account for
the orbital structure inside the self-organized state observed in
our simulations.
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