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Avalanches and scaling collapse in the large-N Kuramoto model
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We study avalanches in the Kuramoto model, defined as excursions of the order parameter due to ephemeral
episodes of synchronization. We present scaling collapses of the avalanche sizes, durations, heights, and temporal
profiles, extracting scaling exponents, exponent relations, and scaling functions that are shown to be consistent
with the scaling behavior of the power spectrum, a quantity independent of our particular definition of an avalanche.
A comprehensive scaling picture of the noise in the subcritical finite-N Kuramoto model is developed, linking
this undriven system to a larger class of driven avalanching systems.
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I. INTRODUCTION

Scale free dynamics have been shown to be characteristic
of systems exhibiting phase transitions [1]. Progress has been
made lately in understanding fluctuations in systems that
are undergoing phase transitions. Many systems far from
thermal equilibrium exhibit avalanches across many orders
of magnitude in size. The statistics of these avalanches are
often found to be in accord with simple models [2]. The
scaling behavior of the avalanche statistics and dynamics is
independent of the microscopic details (i.e., universal) and
shared among disparate systems including slip motion in
metallic glasses [3,4], Barkhausen noise in magnets [5,6],
earthquakes [7], and stellar light curves [8].

While much work has been done on avalanches near depin-
ning transitions of elastic interfaces, such as magnetic domain
walls, elastic charge density waves, and other systems [2],
few avalanche studies have been done on plastic systems
with many interacting domain walls, such as the random field
Ising model [2] and plastic charge density wave depinning
systems [9]. The system we study here shares many traits with
these plastic avalanche systems, though differing notably in
lacking an external driving force.

Synchronizing coupled phase oscillators, of which the
N → ∞ Kuramoto model is a prototype, exhibit a phase
transition, passing from an incoherent state at weak coupling
to a synchronized state at strong coupling. The Kuramoto
model is of particular interest because it admits analytic
solutions [10,11]. The model has numerous generalizations
that are studied numerically and analytically.

Finite-size effects near criticality have been explored
[12–15]. Choi et al. studied the effect of system size on
the evolution of the order parameter from total coherence or
incoherence toward its steady-state value at criticality [12].
Daido, Hong, and others studied fluctutations in the order
parameter’s steady-state behavior as a function of system size
near criticality [13–15].
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Synchronizing coupled oscillators, like those of the Ku-
ramoto model, have been recognized as elements in classical
analogs for lasers [16–19]. We anticipate that studies of their
subcritical statistics could be relevant to the onset of lasing.

Critical systems such as the Kuramoto model have also been
studied as promising models of brain dynamics [20].

Here we carry out numerical simulations of finite-N
Kuramoto systems below criticality and examine the time-
dependent fluctuations as groups of oscillators spontaneously
synchronize and fall out of synchronization. We offer evidence
of avalanches in the Kuramoto model whose statistics and
dynamics show scaling behavior in a broad region below the
critical coupling strength. We report avalanche statistics in
the Kuramoto model and find that the scaling forms appli-
cable to these undriven avalanches are analogous to those
of avalanches in externally driven systems [2]. New scaling
exponents and scaling functions associated with the underlying
nonequilibrium phase transition are extracted. We find that the
distributions of these avalanches at different coupling strengths
collapse into a single universal curve.

II. MODEL

The Kuramoto model consists of a collection of interact-
ing phase oscillators, each governed by a simple first order
differential equation:

dθj

dt
= ωj + K

N

N∑

k=1

sin(θk − θj ), (1)

where θj is the phase of the j th oscillator at time t , ωj is its
natural speed, N is the number of oscillators, and K is the
coupling strength. The unit of time for these simulations is
arbitrary, but for simplicity we will refer to our units of time
as seconds, and so the ωj are in radians per second. These
governing equations can be simplified by defining an order
parameter

r eiφ ≡ 1

N

N∑

j=1

eiθj , (2)
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FIG. 1. Definition of avalanche metrics. An avalanche is defined
as the section of the order parameter between two consecutive zero
crossings. The height H of an avalanche is the maximum height of
the order parameter, the size S is the area under the r(t) curve, and
the duration T is the time between the two zero crossings.

where φ is real and r is real and bounded between zero and
one, one corresponding to a state in which all phases are equal.

The governing equations can be rewritten as

dθj

dt
= ωj + Kr sin(φ − θj ), (3)

making it clear that the oscillators are coupled to the mean field.
Often the ωj are chosen from a unimodal distribution centered
on zero, such as a Gaussian or a Lorentzian distribution.

The Kuramoto model as described thus far has been studied
extensively. Here we alter this model so as to make the
system more analogous to another system that exhibits phase
transitions and avalanches, spontaneous magnetization in the
random field Ising model of ferromagnetism [2,5,21].

We modify the Kuramoto model by including, for every
oscillator, a second, “mirroring” oscillator which has the same
natural speed, but with the opposite sign. The position of the
mirror oscillator is always 2π − θj where θj is the position
of the oscillator being mirrored. Thus, if we imagine that the
oscillators are traveling on the unit circle in the complex plane,
the distribution of oscillators is always symmetric about the
real axis. The order parameter is therefore always real, and
Eq. (2) can be written

r = 2

N

N/2∑

j=1

cos(θj ), (4)

FIG. 2. (a)–(c) Complementary cumulative distribution functions (CCDF) of the avalanche durations, T , sizes, S, and heights, H , for 13
values of the coupling strength K . (d)–(f) Corresponding collapse of the CCDFs by rescaling the x and y axes. The CCDF corresponding
to K = 0 is not included in the collapses because it is not expected to collapse. The number of avalanches observed for each value of K

was between 2945 and 10 377. The critical coupling value is KC ≈ 1.596. The tails on the left side of the CCDFs correspond to the smallest
avalanches, which are distorted due to their durations being comparable to the time step. As such, the long left tails of the CCDFs ought not be
expected to collapse.
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FIG. 3. (a)–(c) Average duration, T , size, S, and height, H , of avalanches for each value of the coupling constant K are shown, where
KC = 1.596. The constant slope on the log-log plot reveals that there is a power-law relationship between the average values and distance
from criticality. The slopes for (a)–(c) are −νz(−α + 2) = −0.49, −1/σ (−τ + 2) = −1.06, and −ρ(−μ + 2) = −0.43, respectively. (d)–(f)
The average square duration, size, and height of the avalanches are shown to be related to KC − K by a power law. The slopes for (d)–(f) are
−νz(−α + 3) = −1.2, −1/σ (−τ + 3) = −2.3, and −ρ(−μ + 3) = −1.0, respectively. The power-law relationships, as well as the values of
the scaling exponents, are given in Table I.

such that the order parameter takes values −1 � r � 1, and
the phase angle φ is no longer necessary. Equation (3) is
unchanged, though now φ = 0 due to the new symmetry.
This modification permits us to define avalanches without the
introduction of an arbitrary threshold.

For N → ∞ and a unimodal distribution of natural fre-
quencies g(ω) centered on zero, the Kuramoto equations have a
simple solution with a phase transition [11]. A critical coupling
strength KC can be defined that depends on g(ω). For values
of the coupling strength K < KC , the order parameter is zero

and the oscillator phases are evenly distributed between zero
and 2π . At K = KC , a continuous phase transition occurs and
the order parameter scales as r ∝ (K − KC)1/2 for K > KC

with KC = 2/(πg(0)) [11].
For finite N , the Kuramoto model behaves similarly [10].

We find that forK sufficiently less thanKC , the order parameter
fluctuates around zero. As K approaches KC from below these
fluctuations grow, and for K sufficiently greater than KC the
order parameter spontaneously synchronizes. Our model with
the mirror oscillators behaves in the same way, but when the

TABLE I. Scaling forms and scaling exponents. The values of the six scaling exponents are listed in the first three rows of the right column.
The scaling forms follow those used in Refs. [8,22]. The scaling functions of the CCDFs, FT , FS , and FH , as well as that of the power spectrum,
FP , are not known analytically. However, the scaling functions for the avalanche shapes, GS and GT , are known and given in the right column.
The scaling relation at the bottom connects the scaling exponents from the three different metrics.

Avalanche duration CCDF C(T ) ∼ T −α+1FT (T (KC − K)νz) α = 1.28 ± 0.05, νz = 0.68 ± 0.05
Avalanche size CCDF C(S) ∼ S−τ+1FS(S(KC − K)1/σ ) τ = 1.15 ± 0.1, 1/σ = 1.25 ± 0.1
Avalanche height CCDF C(H ) ∼ H−μ+1FH (H (KC − K)ρ) μ = 1.25 ± 0.1, ρ = 0.57 ± 0.1
Average duration 〈T 〉 ∼ (KC − K)−νz(−α+2) −νz(−α + 2) = −0.49, KC = 1.596
Average size 〈S〉 ∼ (KC − K)−1/σ (−τ+2) −1/σ (−τ + 2) = −1.06
Average height 〈H 〉 ∼ (KC − K)−ρ(−μ+2) −ρ(−μ + 2) = −0.43
Average square duration 〈T 2〉 ∼ (KC − K)−νz(−α+3) −νz(−α + 3) = −1.2
Average square size 〈S2〉 ∼ (KC − K)−1/σ (−τ+3) −1/σ (−τ + 3) = −2.3
Average square height 〈H 2〉 ∼ (KC − K)−ρ(−μ+3) −ρ(−μ + 3) = −1.0
Avalanche shape for constant duration 〈r|T 〉 ∼ T 1−1/σνzGT (t/T ) GT (x) = Ax(1 − x); σνz = 0.54
Avalanche shape for constant size 〈r|S〉 ∼ S1−σνzGS(t/Sσνz) GS(x) = Bx exp (−Cx2/2)
Power spectrum P (ω) ∼ ω−1/σνzFP (ω(KC − K)−νz) −1/σνz = −1.8, νz = 0.68
Scaling relation (τ − 1)1/σ = (α − 1)νz = (μ − 1)ρ
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order parameter synchronizes it must choose either a positive
or a negative value. This behavior is analogous to spontaneous
magnetization in Ising ferromagnets, where the magnetization
fluctuates around zero for temperatures above the critical tem-
perature and spontaneously chooses either positive or negative
magnetization for temperatures below the critical temperature.
Our interest, motivated by studies of avalanches in other finite
systems near a phase transition [3,4], is in the fluctuations of
r away from zero and how those fluctuations scale near the
transition.

We ran simulations for N = 106 oscillators. Thirteen cou-
pling strengths were simulated: K = 0.95,1.00,1.05, . . . ,1.50
and K = 0. The natural speeds of the oscillators, ωj , were
drawn randomly from a Gaussian distribution centered on zero
with unit variance, and hence the critical coupling strength as
N → ∞ is KC = 2

√
2
π

≈ 1.596 [11]. For each value of K ,
twenty simulations were run, each with different natural speeds
ωj and different initial positions for the oscillators. The initial
positions were randomly chosen in the range (0–2π ). The
system of equations in Eq. (3) was solved numerically using
the Runge-Kutta four method. Each simulation ran for 213 time
steps with a step size of 0.2 s. We analyze the entire time trace
of the order parameter, r(t). As shown by Choi et al. [12],
the Kuramoto model shows transient behavior when its initial
condition is different from its steady state. But the duration of
the transient behaviors seen by Choi et al. were short enough,
given our system size and distance from criticality, that they
should not have an effect on our results here. As a further check
that the initial conditions were not distorting the avalanche

statistics, 36 simulations were done for K = 1.15 with 215 time
steps, and complementary cumulative distribution functions
(CCDFs) from the first 213 time steps were compared to those
from the last 213 time steps. No noticeable differences between
these CCDFs were observed.

We analyze the order parameter as a function of time. As
the order parameter oscillates around zero, an avalanche is
defined as the section of the order parameter between two
consecutive zero crossings. We analyze the statistics of the
avalanche heights, sizes, and durations as defined in Fig. 1.
The avalanche height is the maximum value of r(t) over the
time interval between two zero crossings, the size is the area
under the r(t) curve between the two zero crossings, and the
duration is the length of time between the zero crossings. Due
to symmetry in r , which has 〈r〉 = 0 for K < KC , we analyze
avalanches for negative values of r(t) as well as positive values,
treating their heights and sizes as positive values.

III. ANALYSIS

We show CCDFs of the avalanche heights, sizes, and
durations in Fig. 2. As the coupling constant K approaches
KC from below, we observe increases in the magnitudes of
all three of these metrics. For the same total simulated time
for each value of K , the number of avalanches observed is
greater for weak coupling, as we would expect due to the
increasing duration of avalanches for stronger coupling. For
K = 0 the total number of avalanches observed was 10 377,
and for K = 1.5, the largest value of K we considered, the

FIG. 4. (a),(b) Average order parameter value as a function of time for avalanches of a certain duration, T , and the corresponding collapse.
The average was for all avalanches with duration T to T + T/10. These curves are collapsed onto a scaling function of Ax(1 − x) where
x = t/T by rescaling the y axis by a factor of T 1−1/σνz as shown. (c),(d) The average order parameter value for avalanches of a certain size,
S, and the corresponding collapse. The average was for all avalanches with size S to S + S/10. The curves are collapsed after rescaling the
y axis by S1−σνz and the x axis by Sσνz. The curve on which the lines collapse in (d) is Bx exp(−Cx2/2), where x = t/Sσνz. For these plots
σνz = 0.54 as given in Table I. The avalanches were extracted from simulations with coupling strength K = 1.35.
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FIG. 5. Power spectral density of the order parameter for each value of coupling constant K . The power-law scaling regime grows as K

approaches criticality. The slope of the power law in the scaling regime is −1/σνz = −1.8 in accord with the values given in Table I. The roll
off at high frequencies appears universal, but is presumably related to the Gaussian distribution of natural oscillator speeds. The inset shows a
collapse of the three highest K values using the scaling form from Table I. The values of the scaling exponents are consistent with those used in
the collapse of the avalanches, 1/σνz = 1.8 and νz = 0.68. As expected, the collapse works well at low frequencies, where the tested scaling
form is predicted to apply.

number of avalanches observed was 2945. All other values of
K had a total number of avalanches between these two limits.

We find that by rescaling the axes of the CCDFs, we are able
to make the curves collapse, revealing the universal scaling
functions shown in Fig. 2. The x axes were rescaled by a
factor of (KC − K) raised to a universal scaling exponent,
νz, 1/σ , and ρ for durations, sizes, and heights, respectively.
The y axes were rescaled by a factor of the metric raised
to another universal scaling exponent, (1 − α), (1 − τ ), and
(1 − μ) for durations, sizes, and heights, respectively. The
scaling exponents describe the effect of the coupling strength
on the excursions of the order parameter. The scaling forms,
along with the values of the scaling exponents, are given
in Table I following the conventions used in Ref. [22]. The
scaling exponents extracted from these collapses are consistent
with the relation (τ − 1)1/σ = (α − 1)νz = (μ − 1)ρ, which
results from the fact that the number of avalanches in the scaling
regime is the same, whether they’re counted using the duration,
size, or height CCDF.

We calculated the average duration, size, and height of the
avalanches for each value of the coupling strength. We also
calculated the average square value of each metric as well.
The results are shown in Fig. 3. The average values of these
metrics are related to the distance from criticality by a power
law. Table I shows the scaling laws and the values of the scaling
exponents. The scaling forms shown in Table I are derivable
from the assumption that the probability distribution function
of a given metric (duration T , size S, or height H ) scales like
a power law with a quickly decaying cutoff function: P (X) ∼
X−pXfX(X(KC − K)qX ), where X is either T , S, or H , pX is
α, τ , or μ, respectively, qX is νz, 1/σ , or ρ, respectively, and
fX is a corresponding scaling function with a quickly decaying
cutoff at large values of its argument.

We extract the average avalanche shapes for avalanches
of three different durations, taken from K = 1.35 in Fig. 4.
To extract the average avalanche shape for avalanches of a
given duration, we take the value of the order parameter at
certain points in rescaled time, and average those values. This
is done for all avalanches whose duration falls within 10% of
the duration being considered. We find that by rescaling the y

axis by T 1−1/σνz, we can collapse the three plots on to a curve
Ax(1 − x), where A = 2.6 × 10−3 and x = t/T .

We show the average avalanche profile for avalanches of a
given size as well in Fig. 4. By rescaling the x axis by Sσνz and
the y axis by S1−σνz, we collapse the profiles for three different
sizes, again for K = 1.35. The plots of the average avalanche
profiles for fixed size were made by sampling all avalanches
within 10% of the given size at certain times and averaging the
value of the order parameter at those points. The long tails are
due to the fact that the start of an avalanche is defined to be at
t = 0, but the avalanches have various durations, so at times
after an avalanche has ended, its order parameter value is r = 0.
So, for example, at t/Sσνz = 80, 〈r|S〉 is low because many of
the avalanches have already ended. The plots collapse onto
a scaling function Bx exp (−Cx2/2) with B = 1.5 × 10−3,
C = 1.8 × 10−3, and x = t/Sσνz.

The power spectra of the order parameter is shown in Fig. 5.
The scaling regime exhibits a power-law exponent that is in ac-
cord with those used for the other collapses, −1/σνz = −1.8.
This supports the choice of scaling exponents we’ve made and
is an additional support for the avalanche definition defined
above because the power spectra do not depend on the defini-
tion of avalanches. A collapse is shown in the inset of Fig. 5
for the three largest K values. The collapse depends not only
on rescaling by ω1/σνz, but also rescaling the x axis by (KC −
K)−νz with νz = 0.68. This scaling form is given in Table I.

042219-5



COLEMAN, DAHMEN, AND WEAVER PHYSICAL REVIEW E 97, 042219 (2018)

IV. DISCUSSION

By introducing a symmetry into the Kuramoto model in
order to make the order parameter real, we are able to define
and study avalanches in it, making it more analogous to
other critical systems. The statistics of these avalanches reveal
critical exponents and scaling functions which open up a new
perspective on synchronizing phase transitions.

The analysis we have carried out is similar to analyses
that have been done on different physical systems, such as
slip avalanches in bulk metallic glasses and magnetization
avalanches in Ising ferromagnets [2,3,5].

The analogy to depinning transitions drawn here is mostly
qualitative rather than quantitative. Note that while the dynam-
ics of running oscillators with large intrinsic phase velocities
are not much affected by the slow-moving ones, the slow ones
experience the noise generated by the fast ones. As a result this
problem appears more challenging than standard elastic depin-
ning problems such as elastic charge density wave depinning
where all phases have the same average velocity [23,24] or
the depinning of magnetic domain walls [25]. The Kuramoto
model may be more similar to plastic depinning of charge
density waves [9,26], which has the same avalanche statistics
as the nonequilibrium random field Ising model [21,27]. As
we show here, many of the same questions can be answered
about the statistical and dynamical properties of the avalanches
for the Kuramoto model, just as was previously done for many
of these other avalanche models.

The exponents and scaling functions are predicted to be
universal, depending only on general properties of the model
such as symmetries and dimensions. They can be used to iden-
tify which experimental systems fall in the same universality
class of systems with these same universal identifiers as the
Kuramoto model. They can also be used to predict how big fluc-
tuations can get in these synchronizing systems, which can be
important for applications. Finally they bring another perspec-
tive to the field of avalanches because, contrary to most other
systems with avalanches, no external driving force is involved
in the Kuramoto system studied here. Rather the avalanches
are triggered by the system’s own internal dynamics.

We should note, however, that while the study here was
performed at zero applied force or field, it is possible to extend
the study to situations with an applied field [10]. In that case the
system has two experimental tuning parameters: the coupling
strength and the driving force. It will be interesting to explore
that case in future studies, in order to develop a more general
theory for how synchronizing systems fit into the larger context
of avalanching systems.

APPENDIX: EXPONENTS INDEPENDENT
OF SYSTEM SIZE

The simulations discussed in the body of the article were
run with N = 106 oscillators. Identical simulations were
run for a smaller system size of N = 104 oscillators. The

FIG. 6. (a)–(c) Complementary cumulative distribution functions (CCDFs) of the avalanche durations, T , sizes, S, and heights, H , for 12
values of the coupling strength K . The number of oscillators simulated here is N = 104. (d)–(f) Corresponding collapses of the CCDFs obtained
by rescaling the x and y axes. The critical coupling value is KC ≈ 1.596. The values of the scaling exponents in the collapse are identical to the
values used to collapse the CCDFs for the larger system size of N = 106. The CCDFs closest to the critical coupling strength show finite-size
effects, as expected for the smaller system size.

042219-6



AVALANCHES AND SCALING COLLAPSE IN THE … PHYSICAL REVIEW E 97, 042219 (2018)

FIG. 7. (a)–(c) Average duration, T , size, S, and height, H , of avalanches for each value of the coupling constant from simulations with a
system size of N = 104. The power-law scaling exponents are the same as those found for the larger system size of N = 106. The slopes for
(a)–(c) are −νz(−α + 2) = −0.49, −1/σ (−τ + 2) = −1.06, and −ρ(−μ + 2) = −0.43 respectively. (d)–(f) The average square duration, T ,
size, S, and height, H , of avalanches for each value of the coupling constant from simulations with a system size of N = 104. The slopes for
(d)–(f) are −νz(−α + 3) = −1.2, −1/σ (−τ + 3) = −2.3, and −ρ(−μ + 3) = −1.0, respectively. The power-law relationships, as well as the
values of the scaling exponents, are given in Table I. Finite-size effects are visible close to the critical coupling strength, as expected for the
smaller system size.

simulations were run for 12 values of the coupling constant:
K = 0.95,1.00,1.05, . . . ,1.50. For each value of the coupling
constant, 20 random realizations were simulated drawing the
natural speeds of the oscillators from a Gaussian distribution
centered on zero with unit variance. Each realization was
simulated for 213 time steps with a step size of 0.2 s.

Figures 6 and 7 show the CCDFs and the average values
of the same three metrics that are given in Figs. 2 and 3.

The scaling exponents extracted from the larger-system-size
simulations were used to collapse the CCDFs in Fig. 6. The
same exponents are shown to describe the power-law scaling
observed in Fig. 7. For the two coupling constant values closest
to criticality, K = 1.45 and 1.50, finite-size effects are clearly
visible. This is expected given the smaller system size and is
why a much larger system size was chosen for the simulations
in the body of the article.
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