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Emergent structures in reaction-advection-diffusion systems on a sphere
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We demonstrate unusual effects due to the addition of advection into a two-species reaction-diffusion system
on the sphere. We find that advection introduces emergent behavior due to an interplay of the traditional Turing
patterning mechanisms with the compact geometry of the sphere. Unidirectional advection within the Turing
space of the reaction-diffusion system causes patterns to be generated at one point of the sphere, and transported
to the antipodal point where they are destroyed. We illustrate these effects numerically and deduce conditions for
Turing instabilities on local projections to understand the mechanisms behind these behaviors. We compare this
behavior to planar advection which is shown to only transport patterns across the domain. Analogous transport
results seem to hold for the sphere under azimuthal transport or away from the antipodal points in unidirectional
flow regimes.
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I. INTRODUCTION

Since Turing’s original pioneering work in morphogenesis
[1], there have been numerous extensions to the basic reaction-
diffusion patterning mechanism, some of which are reviewed in
Ref. [2]. One extension of the traditional mechanism is to con-
sider the influence of advection on reaction-diffusion systems,
whereby the interacting chemicals are transported along by
some process. These reaction-advection-diffusion models have
been studied from many different perspectives with a variety of
forms of advection. The authors in Ref. [3] investigated reactive
flows as a way of introducing inexact phase differences within
Turing patterns and suggested that this is one way of encoding
additional information into a biological patterning process that
is more robust than traditional Turing instabilities. Similarly,
Ref. [4] demonstrated Turing patterns with equal diffusion
coefficients not possible in a purely reaction-diffusion system.
These models are commonly used to model patterning pro-
cesses when advection is present due to the physical environ-
ment, such as Ref. [5], which investigates cell aggregation due
to phyllotaxis, and Refs. [6,7], where patterning of populations
occurs due to directed motion (modeled as advection) and
spatial heterogeneity. Novel mechanisms and patterns have
also been explored experimentally [8,9] and traveling wave
analyses have been carried out [10]. Finally, this class of model
has also been used to explain chemical-mechanical coupling
in particular organisms, such as the rhythmic contraction of
the plasmodium of Physarum polycephalum [11]. Differential
advection itself has been shown to initiate traveling-wave
instabilities in models of chemical systems [12], and this has
been further related to Turing-type instabilities in the case of
an immobile inhibitor [13].

Another variation, first considered in Turing’s original pa-
per, is to extend the theory to curved domains, and in particular,
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to the sphere. This has been pursued by many authors from
various directions [14]. Turing patterns have been studied on
the sphere, with biological applications on embryological con-
straints [15] and the growth of solid tumours [16] considered.
Several authors have considered the effect that spherical geom-
etry has had on the existence and stability of particular solu-
tions, such as localized spot patterns and their transient forma-
tion [17–19]. Many of these models are motivated by specific
biological applications, such as membrane-protein interactions
[20] and in both developing embryos and the mitosis of a single
cell [21]. Extensions to more general manifolds have been con-
sidered from both theoretical [22–24] and experimental [25]
perspectives.

We are chiefly motivated by novel features present in a
reaction-diffusion system on a compact surface introduced
via advection of the constituents across the surface. This
framework captures many existing models and extends others
in a natural way. There are many physical and biologi-
cal phenomena that can be modelled by reaction-advection-
diffusion systems on a sphere, or more generally on the
surface of curved manifolds. In atmospheric physics, reaction-
advection-diffusion systems with spherical geometries have
been used to model the transport of water across the surface
of the earth [26,27], as well as to model chemical transport
due to atmospheric convection [28,29]. Similar atmospheric
models have also been used to model the transport of mi-
croorganisms (e.g., bacteria, [30,31]), as well as dust in arid
environments [32].

While we are not aware of reaction-advection-diffusion
models in physiology or developmental biology, we believe
that this more general setting would be a useful framework
within which to extend questions about protein binding on cell
surfaces [20], or to investigate the effect of flow through or
past a solid tumor [16]. Growing geometries have been shown
to give rise to advection-like terms [23,33,34], and analysis of
our generic system will lend insight into the behavior of these
kinds of models in general.
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Lastly, we mention that many kinds of active transport of,
e.g. cells, are possible that give rise to advection terms in
the governing equations for a population. For example, if the
advection is due to the gradients of a function of some given
chemical field, then this can model chemotaxis [35,36]. Similar
remarks can be made about many other forms of cell move-
ment, such as rheotaxis in the presence of flow [37], phyllotaxis
in the presence of light [38,39], or even magnetotaxis in the
presence of an external electromagnetic field [40]. Nonlinear
advection has been shown to introduce oscillatory instabilities
in reaction-convection-diffusion systems as well [41]. While
these various forms of cell taxes and other nonlinear forms
of advection have been studied on planar two-dimensional
domains, we show in this paper that considering them on
the surface of a sphere leads to new kinds of population-
level behavior, even under the simplification of simple linear
advection. We note that linearity here is with respect to the
unknown chemical species, and that we will consider both
homogeneous and inhomogeneous forms of advection.

Consider the nondimensional two-species reaction-
advection-diffusion system on the surface of a sphere of radius
R (so that x ∈ S2 ⊂ R3) given by

∂u

∂t
= δ1

R2
�u − 1

R
∇ · [A(x)u] + f (u,v), (1)

∂v

∂t
= δ2

R2
�v − 1

R
∇ · [B(x)v] + g(u,v), (2)

where u, v are the interacting species, f , g are nonlinear
kinetic functions, A, B determine the advective component of
transport, and δ1, δ2 are diffusion coefficients. In spherical co-
ordinates, x = (θ,φ), and the Laplace-Beltrami and tangential
divergence operators are defined as

�u = 1

sin(θ )

{
∂

∂θ

[
sin(θ )

∂u

∂θ

]
+ 1

sin(θ )

∂2u

∂φ2

}
, (3)

∇ · A = 1

sin(θ )

{
∂

∂θ
[sin(θ )Aθ ] + ∂Aφ

∂φ

}
, (4)

where A = (Aθ,Aφ) [16,42].
Equations (1)–(2) represent a general reaction-advection-

diffusion system that contains many specific submodels. Non-
linear generalizations of this advection term also give rise to
interesting behavior, but for the remainder of this paper, we will
concentrate on linear (possibly inhomogeneous) advection to
demonstrate the interplay this transport mechanism has with
the spherical geometry. We shall consider reaction-advection-
diffusion systems on the sphere to understand how these vari-
ations on the classical Turing pattern-formation mechanism
interact with one another. In Sec. II we give generic instability
results for spatially uniform equilibria with strong assumptions
on the advection. Due to difficulties raised in this general
analysis, we proceed to consider a caricature of the regions
present in a unidirectional flow regime in Sec. III in order to
make analytical progress. We then systematically investigate
model behaviors in Sec. IV. We demonstrate novel behaviors
of advection on a sphere (which is an example of a compact
manifold without boundary) and discuss these behaviors in
terms of spectral theory and small-diffusion asymptotics.
We consider Schnakenberg [43], Geirer-Meinhardt [44], and
FitzHugh-Nagumo [45] kinetics to show that these behaviors

are generic within some regions of the Turing space, depending
on the magnitude and form of the advection. Finally, we
discuss mathematical and biological implications of our work
in Sec. V.

II. STABILITY PROBLEM FOR SPATIALLY UNIFORM
STEADY STATES ON THE SPHERE

Let (u∗,v∗) ∈ R2 be a spatially uniform steady state
such that f (u∗,v∗) = 0 and g(u∗,v∗) = 0. Consider a small
perturbation of these steady states, u = u∗ + εū, v = v∗ + εv̄,
for 0 < ε � 1. In order for (1)–(2) to admit spatially uniform
steady states corresponding to the steady states of the reaction
kinetics, we must have divergence-free advection vectors, i.e.,
∇ · A = 0 and ∇ · B = 0. In this case, the advection term only
involves gradients of u or v which vanish on a spatially uniform
state.

We first focus on the case where δ1 = δ2 = 0, A = B = 0,
i.e., the case of reaction kinetics only. Then setting fu =
∂f

∂u
(u∗,v∗), fv = ∂f

∂v
(u∗,v∗), gu = ∂g

∂u
(u∗,v∗), gv = ∂g

∂v
(u∗,v∗)

we get

d

dt

(
ū

v̄

)
= J̃

(
ū

v̄

)
, (5)

where

J̃ =
(

fu fv

gu gv

)
. (6)

This linear system is stable provided tr(J̃ ) = fu + gv < 0 and
det (J̃ ) = fugv − fvgu > 0 [2]. We shall always assume these
criteria on the reaction kinetics are satisfied.

To address the influence of spatial perturbations, consider
now δ1,δ2 > 0, A,B �= 0. Spatio-temporal perturbations of the
spatially uniform steady states may then be written in the form

u(x,t) = u∗ + ε
∑

�

σu,�e
λ�tY�(x) exp [A(x)], (7)

v(x,t) = v∗ + ε
∑

�

σv,�e
λ�tY�(x) exp [A(x)], (8)

where Y�(x) is a spherical harmonic for S2 ⊂ R3, with
eigenvalue λ� = − �(�+1)

R2 (which may appear with multiplicity
greater than one), σu,� and σv,� are arbitrary constants corre-
sponding to an eigenfunction expansion of the perturbation,
x ∈ S2, and A(x) is a function which satisfies

∇A = R

2δ1
A . (9)

The function A can be interpreted as the scalar potential for
A, the existence of which is guaranteed as A is assumed
divergence-free. The factor of exp [A(x)] is therefore moti-
vated by integrating factors for ordinary differential equations.
For consistency of our equations, we assume B(x) = δ2

δ1
A(x).

We shall also assume |A| is constant on the sphere, correspond-
ing to a constant magnitude advection over the surface of the
sphere.

Placing (7)–(8) into the linearized problem for (1)–(2), we
obtain

λ�

(
σu,�

σv,�

)
= J�

(
σu,�

σv,�

)
, (10)
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where

J� =
(

− δ1
R2 �(� + 1) − |A|2

2δ1
+ fu fv

gu − δ2
R2 �(� + 1) − δ2

δ1

|A|2
2δ1

+ gv

)
. (11)

As tr(J�) � tr(J̃ ) < 0, and det(J̃ ) > 0 by assumption, a nec-
essary condition for the Turing instability is that det(J�) < 0
for some integer � > 0. We note that this condition is a
simple modification of the classical necessary conditions for
diffusion-driven instability in reaction-diffusion systems; see
Ref. [2] for a general treatment of conditions for diffusion-
driven instability, and Refs. [46–48] for contemporary exam-
ples of Turing instability conditions comparable to our analysis
above.

Note that we have relied on the assumption that |A| is
constant. Attempting to relax this restriction, we find that we
obtain a spatially heterogeneous linear eigenvalue problem, for
which determining the spectrum is not tractable in general. This
therefore leads us to consider a simplification in the geometry
of the problem. This shall allow us to study advective sources or
sinks, for which |A| is not constant. We note that the analysis
in the following section will not rigorously correspond to a
stability analysis of the full problem, but is instead a caricature
which is meant to give some insight into the behavior of the
reaction-advection-diffusion system.

III. CURVATURE-FREE LOCAL APPROXIMATIONS
OF TURING INSTABILITY CRITERIA IN THREE

REGIONS OF IMPORTANCE

In order to analytically approximate the mechanism for
Turing instability on the sphere due to advection in a more
general setting where |A| and |B| are not necessarily constant,
we shall approximate the salient dynamics on the sphere S2 by
considering three regions. In this analysis, the advection shall
originate at a point P1 on the sphere, with the advective flow
then tending to the antipodal point P2. Under the divergence-
free assumption on the vector fields A and B, this results in
an advection diverging from P1 and converging to P2. We
shall take Region I to be a circular cap of radius 0 < ρ � R

centered about P1; as ρ � R we shall assume curvature effects
are negligible and consider the geometry to be that of a disk
on the plane R2. We then consider an intermediate cylindrical
Region II, in which the two species are advected along the
sphere along fixed streamlines after they leave Region I. There
is a corresponding Region III centered about P2 with radius
0 < ρ � R, and the species are advected into this region
after they pass through Region II. As with Region I, we
shall assume Region III is a disk in the plane, neglecting any
curvature effects. In this way, Regions I and III are really disks
lying in the tangent plane to the sphere at points P1 and P2,
respectively. See Fig. 1 for an illustration of these regions and
their corresponding idealizations. While this decomposition
is a crude approximation of the sphere, we show later that
the analytical results derived from these approximations do
indeed show agreement with numerical simulations for the full
problem on the true curved spherical geometry.

A. Dynamics on Regions I and III

We start with Regions I and III, modeling each as a disk with
radius 0 < ρ � R. Note that Region I will act as a source, and
Region III as a sink. Hence, it is sensible to assume purely
radial spatial coordinates for both the advection and solution
functions. Taking u = u(r,t) and v = v(r,t), (1)–(2) give

∂u

∂t
= δ1

1

r

∂

∂r

(
r
∂u

∂r

)
− 1

r

∂

∂r
(rA(r)u) + f (u,v), (12)

∂v

∂t
= δ2

1

r

∂

∂r

(
r
∂v

∂r

)
− 1

r

∂

∂r
(rB(r)v) + g(u,v). (13)

We are interested in showing that these regions give rise to
local instability from uniform steady state solutions, and so
relevant boundary conditions for Regions I and III are

u = u∗ , v = v∗ at r = ρ , (14)

∂u

∂r
= 0 ,

∂v

∂r
= 0 at r = 0 . (15)

Assume that there exists a spatially uniform steady state
(u∗,v∗) satisfying f (u∗,v∗) = g(u∗,v∗) = 0. For this, we re-
quire that ∇ · A = 0, ∇ · B = 0. However, this is equivalent to
1
r

∂
∂r

(rA(r)) = 0, so that A(r) = A0
r

and, similarly, B(r) = B0
r

.
We choose the constants A0 and B0 to be positive in Region
I and negative in Region III to correspond to source and sink
dynamics respectively. We perturb the spatially uniform steady
states as

u = u∗ + εσue
λtW (r) + O(ε2), (16)

v = v∗ + εσve
λtW (r) + O(ε2), (17)

where σu and σv are arbitrary nonzero constants [which are
O(1) in ε], W (r) is an eigenfunction, and λ is the temporal

FIG. 1. A diagram of the three regions analyzed in Sec. III,
showing how they relate to unidirectional flow on the sphere. We
consider a local disk tangent to the sphere at each antipode, and then
a cylindrical region along the center of the sphere.
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eigenvalue. Placing these into (12)–(13), we obtain the eigen-
value problem for the perturbations, which takes the form

δ1
1

r

d

dr

(
r
dW

dr

)
− A0

r

dW

dr
= μW , (18)

subject to the solvability condition B0 = δ2
δ1

A0. For the per-
turbed problem, the boundary conditions become

W = 0 at r = ρ, (19)

dW

dr
= 0 at r = 0. (20)

Assuming such a solution W (r) to our boundary value problem
exists and has eigenvalues μ, we obtain the linear system

λ

(
σu

σv

)
=

(
μ + fu fv

gu
δ2
δ1

μ + gv

)(
σu

σv

)
. (21)

Let μ = −k2 and set α = 1
2

A0
δ1

, β = k√
δ1

. Solving Eq, (18),
we get

R(r) = {C1J−α(βr) + C2Y−α(βr)}rα , (22)

where J and Y denote Bessel functions of first and second kind,
respectively [49]. Implementation of the boundary condition
at r = 0 will depend on the value of α, as

dR

dr
= −β{C1J (1 − α,βr) + C2Y (1 − α,βr)}rα (23)

and limr→0 rαJ (1 − α,βr) = 0 for all α ∈ R, while
limr→0 rαY (1 − α,βr) = 0 only if α > 1

2 , with the limit
nonzero (and, in some cases, singular) otherwise.

First, we consider the case α � 1
2 , which then gives C2 = 0.

Using the remaining boundary condition, we have J−α(βρ) =
0. Let j−α,n be the nth root of the Bessel function Jα for n =
1,2, . . .. We then obtain μn = −k2

n, where kn =
√

δ1

ρ
j− 1

2
A0
δ1

,n
.

This puts the spectral problem into the form

λn

(
σu

σv

)
= Jn

(
σu

σv

)
, (24)

where

Jn =
⎛
⎝− δ1

ρ2 (j− 1
2

A0
δ1

,n
)2 + fu fv

gu − δ2
ρ2 (j− 1

2
A0
δ1

,n
)2 + gv

⎞
⎠. (25)

Recall J̃ as defined in (6) with tr(J̃ ) < 0 and det (J̃ ) > 0 for
stability. Then this implies that tr(Jn) < 0 for any n, so we
require that det(Jn) < 0 for some n in order for there to be a
Turing instability.

Next, we consider the case α > 1
2 . Note that dW

dr
|r=0 = 0

for α > 1
2 without the need to set either C1 or C2 to zero, so

the remaining boundary condition W (ρ) = 0 yields

C2 = −C1
J (−α,βρ)

Y (−α,βρ)
. (26)

We have not fixed a discrete spectrum, meaning that any k ∈ R
serves as an eigenvalue, i.e., that the spectrum is continuous

with μ = −k2 for k ∈ R. The spectral problem is then

λ

(
σu

σv

)
= J (k)

(
σu

σv

)
, (27)

where

J (k) =
(−k2 + fu fv

gu −k2 + gv

)
. (28)

Observe that J (0) = J̃ , tr(J̃ ) < 0, and det (J̃ ) > 0, hence
tr(J (k)) � tr(J̃ ) < 0 for all k ∈ R. The condition for the
Turing instability is then the existence of an interval (k1,k2),
with 0 < k1 < k2 < ∞, for which det [J (k)] < 0 for all k ∈
(k1,k2).

In summary, when A0 � δ1, the condition for the Turing
instability in Region I or III is

det(Jn) = δ1δ2

ρ4
(j− 1

2
A0
δ1

,n
)4 − δ1gv + δ2fu

ρ2
(j− 1

2
A0
δ1

,n
)2

+ det(J̃ ) < 0, (29)

for some n = 1,2, . . . , while when A0 > δ1 the condition for
the Turing instability is

det[J (k)] = k4 − tr(J̃ )k2 + det(J̃ ) < 0 (30)

for all k ∈ (k1,k2), provided there exist k1 and k2 satisfying
0 < k1 < k2 < ∞.

To place these results into context, for A0 � δ1 (the
diffusion-dominated limit), we obtain a discrete spectrum,
while for A0 > δ1 (the advection-dominated limit), we obtain
a continuous spectrum. If such k1 and k2 exist, then the
continuous spectrum problem will always have excited modes,
while a corresponding discrete spectrum may not, depending
on if one of the discrete eigenvalues satisfies the condition
given above. For instance, it can be shown that

j−α,n −−−→
n→∞ π

(
n + 3

4
− α

2

)
for α � 0, (31)

j−α,n −−−→
n→∞ π

(
n + 3

4
+ α

2

)
for α ∈ Z�0, (32)

j−α,n −−−→
n→∞ π

(
n + 1

4
+ α

2

)
for α ∈ Z�0 + 1

2
, (33)

j−α,n −−−→
n→∞ π

(
n + 3

4
− α

2

)
otherwise, (34)

where the order of convergence is O( 1
n

). Therefore, it may
be the case that the discrete spectrum always results in
a positive determinant, while a corresponding continuous
spectrum gives some interval on which the determinant is
negative if that interval falls within a gap in the discrete
spectrum.

B. Dynamics on Region II

We now turn our attention to Region II, which we model as
a cylinder of length L and radius ρ. Unlike in Regions I and
III, where we assumed 0 < ρ � R, for Region II, we assume
ρ = O(R). This geometry is a model of the central band along
the sphere between the two antipodes, P1 and P2, and we shall
assume curvature has a negligible influence on the dynamics
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in this region. Mathematically, this geometry corresponds to
a rectangle (x,y) ∈ [0,L] × [0,2πρ] in the plane. We impose
periodic boundary conditions

u(x,0,t) = u(x,2πρ,t), (35)

∂u

∂y
(x,0,t) = ∂u

∂y
(x,2πρ,t), (36)

v(x,0,t) = v(x,2πρ,t), (37)

∂v

∂y
(x,0,t) = ∂v

∂y
(x,2πρ,t), (38)

and Dirichlet boundary conditions

u(0,y,t) = u∗ = u(L,y,t), (39)

v(0,y,t) = v∗ = v(L,y,t). (40)

Consider A = A1x̂ and B = B1x̂, so that advection is in the
positive x direction along the sides of the cylinder. Then (1)–(2)
take the form

∂u

∂t
= δ1�u − A1

∂u

∂x
+ f (u,v), (41)

∂v

∂t
= δ2�v − B1

∂v

∂x
+ g(u,v). (42)

We consider a perturbation about the spatially uniform steady
state of the form

u = u∗ + εū, (43)

v = v∗ + εv̄, (44)

where |ε| � 1, and the eigenfunction expansions are of the
form

ū =
∑
m,n

σu,m,ne
λm,nt sin

(
mπx

L

)
exp

(
A1

2δ1

)

×
{
pn sin

(
ny

ρ

)
+ qm cos

(
ny

ρ

)}
, (45)

v̄ =
∑
m,n

σv,m,ne
λm,nt sin

(
mπx

L

)
exp

(
A1

2δ1

)

×
{
pn sin

(
ny

ρ

)
+ qm cos

(
ny

ρ

)}
. (46)

The consistency condition is found to be B1 = δ2
δ1

A1. Using
(45)–(46) to linearize (41)–(42), we obtain for each m,n pair
the system

λm,n

(
σu,m,n

σv,m,n

)
= Jm,n

(
σu,m,n

σv,m,n

)
, (47)

where

Jm,n =
(

−δ1
[(

mπ
L

)2 + (
n
ρ

)2] − A2
1

2δ1
+ fu fv

gu −δ2
[(

mπ
L

)2 + (
n
ρ

)2] − δ2
δ1

A2
1

2δ1
+ gv

)
. (48)

With J̃ as before, we once again set tr(J̃ ) < 0 and det (J̃ ) > 0,
noting that tr(Jm,n) � tr(J0,0) � tr(J̃ ) < 0 for all m,n. For the
Turing instability, we therefore must have that det (Jm,n) < 0
for some m,n ∈ N.

C. Summary

The intuition here is that the A0 > δ1 case can be less stable,
resulting in the Turing instability even if a corresponding
condition for A0 < δ1 is not satisfied. We shall see later
that A0 > δ1 can result in generation of patterns as the two
species are advected away from P1 in Region I, while there
is a collapse of patterns to a uniform state at P2 for A0 < 0
(and hence A0 < δ1) in Region III. Region II may or may
not have the Turing instability, depending on the discrete
spectrum associated to Jm,n satisfying det (Jm,n) < 0 for some
m,n ∈ N. If the dynamics in Region II remain stable against
perturbations, patterns created in Region I will be transported
through Region II before being destroyed in Region III. On
the other hand, if Region II exhibits the Turing instability, then
patterns generated in Region I can evolve into new patterns
while they are transported across the sphere, before entering
Region III.

Note that the form of Jm,n from (48) is similar to the
Jacobian J� given on the sphere in (11). This makes sense, as
we assume that the advection vectors have constant magnitude

over Region II, which was a necessary condition for the result
on the sphere. This suggests that the dynamics in Region II
should be similar to those observed on a sphere when the
advection is not strongly dependent on the spatial position. In
contrast, the results for Regions I and III differ from the results
for Region II and the sphere, owing to the fact that advection
in those regions depends strongly on the spatial coordinates.

Doing similar analysis on a planar region with constant A =
(Ax,Ay) and B = (Bx,By), we can conclude that a uniform
steady state is stable if

−(δ1 + δ2)|k|2 + fu + gv + 1√
2

√√
p2 + q2 + p < 0 ,

(49)
where

p = (|k|2(δ1 + δ2) − fu − gv)2 − (k · (A + B))2

− 4(δ1|k|2−fu)(δ2|k|2 − gu)+4(k · A)(k · B) + 4fvgu,

(50)

q = − 2[|k|2(δ1 + δ2) − fu − gv][k · (A + B)] − 4(k · B)

× (δ1|k|2 − fu) − 4(k · A)(δ2|k|2 − gv). (51)

This stability criterion, and the discrete nature of the spec-
trum for planar regions, are similar to the Region II analysis
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FIG. 2. Transient formation of labyrinthine patterns in the Schnakenberg model (52) with R = 100, a = 0.1, b = 0.9, δ1 = 1, δ2 = 10, and
Ax = 4 for A = B = Ax[− sin(θ ) sin(φ), cos(θ ) cos(φ)]. The three columns are different views of source-side sink, and each row corresponds
to t = 40,60,100.

done above. Hence, we anticipate that solution behavior in this
region of the sphere is comparable to the planar setting. In par-
ticular, with the introduction of advection, we anticipate only
simple transport of patterns for sufficiently small advection
away from any emergent sources or sinks due to the advection.

IV. NUMERICAL SIMULATIONS OF PATTERN
FORMATION AND TRANSPORT

Here we numerically simulate Eqs. (1)–(2) using the
commercially available finite-element package Comsol. We
discretize the sphere of radius R using 19 488 triangular
mesh elements. Throughout we take initial data to be equal
to the spatially uniform steady state value with a small random
perturbation (normally distributed for each element with mean
0 and standard deviation 10−3). We perform convergence
checks in space to ensure the accuracy of our simulations
by considering simulations with 2800, 6540, 12 556, and
19 488 triangular elements, and noting Cauchy convergence
between these discretizations. Similarly, we restricted the
maximal time step from �tmax = 10−1 to �tmax = 10−3 to
check convergence in time, and the results from these checks
were quantitatively close to results where Comsol was free to

choose the time step. Additionally, we used the Matlab package
Chebfun to check our results using a very different numerical
approach in the case without advection [50,51]. Using identical
initial data, we obtain quantitative matching between these
implementations.

We begin by analyzing Schnakenberg [43] kinetics and
demonstrate some of the behaviors analyzed above. However,
in order to demonstrate that these simulations are indicative
of generic reaction-advection-diffusion phenomena, rather
than anything specific to Schnakenberg kinetics, we consider
Geirer-Meinhardt [44] and FitzHugh-Nagumo [45] kinetics as
well. In all plots, we only show the concentration of u, as
v will have a qualitatively similar pattern (any inexact phase
differences, as reported in Ref. [3], are all quite small for the
simulations that we have done here and not visually apparent
when u and v are plotted alongside one another).

Throughout we will show simulations, and utilize different
viewing angles to elucidate the dynamics of spatiotemporal
patterns across the sphere. In particular, for unidrectional
advection along the x axis, we will denote Regions I, II, and
III as in Fig. 2. These correspond to views centered at the two
antipodal points (P1 and P2) normal to the advection in I and
III, and a view of the side of the sphere in II. For other forms of

042215-6



EMERGENT STRUCTURES IN REACTION-ADVECTION- … PHYSICAL REVIEW E 97, 042215 (2018)

FIG. 3. Formation and transport of labyrinthine patterns in the Schnakenberg model (52) with R=40, a=0.01, b=1.2, δ1 =1, δ2 =10,

and Ax = 0.1 for A = B = Ax[− sin(θ ) sin(φ), cos(θ ) cos(φ)]. The three columns are different views of source-side sink, and each row
corresponds to t = 200,400,600.

the advection vector without such a preferred direction, we
will use a common viewing viewing angle centered at the
point θ = π/4, φ = π/4 where both the pole at θ = 0 and
the equatorial line at θ = π/2 are visible.

A. Schnakenberg reaction kinetics

Schnakenberg reaction kinetics were originally investigated
to give a very simple reaction scheme that allowed for limit
cycle behavior, by containing a steady state which is an
unstable focus [43]. It has been used as a simpler model
than the Brusselator in terms of the chemistry being modeled
and the analytical tractability of the kinetics. Spot patterns
[46,52] and Turing-Hopf bifurcations [47] have been inves-
tigated using these kinetics. The range of stationary patterns
permissible throughout parameter space is quite large, although
in two-dimensional domains, these tend to range from spots
to labyrinthine patterns [53]. Due to the underlying oscillatory
nature of the kinetics, spiral patterns and pulsing solutions also
exist.

The reaction-advection-diffusion system with Schnaken-
berg reaction kinetics is given by

∂u

∂t
= δ1

R2
�u − 1

R
∇ · [A(x)u] + a − u + u2v,

∂v

∂t
= δ1

R2
�v − 1

R
∇ · [B(x)u] + b − u2v, (52)

where we vary A and B as well as the other parameters.
We first take A = B = Ax[− sin(θ ) sin(φ), cos(θ ) cos(φ)] for a
constant Ax which represents the flow induced by an advection

in the x direction of an embedding of the sphere into R3 of
magnitude Ax . This can correspond to rheotaxis or convective
transport of chemicals (or cells) confined to the surface of a
sphere immersed in a fluid, or to a constant magnetic field in
the case of magnetotaxis or similar physical scenarios.

In Figs. 2–3 we plot the activator concentration u for this
system. This shows transient pattern formation with mod-
erate advection in a parameter regime which admits stable
labyrinthine patterns in the advection-free case. The advection
affects the transient patterning process by forcing ridges to
form in the direction of the advection, before eventually
curving and patterning as the nonlinearity takes effect, leading
to more familiar labyrinthine patterns in Figs. 2–3. The long-
time behavior, shown for a smaller domain with different
kinetic parameters in Fig. 4, shows that the labyrinthine pattern
originates at one side of the sphere, is transported across it
and dissipates at the antipodal point. These points lie at the
intersection of the x axis with the sphere. We note that in
Figs. 2–4 for both sets of parameters, the local behavior at the
“source” (left column) and “sink” (right column) of the sphere
is different; the wavelength of pattern appears to be larger near
the source, while the sink region appears to destroy patterns by
absorbing them into one another around this antipodal point.

In Fig. 5 we show the same long-time behavior, but in a
parameter regime where, in the absence of the advection, spot
solutions are the typical behavior. As before, the long-time
behavior shows the creation and destruction of spot patterns
via splitting and coalescence at antipodal points, comparable
to some of the transient dynamics discussed in Ref. [19]. Over
the circumference of the sphere, the spot patterns appear to be
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FIG. 4. Long-time (t = 1000) dynamics of labyrinthine
patterns in the Schnakenberg model (52) with R = 100,
a = 0.1, b = 0.9, δ1 = 1, δ2 = 10, and Ax = 4 for A = B =
Ax[− sin(θ ) sin(φ), cos(θ ) cos(φ)]. The three columns are different
views of source-side sink.

simply transported along by the advection. Analogous com-
ments as in Figs. 2–3 apply to the behavior near the source and
sink regions in Fig. 5; spots are larger when they split from one
another, and become smaller as they recede into the sink region.

The second case we consider is constant flow in the
azimuthal direction, so that A = B = (0,Aφ). In this case,
the advection is spinning both species around the sphere at a
constant angular velocity. This corresponds to chemical species

FIG. 6. Final patterns in the Schnakenberg model (52) with a =
0.1, b = 0.9, δ1 = 1, and Aφ = 1 for A = B = (0,Aφ). On the left we
take δ2 = 10 R = 100, and on the right δ2 = 20 R = 20. The view is
such that the point (π/4,π/4) is at the center of the image.

trapped within a thin shell of viscous fluid being transported by
the fluid, if the shell is spinning around the z axis. In this setting,
we observe azimuthal transport of patterns independent of their
location on the sphere. We note that this case also provides an
example of a constant divergence-free advection, as discussed
in Sec. II.

In Fig. 6 we give two examples of banded patterns that are
oriented along the direction of the advection. These correspond

FIG. 5. Long-time movement of spot patterns in the Schnakenberg model (52) with R = 20, a = 0.1, b = 0.9, δ1 = 1, δ2 = 20, and
Ax = 0.5 for A = B = Ax[− sin(θ ) sin(φ), cos(θ ) cos(φ)]. The three columns are different views of source-side sink, and each row corresponds
to t = 300,310,320.
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FIG. 7. Transient formation of spot patterns in the Schnakenberg model (52) with R = 100, a = 0.1, b = 0.9, δ1 = 1, δ2 = 40, and Aφ = 1
for A = B = (0,Aφ). These are at times t = 20,30,40,50. The view is such that the point (π/4,π/4) is at the center of the image.

to parameters where a planar analog would admit stable
spotted patterns and unstable striped patterns. In this case, the
advection stabilizes a striped pattern for both parameter sets.
Meanwhile, in Fig. 7 we give examples of rotating spot patterns
that come from destabilized stripe transients. In particular, we
note that the instability from the uniform state resembles the
patterns in Fig. 6, but these break up into spot solutions that
are transported around the sphere by advection. Small defects
and interactions between the spots occur, but the long-time
behavior is a simple rotation of a steady state spotted solution.

B. Gierer-Meinhardt reaction kinetics

The Gierer-Meinhardt model was originally proposed as
a particular example of Turing’s morphogenetic framework
[44], based on auto- and cross-catalysis of activator and
inhibitor chemicals. This model has been applied to several
biological patterning problems, such as the pigmentation and
organization of mollusc shells [54]. As in the Schnakenberg
system, existence and stability of localized spot patterns has
been studied [55], among other solutions.

FIG. 8. Long-time movement of spot patterns in the Gierer-Meinhardt model (53) with R = 20, a = 2, b = 20, δ1 = 1, δ2 = 100, and
Ax = 0.5 for A = B = Ax[− sin(θ ) sin(φ), cos(θ ) cos(φ)]. The three columns are different views of source-side sink, and each row corresponds
to t = 1010,1015,1020.
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FIG. 9. Steady state patterns in the FitzHugh-Nagumo model (54)
with R = 20, a = 1.2, b = 1.1, δ1 = 1, δ2 = 20, and A = B = (0,0).
The three columns are different views corresponding to t = 1000,
although in the absence of advection there is no qualitative difference
between these regions.

The reaction-advection-diffusion system with Gierer-
Meinhardt reaction kinetics is given by

∂u

∂t
= δ1

R2
�u − 1

R
∇ · [A(x)u] + u2

v
− au,

∂v

∂t
= δ1

R2
�v − 1

R
∇ · [B(x)u] + u2 − bv, (53)

with a and b as arbitrary kinetic parameters.

Figure 8 shows a comparable source and sink of spot
patterns for the Gierer-Meinhardt system under unidirectional
advection comparable to Fig. 5. Localized pulses of activator
are generated at one end of the sphere, transported across it,
and are destroyed due to an “overcrowding” effect at the other
end. It is clearer from this simulation that the sink region is
concentrated around a small region around the x axis.

C. FitzHugh-Nagumo reaction kinetics

The FitzHugh-Nagumo kinetics were originally derived to
explain the electrical properties of the nerve membrane [45]
and can be thought of as a caricature or simplification of
the Hodgkin-Huxley model [56]. Since then, it has become
a paradigm of excitable media and has been studied from a
variety of perspectives. Of particular interest are traveling wave
solutions and their physiological implications [2].

The reaction-advection-diffusion system with FitzHugh-
Nagumo reaction kinetics is given by

∂u

∂t
= δ1

R2
�u − 1

R
∇ · [A(x)u] + u − u3 − v,

∂v

∂t
= δ1

R2
�v − 1

R
∇ · [B(x)u] + au − bv, (54)

FIG. 10. Long-time movement of wave patterns in the FitzHugh-Nagumo model (54) with R = 20, a = 1.2, b = 1.1, δ1 = 1, δ2 = 20, and
Ax = 1.8 for A = B = Ax[− sin(θ ) sin(φ), cos(θ ) cos(φ)]. The three columns are different views of source-side sink, and each row corresponds
to t = 1005,1010,1015.
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FIG. 11. Long-time movement of wave patterns in the FitzHugh-
Nagumo model (54) with R = 20, a = 1.2, b = 1.1, δ1 = 1, δ2 = 20,
and Ax = 1.9 for A = B = Ax[− sin(θ ) sin(φ), cos(θ ) cos(φ)]. The
two columns are different views with the source on the left and sink
on the right, and each row corresponds to t = 1004,1006,1008. Note
that the views have been slanted slightly to observe the formation of
the wave at the source, and its disappearance at the sink.

with positive kinetic parameters a and b. To ensure a single
uniform steady state, we took a/b > 1 in all of our simulations.

Without advection, these patterns settle into a stable
labyrinthine state, as shown in Fig. 9. In Fig. 10 we observe
traveling bands of of the activator, u, moving across the sphere,
with the motion induced by unidirectional advection. In Fig. 11
we give dynamics for slightly larger advection than was con-
sidered in Fig. 10, and the dynamics reduce to simple circular
waves moving between the source and sink of the pattern. Our
results suggest that any value of the advection larger than some
critical value will result in dynamics equivalent to this circular
wave behavior, implying a bifurcation between qualitatively
different traveling wave dynamics on the sphere.

The transient formation of patterns shown in Fig. 10
appears akin to those found in the long-time dynamics of the
model with large advection, but quickly breaks up into curved
wavefronts resembling traveling labyrinthine structures rather
than circular pulses. We also note that the circular waves in
Fig. 11 appear to pattern away from the antipodal point to which
they are destroyed (where the lines cross on the right side of
each diagram). For slightly smaller advection (e.g., Fig. 10) the
pattern creation appears to be very local to this singular point
where the advection vanishes. As with the previous reaction

kinetics, the pattern wavelength and structure are different in
the source and sink region.

We ran many other simulations where we varied the pres-
ence of advection in each species (e.g., took B = 0 or A = 0),
as well as their relative magnitude and sign (e.g., took B = cA
for some value c). In each case, the qualitative behaviors were
similar. An exception to this is the Schnakenberg system,
where the advection of the inhibitor v only was typically
slower and in the opposite direction of the cases where both
advect in the same direction. These results differ from those
of differential-flow induced chemical instabilities [12], where
differences in the advection between species induced major
qualitative changes in the solutions, as these instabilities are
different from Turing-type instabilities. In our simulations we
were always well within a Turing patterning regime, and so
the presence of any advection, differential or equal between
species, was not sufficient to change solution behaviors. Near
the boundary of the Turing regime we suspect this is no longer
true, and different forms of advection could change the dynam-
ics observed, but we leave investigation of this as future work.

D. Translational invariance of localized patterns

We now examine the behavior of steady nonuniform solu-
tions, such as spots, that are seen in nonadvecting reaction-
diffusion systems. In a planar reaction-diffusion system, the
change of coordinates x = x̂ − At for some constant vector
A transforms nonlinear steady-state solutions in the plane to
translating solutions of a reaction-advection-diffusion system.
This suggests that translation of patterns is a generic behavior
for these kinds of systems, as alluded to in the dynamics of
Region II in Sec. III. However, there is no analog of a constant
vector field on the sphere.

If we consider purely azimuthal rotation, as in Figs. 7–9,
then the advection is of the form A = B = (0,Aφ) for some
constant Aφ . In this case, we can change variables in
Eqs. (1)–(2) via φ̂ = φ − Aφ

R sin(θ) t . In this rotating reference
frame, the system is transformed to a standard reaction-
diffusion system, and hence, stationary solutions to this system
will rotate in the reaction-advection-diffusion system.

Using alternative reference frames and restricting to specific
asymptotic regimes, rotation of pulse solutions can be shown
explicitly for nonequal advection parameters. Up to restricting
advection to lie within various asymptotic regimes, the details
in these cases are similar to the planar reaction-diffusion setting
(e.g., Refs. [18,55]). However, the stability of such solutions is
technically demanding, as demonstrated in Ref. [19], due to the
spherical geometry. We do not pursue this here, but suggest it as
an area for future application of nonlocal-eigenvalue analysis
and other contemporary techniques.

V. DISCUSSION

Motivated by recent mathematical extensions to Turing’s
original work, we have considered a two-species reaction-
advection-diffusion system within the context of a spherical
geometry. We have deduced conditions for the instability
of a spatially homogeneous solution in a restricted set of
parameters, as well as systematically explored several model
systems numerically to find interesting behaviors. Some of
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these behaviors have planar analogues, but the compact struc-
ture of the sphere also appears to give rise to novel behaviors
not currently reported in the literature. We find emergent
source and sink behavior, rotational translation of spotted and
striped patterns, as well as the stabilization and destabilization
of various particular nonlinear solutions. Additionally, we
suggest a qualitative approach to understanding the source and
sink behavior that creates, transports, and destroys patterned
regions of the sphere.

We explored many different parameter ranges and func-
tional forms of the advection (including nonlinear advection).
Much of the behavior reported in the literature for reaction-
advection-diffusion systems on planar domains exhibits anal-
ogous behavior in the spherical case. For advection that was
either large in magnitude or nonlinear, behaviors varied wildly,
but were dependent on the specific nonlinearities and model
parameters. We focused on simpler forms of the advection to
demonstrate features that we believe are novel and have not
been reported in the literature. We leave further investigation of
these systems, and in particular a more general and systematic
study of nonlinear advection, as future work. The solution
behaviors in general will depend heavily on parameters and
functional forms for advection and reaction kinetics that
depend on a particular physical or biological problem.

One of the most striking features of the reaction-advection-
diffusion system on the sphere is the existence of emergent
source and sink behaviors due to an interplay between the
nonlinear reaction kinetics and the transport due to advection
and diffusion. These appear as localized regions where patterns
are created, which are then transported across the surface of the

sphere to a sink where they are destroyed. We analyzed this
behavior in some detail, both because it is indicative of the
mathematical difficulties inherent in the problem, and because
it is itself an interesting phenomenon. While our analysis
does not fully explain the emergent source and sink behaviors
we have observed numerically, the local Turing conditions
suggest that the regions closest and furthest from a source
of advection correspond to fundamentally different spectral
problems, which gives some insight into why the patterns in
these three regions have qualitatively different properties such
as wavelength and amplitude. These results suggest a way of
differentiating between local regions on a manifold, where the
projection of the system onto local coordinate charts can be
used to understand the global dynamical behavior.

Experimentally, reaction-advection-diffusion on compact
nonplanar manifolds is likely more realistic as a model for
many phenomena, compared to planar reaction-advection-
diffusion or to pure reaction-diffusion on a surface. For the
model presented in this paper, we have allowed for flows or
other physical fields to influence the dynamics constrained to
the surface. This allows for a framework capable of modeling
a wide range of problems, including geophysical surface flows
(as suggested in Ref. [29]), the growth of blastula accounting
for local rheology (as originally elucidated by Turing [1]),
or surface reactions in many applications (as in Ref. [48]
and others, if the bulk reactions are negligible). Additionally,
the novel behaviors we have illustrated provide a plethora of
mathematical problems to attack, in terms of stability analyses
and asymptotic regimes worth considering in further detail than
we have done.
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