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Stabilization of dynamics of oscillatory systems by nonautonomous perturbation
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Synchronization and stability under periodic oscillatory driving are well understood, but little is known about
the effects of aperiodic driving, despite its abundance in nature. Here, we consider oscillators subject to driving
with slowly varying frequency, and investigate both short-term and long-term stability properties. For a phase
oscillator, we find that, counterintuitively, such variation is guaranteed to enlarge the Arnold tongue in parameter
space. Using analytical and numerical methods that provide information on time-variable dynamical properties,
we find that the growth of the Arnold tongue is specifically due to the growth of a region of intermittent
synchronization where trajectories alternate between short-term stability and short-term neutral stability, giving
rise to stability on average. We also present examples of higher-dimensional nonlinear oscillators where a similar
stabilization phenomenon is numerically observed. Our findings help support the case that in general, deterministic
nonautonomous perturbation is a very good candidate for stabilizing complex dynamics.
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I. INTRODUCTION

Complex oscillatory dynamics abounds in nature. Despite
many real-life examples exhibiting stable oscillations with a
time-varying frequency (e.g., [1–3]), little is known theoreti-
cally about the properties of this type of behavior. This kind
of oscillation requires aperiodic external driving, making the
system nonautonomous by nature [4], such that most of the
traditional analytical methods are unusable or insufficient. The
case of periodic forcing with a constant frequency, which has
been extensively investigated to date, is often too simplistic to
account for reality.

Closely linked to the concept of stability is the concept of
synchronization. Synchronization phenomena in the sciences,
including phase synchronization of complex oscillators, have
drawn much attention over the last decades [5]. Different
mechanisms for achieving phase synchronization, such as
synchronization by periodic forcing [6], by noise [7], and
by quasiperiodic forcing [8], as well as synchronization of
chaotic oscillators [9–11], and networks of oscillators [12],
have been considered. At the same time that theoretical interest
in synchronization phenomena has been growing, real-life
applications have been found to be prevalent in many diverse
aspects of nature [13–15], including circadian rhythms [16,17],
cardio-respiratory dynamics [1,18,19], metabolic oscillations
[3], the brain [20,21], and climate dynamics [22]. But once
again, little is understood theoretically about synchronization
in the context of variable-frequency oscillations.
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So then, there is a need for extensive and ongoing study
of dynamical behavior under deterministic oscillatory driving
with a time-varying frequency, to fill the gap between the
existing theory of deterministically driven systems where
constant frequency is typically assumed and the statistical
theory of systems driven by noise. In this paper, we present
three major contributions to the field of interacting nonau-
tonomous systems: Firstly, we present notions of stability,
synchronization, and instantaneous frequency entrainment in
the nonautonomous setting, and the relationships between
these concepts; and we investigate these concepts for the
simplest example of a phase oscillator subject to driving with
slowly time-varying frequency. In so doing, we enable the
notion of chronotaxicity [19,23,24] to be broadened beyond
its current description, and we compare the stability properties
in this setting with the traditional settings of fixed-frequency
driving on the one side and driving by stationary noise on the
other. Secondly, we introduce an approach to analyzing time-
dependent dynamical stability from a time series consisting of
time-localized Lyapunov exponents (LE), that is, finite-time
Lyapunov exponents (FTLE) taken over a time window with
a moving center. By contrast, typically, dynamical stability is
assessed only in terms of time-averaged stability, for example,
by the asymptotic LE [25]. Thirdly, numerically and analyti-
cally, we show enlargement of the stability region in parameter
space for the phase oscillator subject to driving with slowly
varying frequency, and we show that this growth is specifically
due to the growth of a subregion characterized by intermittent
synchronization where the time-localized dynamical stability
is varying. While we show that slow modulation of the driving
frequency guarantees enlargement of the stability region for
one-dimensional phase oscillators, we also show numerically
that the same phenomenon can readily occur in more gen-
eral oscillatory systems. This mathematical phenomenon of
stabilization has two major practical implications: (i) deter-
ministically varying the frequency of external driving could
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be implemented as a means of inducing stability in complex
systems, and (ii) dynamical systems where stability is induced
by deterministic frequency variation are an excellent candidate
for modeling living systems, which are highly complex and yet
usually operate stably within a time-varying environment.

The few existing pioneering studies of stability and syn-
chronization with time-varying frequency of oscillations have
considered a simple case of linearly growing frequency [26],
more general frequency that is slowly varied (as in our present
paper) with particular application to both linearly growing
frequency and low-pass-filtered noise [27], networks of cou-
pled oscillators [28], and a case of two interacting oscillators,
each with the same form of time-varying frequency [19,24].
In the last-mentioned studies, the notion of chronotaxicity was
introduced, to indicate a type of synchronization specifically
characteristic of nonautonomous interacting oscillators. The
central idea in [27] (also relevant to the analytical approach in
the work presented here) is that under driving of sufficiently
slowly varying frequency, the phenomenon of synchronization
by common driving can be investigated in terms of the presence
of a stable equilibrium for the instantaneous vector field; the
goal of [27] is to identify what qualifies as slow variation.
Time-series analysis methods have also been developed to
resolve in time the dynamical characteristics of time-varying-
frequency oscillators (e.g., wavelet-based spectrum, coher-
ence, and bispectrum [29], as well as Bayesian inference of
coupling functions [30]) rather than analyze them in a statistical
sense (e.g., calculating power-spectrum density) and thereby
miss noteworthy time-dependent dynamical features. Normal
forms of different types of nonautonomous bifurcations have
also been investigated [31–33], and safety criteria were derived
for aperiodically forced systems [34].

So, added to the above picture by this present work is a
discovery of growth of the stability region in parameter space
for nonautonomously driven oscillators, where the growth
is due to time variability without the need for statistical
phenomena as in noisy models.

The paper is organized as follows. In Sec. II, we introduce a
simple one-dimensional phase oscillator model. We then pro-
vide an explanation of notions of synchronization and stability
for nonautonomous systems, followed by a theoretical analysis
of the one-dimensional model, showing the enlargement of
the stability region, as well as the birth of an intermediate
region of intermittent synchronization. We illustrate these
phenomena with numerical results for both long-time and
short-time behavior. In particular, in Sec. II E, we discuss
the relationship between the deterministic system considered
here and the analogous case with noisy driving as considered
in previous works. In Sec. III, we illustrate the stabilization
phenomenon numerically in higher-dimensional systems, and
argue that it is of general importance. Finally, in Sec. IV we
discuss the results, and in Sec. V we provide a brief summary.

II. ONE-DIMENSIONAL CASE

A. Model

The system we consider is a driven phase oscillator of the
form

θ̇ = ω0 + γ sin [θ − θ1(t)], (1)

where the driving has strength γ , phase θ1(t), and a time-
varying frequency

θ̇1 = ω1[1 + kf (ωmt)], (2)

where ω1 is the nonmodulated driving frequency, f is a
bounded function, and ωm and k are the modulation frequency
and relative amplitude, respectively. The phase oscillator θ may
represent, for example, the phase on the stable limit cycle of
an oscillator satisfying

ṙ = ε(rp − r)r,

θ̇ = ω0 + γ sin [θ − θ1(t)], (3)

where rp is the amplitude of the limit cycle and ε is the restoring
constant.

The unforced system (1) with γ = 0 is a typical autonomous
phase oscillator [35], and hence its phase is neutrally stable
(zero LE).

In the forced system, i.e., γ �= 0, the traditional constant-
frequency forcing case is recovered for k = 0. In this case,
depending on the parameters, the system lies in one of two
regimes: either 1 : 1 synchronization (negative LE), or neutral
stability (zero LE). The condition for synchronization, γ >

|�ω|, with the frequency mismatch �ω = ω0 − ω1, is derived
analytically [5] by requiring that the equation for the phase
difference

ψ̇ = �ω + γ sin ψ (4)

has a stable fixed point. This condition for synchronization
corresponds to a so-called Arnold tongue [36] in (γ,ω0)-
parameter space. This Arnold tongue can be seen in Fig. 2(a)
as the region appearing in shades of blue, corresponding to
negative values of the numerically computed LE. Since (4) is an
autonomous differential equation, the numerical LE computed
over a long time will approximate well the asymptotic LE,
except possibly when the parameters lie extremely close to the
border of the Arnold tongue.

For k �= 0, the equation for the phase difference is now the
nonautonomous equation

ψ̇ = �ω(t) + γ sin ψ, (5)

with frequency mismatch �ω(t) = ω0 − ω1[1 + kf (ωmt)].
Throughout this paper, we assume that the modulation is much
slower than the dynamics of the system, i.e., ωm is very small.

B. Synchronization in autonomous and nonautonomous systems

Suppose an oscillatory system θ with no internal time
dependence is subject to driving from another oscillator θ1

with fixed frequency different from the natural frequency of θ .
We say that θ is synchronized to θ1 if over time, the trajectory of
θ loses memory of its precise initial phase and instead follows
a periodic behavior whose period is a rational multiple n

m

of the period of θ1. In this case, we say that θ1 entrains the
frequency of θ , and we describe the synchronization as n :m
synchronization. This implies, in particular, that the difference
in unwrapped phase between an n-fold cycle of θ1 and an
m-fold cycle of θ stays bounded over all time—a phenomenon
referred to as phase locking between θ and θ1.

The particular phenomenon that θ (t) loses memory of its
initial phase is called phase stability. If θ is a phase oscillator
(as in our model), then phase stability can be assessed in
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terms of the sign of Lyapunov exponent associated to the
trajectory θ (t): a negative LE indicates stability. Stability in-
herently implies resilience against the effects of other possible
perturbations not accounted for in the model. When the phase
of a driven oscillator is stabilized by a fixed-frequency driving
oscillator, typically this implies n :m synchronization for some
integers n and m; we emphasize that this statement is specific
to fixed-frequency driving. For n :m synchronization where
(in lowest terms) n � 2, it is not possible for θ (t) to lose all
memory of its initial phase: for any 1 � i � n − 1, delaying
the initial phase by a suitable amount will delay the phase of
the eventual periodic motion by i

n
. However, in the case of

1 :m synchronization, it is possible for θ eventually to lose all
memory of its initial phase; in this case, we say that the phase
is globally stable.

Synchronization has also been investigated in the context
of systems driven by noise, such as zero-mean Gaussian white
noise or a pulse train with independent and identically dis-
tributed consecutive waiting times [5,37,38]. For an oscillator
θ driven by such noise, one does not have a notion of n :m
synchronization between this driven oscillator and the noise
ξ driving the oscillator. This is because, even if the noise is
stationary noise, any one realization of the noise does not have
a deterministic periodic behavior. As described in [[5], Sec.
15.2], instead of defining synchronization in terms of “phase
locking,” one can think of synchronization here as meaning that
over time, θ loses memory of its precise initial state and instead
follows some path that is determined by the realization of the
noise—but since the noise itself has no deterministic regular
behavior, this phenomenon can only be physically manifested
as synchronization by common noise between copies of θ .

Synchronization by common noise is a particular case
of the phenomenon of synchronization by common external
driving (which may be noisy or deterministic): Suppose we
have an array θ1, . . . ,θn of self-sustained oscillators whose
internal dynamics are described by exactly the same system
θ̇ i = f (θ i), where f does not depend on i; and no direct
coupling is introduced between these oscillators, but instead
all these oscillators are simultaneously subject to driving
from the same external driver p(t) (which could be noisy or
deterministic). Thus the n-driven oscillators are now indirectly
coupled, and it may happen that as a result of this indirect
coupling, over time the trajectories of θ i lose memory of their
initial states and instead follow the same path as each other.
This may be viewed as a kind of perfectly instantaneous 1:1
synchronization between the driven oscillators.

The relationship between the above concepts is as follows.
For a self-sustained phase oscillator θ subject to driving by an
external driver p(t), the following statements are equivalent:

(i) the trajectory of θ is globally stable;
(ii) the trajectory of θ eventually follows some path that is

determined by p(t) independently of the initial phase of θ ;
(iii) any array of identical copies of θ is synchronized when

the indirect coupling of common driving by p(t) is introduced;
and in the case that p(t) is a fixed-frequency deterministic
oscillator, these typically imply that

(iv) there is 1 :m synchronization between p and θ for
some m.

The physical interpretation of the implication (ii)⇒(i) is
that the driving p(t) causes θ to become resilient in its course

of following the path laid out by p(t), although as we shall
see, this resilience may only be intermittent. Such driving-
induced resilience may play an important role in many real-
world systems that exhibit remarkable stability in the face of
continuous environmental perturbations.

In our model, if k �= 0, then the driving is a determin-
istic oscillator θ1 with nonfixed frequency. Hence, it will
be useful for us to discuss notions of synchronization for
oscillators subject to deterministic oscillatory driving with
time-varying frequency. Such driving shares in common with
fixed-frequency driving that it is deterministic and oscillatory,
and it shares in common with noisy driving that it does not
possess a phase which proceeds in cycles of a fixed period.
Therefore, on the one hand, as with noisy driving, it is not
clear that one can correctly define a notion of n :m frequency
entrainment, although the slightly weaker phenomenon of n :m
phase locking can still occur; nonetheless, as in [27], one can
still consider the question of whether identical copies of the
driven oscillator are caused to synchronize by simultaneous
driving from the driving oscillator.

Having stated that n :m frequency entrainment is difficult
to define in our setting, let us now highlight our slow variation
assumption. Under this assumption, one can define a notion
of instantaneous frequency entrainment. In general, if a pair
of phase oscillators θ,θ1 is governed by a nonautonomous
differential equation

θ̇1 = f1(t,θ1),

θ̇ = f2(t,θ1,θ ) (6)

and it is assumed that f1(t,·),f2(t, · ,·) vary slowly with t , then
we can say that there is frequency entrainment at time t if the
solution of the associated autonomous differential equation

d

ds
θ1(s) = f1(t,θ1(s)),

d

ds
θ (s) = f2(t,θ1(s),θ (s)) (7)

exhibits frequency entrainment. In the case of our model, at
any time t , there is instantaneous 1:1 frequency entrainment
between θ and θ1 if and only if the differential equation
d
ds

ψ(s) = �ω(t) + γ sin ψ(s) has a stable fixed point [com-
pare with Eq. (4)].

Just as negative Lyapunov exponents are connected with the
presence of frequency entrainment for fixed-frequency driving,
so likewise instantaneous frequency entrainment will typically
be connected with negative finite-time Lyapunov exponents
defined over a suitable time window. Finite-time Lyapunov
exponents are a measure of stability over finite time scales. We
will use the term time-localized Lyapunov exponent to refer
to FTLE taken over a sliding time window [t,t + τ ] which
slides along with time t . By contrast, we will use the term long-
term Lyapunov exponent to refer to a Lyapunov exponent taken
over a long- time interval [0,T ]; when clear from the context,
we will sometimes drop the word “long-term.” Technically, a
long-term LE is still a finite-time Lyapunov exponent, but it
plays a similar role to asymptotic LE for autonomous systems.
Asymptotic LE need not exist for nonautonomous systems;
indeed, nonautonomous systems need not even be well defined
over infinite time. But moreover, even if they can be defined,
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FIG. 1. (a) Time-varying existence of the attracting point of
Eq. (5). The [�ω(t)]-dependent curve of ψ̇ against ψ moves up
and down over time, as indicated by the two solid lines representing
where the curve could be at two different instants in time. When this
curve lies between the dashed lines, the system has an attracting point,
and otherwise, not. (b) Phase diagram showing three regimes. Light
(region I in the text), medium (region III), and dark gray (region
II) show where the system is never synchronizing, intermittently
synchronizing, and always synchronizing, respectively. Solid white
curves show the border between synchronization and nonsynchro-
nization for if f (·) is set to 0; and white dashed curves show the
border between synchronization and nonsynchronization for if f (·) is
set to ±1. When k is increased, regions I and II decrease while region
III increases; hence, in particular, the Arnold tongue consisting of the
union of regions II and III increases.

asymptotic LE may not necessarily be physically relevant for
the limited time scales on which a system is considered in
practice.

C. Theoretical analysis

In contrast to the autonomous case, the existence of an
attracting equilibrium point for the vector field on the right-
hand side of Eq. (5) (regarded as a function of ψ) can change
with time t ; as shown in Fig. 1(a), for a sinusoidal modulation
f (·) = sin(·), if k is large enough, then within each modulation
period the vector field undergoes two saddle-node bifurcations.
Since we assume that the modulation is much slower than the
dynamics of the system, the system adiabatically follows the
moving attracting point ψslow(t) = π − arcsin[−�ω(t)/γ ] for
Eq. (5), when it exists. (A more technically precise description
of how ωm needs to compare with the values of other param-
eters in order to qualify as “small” for the purposes of this
adiabatic approach can be found in [27].) On faster timescales,
one could view �ω(t) as approximately constant and consider
the stable point in the quasistationary limit.

Following the idea that solutions follow the moving attract-
ing point ψslow when it exists, we derive three regions, with
qualitative features corresponding to the following conditions
on Eq. (5): (I) no existence of the attracting point at any
time t , (II) existence of the attracting point for all t , and (III)
alternation over time between the existence and nonexistence
of the attracting point. If we assume that f (·) varies throughout
the interval [−1,1], then these conditions on the parameters are
precisely

(I) γ � |ω0 − ω1| − ω1k, (8)

(II) γ � |ω0 − ω1| + ω1k, (9)

(III) |ω0 − ω1| − ω1k � γ � |ω0 − ω1| + ω1k, (10)

as illustrated in Fig. 1(b). In region I, the slow variation
assumption implies that solutions behave similarly to the
neutrally stable regime of the fixed-frequency-driving system;
solutions of (1) or (5) will exhibit neutral stability, with a
long-term Lyapunov exponent that is essentially zero. In region
II, the attracting point exists at all times, and attracts solutions
starting from throughout the circle to itself; thus, the driven
oscillator θ is globally stable, losing memory of its initial state
and following the motion of θ1(t) + ψslow(t). In particular,
long-term LEs will be negative. There is instantaneous 1:1
frequency entrainment at all times; moreover, the attracting
point moves within a bounded arc of the circle, and thus we
have 1:1 phase locking between θ and θ1.

In region III, the attracting point exists at some times but
not other times. We refer to the epochs during which the
attracting point exists as stable epochs; the remaining epochs
are epochs of neutrally stable dynamics. During the stable
epochs, solutions from throughout the circle are attracted to
the attracting point. While following the attracting point, these
solutions pick up a negative contribution to the Lyapunov
exponent, due to the gradient of the instantaneous vector field
being itself negative at the attracting point; and then during
each of the epochs of neutral stability, the solutions receive
zero net contribution to the Lyapunov exponent, meaning that
overall, as in [27], long-term LE are negative and the solutions
remain synchronized with each other over all time. There is
instantaneous 1:1 frequency entrainment during the stable
epochs but no instantaneous frequency entrainment during the
epochs of neutral stability; we will refer to this phenomenon
as intermittent synchronization. Overall, we do not have phase
locking between θ and θ1. However, unlike in the case of
fixed-frequency driving, synchrony of an array of identical
copies of θ [represented as different simultaneous solutions of
Eq. (1)] is achieved and endures (even through the epochs of
neutral stability) in the absence of a phase-locking mechanism.
In other words, there does not need to be a phase-locking
mechanism in place in order for the driving θ1(t) to cause θ

to lose all memory of its initial condition and follow a path
determined by the evolution of θ1(t).

Let us mention that there will be some very small subregions
of region III where in theory, if one waits long enough, θ will
come close to the instantaneous repeller around the start of
a stable epoch [39] and thus receive a positive contribution
to the LE, such that the reasoning here and in [27] can
eventually break down and the asymptotic LE [if f (·) is defined
ad infinitum] could even be zero. However, this theoretical
phenomenon is unlikely to manifest in practice, due to the
precision of fine-tuning of f (·) required for the phenomenon
to occur, combined with the unphysical length of time that
one is likely to have to wait for the phenomenon to take place.
Indeed, no such phenomenon is ever observed in our numerics.

So then, in analogy to the case of fixed-frequency driving,
we define the Arnold tongue as being the union of region II
and region III, that is, the total region where the long-term LE
will be negative.

From Eq. (10), the role of the modulation amplitude
k here is clear: as k increases from 0, regions I and II
decrease in size (although still extending infinitely), being
symmetrically pushed back by the appearance and growth of
region III, such that overall, the Arnold tongue is enlarged.
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In other words, increasing modulation amplitude induces
stability.

D. Numerical results

For our numerics in this section, we take θ1(t) = ω1(t −
k

ωm
cos(ωmt)); so the frequency modulation f (ωmt) is a sine

wave f (ωmt) = sin(ωmt). Nonetheless, the results presented
are just as valid for more general aperiodic slow modulation,
and are demonstrated numerically to be true for aperiodic
modulations in Sec. II F. We set ω1 = 4 and ωm = 0.05, except
where stated otherwise, and we investigate the effect of the
remaining free parameters γ , ω0, and k. We integrate the
two-dimensional system (3) with rp = 1 and ε = 5, except that
for Fig. 3 (showing synchronization between solutions of (1)
with different initial conditions) and Fig. 6 (showing long-term
LE together with average frequency entrainment), we simply
integrate (1). All Lyapunov exponents, both long-term and
time-localized, are computed following Benettin’s canonical
algorithm [40,41]; for the time-localized LE, we use a moving
average of the expansion coefficient. In (3), the radial LE at the
limit cycle is equal to −5; therefore, since the maximum LE is
greater than −5 in all our numerical experiments, it follows that
this maximum LE corresponds to the phase dynamics defined
by (1). The same is also true of time-localized LE, at least after
the first few moments needed for the trajectory to approach the
limit cycle.

First, we investigate the long-term stability of the system,
by means of the numerically computed maximum LE defined
over a long time-window. Stability is indicated by a negative
value for the LE. In Fig. 2, we see that there is an Arnold
tongue (shades of blue) similar to that shown in Fig. 1(b). As
illustrated in Fig. 3, solutions of Eq. (1) synchronize with each
other when the parameters lie in the Arnold tongue, but not
when the parameters do not lie in the Arnold tongue. As shown
in Fig. 2, the Arnold tongue is enlarged as the amplitude k of
the frequency modulation is increased.

In other words, stability is induced by varying the frequency
of the forcing over time. Quantitatively, we observe that the
width of the Arnold tongue grows linearly with k.

While Fig. 2 shows the long-time stability, region III can
only be distinguished and understood from the point of view of
time-localized stability. The dynamics of Eq. (1) is illustrated
over time for the three regions in Figs. 4(a)–4(f), by time-
frequency representation and by time-localized LE—namely,
maximum LE defined over the time window [t,t + τ ] where τ

is a fixed number. Here, we take τ = 0.1 s.
Region III is a region of intermittent synchronization where

trajectories alternate between epochs of time-localized stabil-
ity and epochs of time-localized neutral stability; indeed, as
the time t evolves, the time-localized LE alternates between
epochs where it is negative, and epochs where it oscillates with
high frequency around an average value of zero, as is seen
in Fig. 4(e). Averaging over the total time yields a negative
LE, meaning overall stability on average, even though the
short-term stability is time varying. Region I is thus the only
region with a long-term LE of zero, and this region decreases
in size, which means that the region of stability increases.

The distinction between the three regions can be seen
by looking at the time-frequency representation of a trajec-

FIG. 2. Numerically obtained long-term maximum Lyapunov
exponent λ1 over parameter space for (3), with different k. The LE
are computed over five cycles of the frequency modulation (about
630 s). In each case, 20 random initial conditions were taken from
the square [−1,1] × [−1,1], and the average maximum LE over these
trajectories is plotted. (a) k = 0, (b) k = 0.1, (c) k = 0.4, (d) k = 0.8.
The Arnold tongue (shades of blue) is enlarged as k increases. Gray
represents zero values.

tory in each of these regions, as shown in Figs. 4(a)–4(c).
In all three cases, the changing frequency of the driver is
reflected in the frequency content of the driven oscillator.
In Fig. 4(a), representing region II, the driving frequency is
the only frequency present, as the frequency of the driven
oscillator is entrained by that of the driving at all times.
In Fig. 4(c), representing region I, we also see the natural
frequency of the driven oscillator (cream, representing the
highest amplitude), although slightly modulated by the driving.
The fact that these two frequency modes are distinct shows that
the driven oscillator’s frequency is not entrained by the driving
at any time. In Fig. 4(b), representing region III, we see the
maximum-amplitude frequency mode overlapping the driving
frequency at some times, but not at other times. The times
of overlap are when the frequency of the driven oscillator is
entrained by that of the driving, and the other times are when
there is no frequency entrainment. Thus, in this region, we
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FIG. 3. Trajectories of five solutions θ1(t), . . . ,θ5(t) of Eq. (1), with initial conditions θ i(0) = i−1
5 2π , subject to the same driving θ1(t).

Here, γ = 2.5 and k = 0.4. In (a), ω0 = 4, and so the system is in region II according to Eq. (9); in (b), ω0 = 6, and so the system is in region
III according to Eq. (10); in (c), ω0 = 9, and so the system is in region I according to Eq. (8). In each case, the upper plot shows the first 8 s
of the sine of the five trajectories, while the lower plot shows the distance between θ1(t) and θ2(t) over about the first 630 s (more precisely,
five cycles of the frequency modulation); in (a) and (b), the inner graph shows the same information on a logarithmic scale. In (a) and (b), the
system lies within the Arnold tongue as described in Sec. II C, and the five trajectories are observed to synchronize and to remain in synchrony;
by contrast, in (c), the system does not lie within the Arnold tongue, and no synchronization is observed.

have intermittent frequency entrainment. Comparing (a)–(c)
with (d)–(f) in Fig. 4, we can see that in all three regions,
the absence of frequency entrainment coincides with time-
localized LE that oscillate about 0, while the occurrence of
frequency entrainment coincides with time-localized LE that
stay negative over a longer time interval.

Now when investigating numerically the time evolution of
the time-localized LE, as in Fig. 4(e) one can clearly distinguish
between those time intervals where the time-localized LE
oscillates with high frequency around zero, and those time
intervals of length much greater than the periods of these afore-
mentioned high-frequency oscillations during which the time-
localized LE remains negative; and hence, one can numerically

FIG. 4. Analysis of the time-variable dynamical properties of a trajectory of (3), in the three regions (see Fig. 1); in (a)–(f), a random
initial condition is taken from the square [−1,1] × [−1,1]. (a)–(c) Time-frequency representation (showing amplitude) of θ (t) obtained as the
(unwrapped) polar angle of the trajectory of (3), extracted using a continuous Morlet wavelet transform (p = 1) with central frequency 3; and
(d)–(f) maximum FTLE for the trajectory of (3) over a time window of width τ = 0.1 s for regions II, III, and I, from left to right. Parameters
are set to k = 0.4 and γ = 2.5; in (a) and (d) ω0 = 4, in (b), (e), and (g) ω0 = 6, and in (c), (f), and (h) ω0 = 9. (a), (d) Region II exhibits
frequency entrainment and a stable phase at all times. (b), (e) Region III shows intermittent, but regular, epochs of frequency entrainment; the
phase is stable on average over a long time. (c), (f) Region I, no frequency entrainment, and a FTLE rapidly oscillating around zero. (g), (h)
Prediction (red) of the main observed frequency of the system over time, based on Eq. (12) with values of �ψ (t) taken from the �ψ curve with
k = 0 in Fig. 6(b), for (g) region III and (h) region I. Interestingly, in region I, the main observed frequency oscillates in antiphase with those
of the driving frequency (dashed). Note that we here only predict the main frequency, and not the higher harmonics observed in (b) and (c).
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distinguish between the three regions. The proportion Pt of
time taken up by time intervals where the time-localized LE
remains negative is plotted in Figs. 5(a) and 5(c), across
different parameter values. As in Figs. 4(d)–4(f), we expect

Pt = 1 in region II, 0 < Pt < 1 in region III, and Pt = 0 in
region I. We also plot in Figs. 5(b) and 5(d) the analytically
obtained proportion Pt of time for which the instantaneous
vector field has a stable equilibrium. This is given by

Pt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, (A) if γ < |�ω(t)| ∀t,

1, (B) if γ > |�ω(t)| ∀t,
1
π

[
arcsin

(
γ−(ω0−ω1)

ω1k

) − arcsin
(−γ−(ω0−ω1)

ω1k

)]
, (C) if − γ � �ω− and γ � �ω+,

1
π

arcsin
(

γ−|ω0−ω1|
ω1k

) + 1
2 , (D) else,

(11)

where �ω± = ω0 − ω1(1 ∓ k). The close resemblance be-
tween (a), (c) and (b), (d) helps confirm the validity of
the numerical approach to distinguishing between the three
regions. Figure 5(b) provides a quantitative picture for the
qualitative skeleton shown in Fig. 1(b).

The average frequency difference �ψ = 〈ψ̇〉 = 〈θ̇〉 − ω1

is a measure of the “average frequency entrainment” of the
system [5]. In the traditional autonomous case k = 0 where
the driving frequency is constant, nullity of �ψ is equivalent
to actual frequency entrainment. The quantity �ψ is shown in
Fig. 6(b) for γ = 2.5 across different values of k. In Fig. 6(a),
the corresponding curves for the long-term Lyapunov exponent
are displayed. Curves for �ψ for k > 0 are extremely similar
to the case of driving with bounded noise ξ (t), ψ̇ = �ω +
γ sin(ψ) + ξ (t) (see [5]). This will be explored in further detail
in Sec. II E. The similarity is due to the fact that only averages
are considered, and time is forgotten. However, investigation
of finite-time dynamics reveals that in region III, the frequency
difference alternates between epochs where it is zero and
epochs where it is nonzero [as in Fig. 4(g)]. To obtain this, we
calculate the main observed frequency θ̇main/2π of trajectories

FIG. 5. Analytical and numerical characterization of the three
regions based on the proportion of time spent in the stable regime, over
(γ,ω0)-parameter space with k = 0.4. In (a), and (c), Pt is calculated
numerically based on time-localized maximum LE (with window
τ = 0.1 s) for 20 trajectories of (3) with random initial conditions
in the square [−1,1] × [−1,1], over four cycles of the frequency
modulation (about 500 s), and the result is averaged over the 20
trajectories. In (b) and (d), the analytical result according to Eq. (11)
is shown. Plots (c) and (d) show Pt from (a) and (b) for selected
γ values. Three distinct regions appear clearly, respectively with Pt

values of 0 (region I), 1 (region II), and in between 0 and 1 (region III).
Analytical and numerical characterizations show good agreement.

using the slow modulation assumption, by taking

θ̇main(t) = θ̇1(t) + �ψ (t), (12)

where �ψ (t) is the �ψ value associated with the autonomous
differential equation d

ds
ψ(s) = �ω(t) + γ sin ψ(s); results

are plotted in Figs. 4(g) and 4(h).

E. Comparison between nonautonomous and noisy systems

Experimental science essentially seeks to understand the
underlying mechanics of a system that gives rise to the
observed behavior. Since the study of time-homogeneous
dynamics (deterministic or noisy) is very well developed in
comparison to the study of nonautonomous dynamics, there is
a tendency to assume that for modeling purposes, the dynamics

FIG. 6. Numerically obtained time-averaged stability properties
for a trajectory of Eq. (1) starting at θ (0) = 0, computed over ten
cycles of the frequency modulation (about 1260 s). (a) Lyapunov
exponent λ1, and (b) average frequency difference �ψ , for γ = 2.5
and different values of the frequency modulation amplitude k. For k =
0, the region of phase stability (as given by λ1 < 0) and the region of
permanent frequency entrainment (as given by �ψ = 0) coincide; but
for k > 0, the regions do not coincide: as k is increased, the region with
λ1 < 0 is increased while the region with �ψ = 0 is decreased. The
graphs look very similar to those in the case of harmonic driving with
bounded noise [5]; therefore, investigation of time-variable dynamics
for nonautonomously driven oscillators is necessary for an accurate
understanding of the dynamical nature of the system.
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of a real-world system may be treated as statistically time
homogeneous. In this section we will illustrate, using our
above-identified phenomenon of intermittent time-localized
stability, how such a tendency may lead to the complete
misidentification of some key aspect of the internal mechanics
of a system.

There are various methods for analyzing experimentally
obtained time series that are based on time-averaged properties
of the time series, such as power spectra. The theory of both
deterministic autonomous dynamical systems and autonomous
systems perturbed by stationary noise is well developed, and
in particular it is well known that adding noise to a system
can create stability which was not present in the absence of
noise, e.g., [5,37,38,42,43]. Indeed, a one-dimensional phase
oscillator model will almost invariably exhibit asymptotic
stability of solutions when driven by stationary white noise
[44]. Therefore, when seeking to understand the mechanism
by which a real-world system behaves robustly against unpre-
dictable external perturbations, if one observes in a time series
of measurements from the system a power spectrum similar to
that of some noisy model, and if moreover this noisy model is
known to exhibit stability with negative Lyapunov exponents
as a consequence of the noise, then naturally one may come to
the conclusion that the real-world system under investigation
is subject to a significant level of noise and that this noise plays
the key role in causing stability.

However, our results for the deterministic system (1)–
(2) demonstrate that such a conclusion may be profoundly
erroneous. The frequency modulation in (2) may be an entirely
deterministic process that is not subject to any significant levels
of noise. This gives rise to the deterministic nonautonomous
equation (5), and we will illustrate that the time-averaged
properties of (5) [with f (·) = sin(·)] are very similar to those
of a noisy counterpart

ψ̇ = (ω0 − ω1) + γ sin ψ + ξ (t), (13)

where ξ (t) is bounded noise. Physically, Eq. (13) represents
the phase difference under a model in which the driving
frequency modulation is assumed to be noisy. The similarity
that we shall illustrate between the time-averaged properties
of (5) and (13) proves an important point: Since real-world
systems are open and therefore subject to time variability, one
must examine temporally evolving dynamical properties of
a system rather than just time-averaged properties, in order
to account for the possibility that the mechanisms behind
features of the observed behavior are due to nonautonomicity.
In the case of the system (1)–(2), in region III, the mechanism
behind stability is not stationary noise but deterministic in-
termittent frequency entrainment between driving and driven
oscillators, arising from the slow variation of the driving
frequency.

For simulations, dichotomous Markov noise ξ (t), which
switches between ±D at rate μ [with ξ (0) = +D], was used
[45]. Nonetheless, it is expected that any bounded noise will
show similar behavior to that presented here [5]; moreover,
although the asymptotic properties of unbounded noise models
exhibit a slightly different behavior [5], any noise will effec-
tively serve as bounded noise over typical physically relevant
finite time scales.

FIG. 7. Numerically obtained time-averaged stability properties
for autonomous (plain black), nonautonomous (dashed red), and
bounded noise (dot-dashed black) driving, computed over about
1260 s (ten cycles of the periodic frequency modulation used for
the nonautonomous case). For the autonomous and nonautonomous
cases, Eqs. (4) and (5), respectively, were integrated, with ψ(0) = 0;
for the noisy case, one sample path of ξ (t) was generated, and
Eq. (13) was integrated with ψ(0) = 0, using the same sample path
ξ (t) for all ω0 values. Parameters are set to ω1 = 4 and γ = 1; for
the nonautonomous case, f = sin(·), k = 0.1, and ωm = 0.05, and
for the noisy case D = 1.6 and μ = 10. (a) Lyapunov exponent λ1

and (b) average frequency difference �ψ . The nonautonomous and
noisy cases, observed on average, present the same enlarging of the
negative Lyapunov exponent region, and their �ψ is almost exactly
identical, including the plateau.

On average, the noisy and the nonautonomous systems will
have properties as illustrated in Fig. 7 that look essentially
the same. Indeed, both can be made to have an increased
region for negative LE [see Fig. 7(a)] and a smaller plateau for
average frequency entrainment [see Fig. 7(b)], as compared to
the autonomous case given by k = 0 or D = 0.

The noisy and the nonautonomous systems can, however, be
distinguished based on their dynamics over time. This is illus-
trated in Fig. 8 by trajectories and their time-frequency repre-
sentation. In the nonautonomous case, one can see the regularly
intermittent frequency entrainment between driving and driven
phases in Fig. 8(c), where frequency entrainment corresponds
to those times where the instantaneous power-frequency spec-
trum has only a single peak, and in Fig. 8(b), where frequency
entrainment corresponds to the regular plateaus in the phase
difference. By contrast, in the noisy case, the instantaneous
power-frequency spectrum shown in Fig. 8(e) is significantly
more bumpy around a peak that stays roughly fixed over time,
and the phase difference in Fig. 8(b) looks like it is essentially
drifting at all times. Despite these starkly visible differences in
time-variable properties, the average power spectra as shown
in Figs. 8(d) and 8(f) are reasonably similar to each other.

F. Aperiodic modulation

We now consider numerically a quasiperiodic frequency
modulation function f (·) given by

f (t) = 0.5[cos(ωmt) + cos(ωmπt/4)]. (14)
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FIG. 8. Dynamics of driven oscillator θ with (a)–(d) nonautonomous and (b), (e), (f) bounded noise driving; here θ evolves according to
Eq. (1) with θ1(t) = ω1[t − k

ωm
cos(ωmt)] in the nonautonomous case, θ1(t) = ω1t − ∫ t

0 ξ (s) ds in the noisy case, and θ (0) = θ1(0) in both cases.
Parameters are set to ω1 = 4, γ = 1, ω0 = 3; for the nonautonomous case k = 0.1 and ωm = 0.05, and for the noisy case D = 1, μ = 4. First
ψ(t) is numerically obtained by integrating Eq. (5) or (13) as appropriate, with ψ(0) = 0, and then θ (t) is obtained by θ (t) = ψ(t) + θ1(t). (a)
Sine of the driven phase θ , in the nonautonomous setting. (b) Phase difference ψ between the driving and driven oscillators, over time. The
nonautonomous case presents epochs of phase locking as seen by the regular plateaus, whereas the noisy phases’ difference drifts without ever
phase locking to the driving, with an average velocity that is close to that of the nonautonomous curve. (c), (e) Time-frequency representation
(showing power, i.e., square of the amplitude) for θ extracted using continuous Morlet wavelet transform (with p = 1) with central frequency 3,
and (d), (e) the associated time-averaged power. The main difference is the presence of intermittent frequency entrainment in the nonautonomous
case. The average-power spectra are very similar, and do not clearly distinguish the two cases. Long-term LEs were also found to be negative
in both cases: for the nonautonomous Eq. (5) with ψ(0) = 0, the LE over 500 s was about −0.32, and for the noisy Eq. (13) with ψ(0) = 0, the
LE over 500 s was about −0.24.

As expected, and shown in Fig. 9, the enlargement of the
Arnold tongue holds. Moreover, more quantitatively, the re-
sults shown in Figs. 9(b) and 9(c) are almost identical to those
shown in Figs. 2(c) and 2(d), respectively. This is because f (·)
oscillates throughout the interval [−1,1] in both cases, and
therefore Eqs. (8)–(10) for the three different regions still hold.

III. HIGHER-DIMENSIONAL CASES

In the above section, we showed analytically, and confirmed
numerically, that enlargement of the stability region will
always occur in the simple one-dimensional case. Nonetheless,
the phenomenon of stabilization by slow variation of the
driving frequency, and the phenomenon of intermittent syn-
chronization under such variation of the driving frequency, may
be found in a broader class of systems. To illustrate the more
general scope of the stabilization phenomenon, we illustrate it
numerically in nonlinear driven oscillators. We consider three
cases: first, a typically forced van der Pol (vdP) oscillator;
second, a vdP oscillator with the phase driven via diffusive
coupling; and finally, a typically forced Duffing oscillator.
All three cases are investigated with nonautonomous driving
θ1(t) = ω1[t − k

ωm
cos(ωmt)], with ωm = 0.02. Long-term LE

are computed over ten cycles of the frequency modulation
(about 3140 s).

A. Typically forced van der Pol

We consider a vdP oscillator that is directly forced by
the external phase oscillator θ1(t), so that the vdP oscillator
satisfies the differential equation

ẍ = ε(1 − x2)ẋ − ω2
0x + γ sin [θ1(t)]. (15)

For investigation of LE, we treat this as a first-order equation
in (x,y) space with ẋ = y (and numerically integrate it as
such). The long-term maximum LE is shown over parameter
space in Fig. 10. The region with negative LE increases with
the amplitude k of the frequency modulation, showing that
the enlargement of the negative LE region still holds in this
nonlinear case.

Moreover, consideration of time-localized LE, as shown
in Fig. 11(b), suggests that for some parameter values we
have intermittency between epochs of stable dynamics and
epochs of neutrally stable dynamics. Unlike in Fig. 4(e), the
stable epochs are not characterized by negativity of LE defined
over a very short sliding window, but rather over a suitably
longer sliding window. This is because, if one were to freeze
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FIG. 9. Numerically obtained long-term maximum Lyapunov
exponent λ1 over parameter space for (3) with θ1(t) = ω1{t +
0.5k

ωm
[sin(ωmt) + 4

π
sin(ωmπt/4)]}. Here, as in Sec. II D, ω1 = 4, ωm =

0.05, rp = 1, and ε = 5. The LE are computed over five cycles of the
frequency modulation (about 630 s). In each case, 20 random initial
conditions were taken from the square [−1,1] × [−1,1], and the
average maximum LE over these trajectories is plotted. (a) k = 0, (b)
k = 0.4, (c) k = 0.8. The Arnold tongue (shades of blue) is enlarged
as k increases. Gray represents zero values.

the driving frequency θ̇1 at any moment in time during such
an epoch of stable dynamics, the solution of the resulting
periodic differential equation (15) would not converge to a
fixed point but most likely to a stable periodic orbit, for parts
of which the vector field is locally contractive and other parts
not, with contraction on average over each period. Hence, the
intermittency is demonstrated most clearly by taking time-
localized LE over a wider moving time window, whose width
is likely to incorporate several periods of the aforementioned
stable periodic orbit. In Fig. 11(b), we see quite clearly (in red)
the alternation between plateaus of zero time-localized LE and
epochs where the time-localized LE dips to become negative.
In the time-frequency representation shown in Fig. 11(a),

FIG. 10. Numerically obtained long-term maximum Lyapunov
exponent λ1 over parameter space for the forced weakly nonlinear
vdP oscillator [see Eq. (15)], with ε = 0.1, ω1 = 1, and ωm =
0.02, for different amplitude of frequency modulation k. In each
case, 20 random initial conditions [x(0),ẋ(0)] were taken from the
square [−1,1] × [−1,1], and the average maximum LE over these
trajectories is plotted. The negative LE region (blue shades) increases
as k is increased. Gray represents zero values.

FIG. 11. Intermittency in the typically forced vdP system (15).
Parameters are set to k = 0.5, γ = 1, ω0 = 1, ε = 0.1, ωm = 0.02,
ω1 = 1; results are for a random initial condition [x(0),ẋ(0)] taken
from the square [−1,1] × [−1,1]. (a) Time-frequency representation
(showing amplitude) of x(t), extracted using a continuous Morlet
wavelet transform (p = 1) with central frequency 2. (b) Shorter-time-
window FTLE max, with window length 0.1 s, is shown in black, and
longer-time-window FTLE max, with window length 25 s, is shown in
red. The longer-time-window FTLE alternates between epochs where
it is negative, and epochs where it is zero. These epochs of negative
values coincide with those epochs where, in (a), there appears to be a
single main peak in the instantaneous power-frequency spectrum.

during the epochs of zero time-localized LE, the power is
shared mostly between two distinct peaks in the instantaneous
spectrum, but during the epochs of negative time-localized LE,
virtually all the power is concentrated around a single peak.
As in Fig. 4(e), this suggests that instantaneous 1:1 frequency
entrainment is taking place during the epochs of negative time-
localized LE, but not the epochs of zero time-localized LE, and
so overall the system exhibits intermittent synchronization.

B. Diffusively forced van der Pol

We take the polar coordinate representation of the unforced
vdP oscillator (Eq. (15) without γ sin[θ1(t)]) as a first-order
equation in (x,ẋ) space, and we now drive the angular compo-
nent with a diffusive coupling:

ṙ = (
1 − ω2

0

)
r cos θ sin θ + ε(1 − r2 cos2 θ )r sin2 θ,

θ̇ = ε(1 − r2 cos2 θ ) sin θ cos θ − ω2
0 cos2 θ − sin2 θ

+ γ sin [θ − θ1(t)]. (16)

The long-term maximum LE is shown over parameter space in
Fig. 12. Increasing k reduces both the region of neutral stability
and the very small region of chaos, while the region of stability
grows.

C. Forced and coupled Duffing oscillator

Here, we consider two Duffing oscillators, x and x1, uni-
directionally diffusively coupled with strength gd so that x1
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FIG. 12. Numerically obtained long-term maximum Lyapunov
exponent λ1 over parameter space for the diffusively phase forced
van der Pol oscillator [see Eq. (16)], with ε = 0.1, ω1 = 1, and
ωm = 0.02, for different amplitude of frequency modulation k. In
each case, 20 random initial conditions [x(0),ẋ(0)] were taken from
the square [−1,1] × [−1,1], and the average maximum LE over these
trajectories is plotted. The stability region (shades of blue) is enlarged
as k increases, and chaotic (red) points in (a) are turned stable (shades
of blue) in (c). Gray represents zero values.

drives x. Additionally, the driven Duffing oscillator is directly
forced with external nonautonomous driving:

ẍ = −δẋ − ω2
0x − βx3 + gd (x − x1) + γ cos [θ1(t)],

ẍ1 = −δẋ1 − ω2
0x1 − βx3

1 . (17)

We fix parameters δ = 0.3, β = 0.1, ω1 = 1.2, ωm = 0.02,
and coupling strength gd = 0.5. For investigation of LE, we
treat the system as a first-order equation in (x,y,x1,y1) space
with ẋ = y, ẋ1 = y1 (and numerically integrate it as such).
The long-term maximum LE is shown over parameter space
in Fig. 13. As k is increased, the chaotic region essentially
decreases, giving way to either stability or neutral stability.
The stability region does not strictly increase, as parts of
the stability region become neutrally stable as k is increased;
nonetheless, the phenomenon is still observed that for various
fixed values of all the parameters other than k, increasing k

has the effect of turning chaos into stability. From a control
point of view, if the region of interest in parameter space is the
chaotic region, one can stabilize the dynamics by adding time
variation to the forcing frequency.

FIG. 13. Numerically obtained long-term maximum Lyapunov
exponent λ1 over parameter space for the coupled and forced Duffing
oscillator (17), for different amplitude of frequency modulation k.
In each case, 20 random initial conditions [x(0),ẋ(0),x1(0),ẋ1(0)]
were taken from [−1,1]4, and the average maximum LE over these
trajectories is plotted. The region of chaotic behavior (red) is reduced
as many points are turned stable (shades of blue) as k is increased.
Gray represents zero values.

IV. DISCUSSION

The work was motivated by real systems that exhibit
dynamics with time-varying frequencies and are stable against
external perturbation [1–3,18–22]. Surprisingly, not much
analytical work has been carried out on such systems, and most
of the work that has been carried out has used noisy driving
[7,42,43] as the foundation of the model, or noise consisting
of impulses at random times [5,38]. In these studies, it was
shown that noise can create and increase stability. Outside
of a stochastic approach, the only other way to incorporate
time variability is to model the system as a deterministic
nonautonomous dynamical system. However, not much ana-
lytic theory of nonautonomous systems has been developed
yet. The problem is additionally complicated by the fact that
an asymptotic approach does not give the full picture as
the evolving dynamics over shorter timescales is missed. As
illustrated in this work, changes in dynamical behavior over
shorter time scales are of crucial importance in the types of
systems considered. For if they had not been considered in
this work, the phenomenon of intermittent synchronization
would have been missed. The work in this paper has provided
a key insight into systems subject to time-varying influences,
by identifying the phenomenon of intermittent synchronization
and the region in parameter space where it occurs, and thereby
showing the enlargement of the Arnold tongue. This insight
also has potential for being the foundation of future methods
to induce stability in complex or other systems; the fact that
nonautonomous driving allows for average stability to be
achieved without the need to maintain frequency entrainment
at all times may be of significant advantage.

The basic adiabatic reasoning underlying our analytical
approach is the same as that employed and investigated in
[27]. It is this reasoning that has led us to our discovery
that increasing time variability inherently induces stability in
phase oscillators. We have also employed numerical tools to
visualize time-localized dynamics as derived by this adiabatic
reasoning, namely, time-localized LEs as in Figs. 4(d)–4(f)
and time-frequency representation as in Figs. 4(a)–4(c). We
hypothesize that for a time-frequency representation applied
to experimental data, a result resembling Fig. 4(b) could be a
signature of intermittent synchronization. We also investigated
the slow variation assumption in higher-dimensional systems,
and numerically illustrated the creation of stability as the
amplitude of variation is increased, as well as the occurrence of
intermittent synchronization. In this way, we showed that the
phenomena of stabilization and intermittent synchronization
under slow variation of the driving frequency occur more
broadly than just in the case of phase oscillators.

Chronotaxic systems have been introduced to model the
distinctive feature of real-life oscillatory systems, that they
are able to keep their time-varying dynamics resistant to
external perturbations [19,23,24]. Chronotaxic systems were
defined in previous works by the necessary condition that
a time-dependent attractor exists, and that trajectories in its
close vicinity always move closer to it [19], or alternatively
just by the existence of a positively invariant time-varying
region in which the dynamics is always contracting [24].
However, it seems reasonable to expect that in real life, there
exist stable oscillatory systems for which no trajectory is
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always instantaneously locally attractive. Instead, in contrast
to currently existing definitions of chronotaxicity, an intermit-
tent synchronization phenomenon such as identified in this
work would give rise to stability on average. Thus, we have
broadened the definition of chronotaxic systems, increasing its
potential for effectively modeling and understanding real-life
systems, which are nonisolated and therefore continuously
subjected to time-varying external influences.

V. SUMMARY

We have shown that driving a phase oscillator with an
arbitrary slowly varying frequency always induces stability:
the larger the amplitude of the frequency modulation, the larger
the stability region. We have furthermore shown numerically
that this phenomenon occurs in more complex cases where the
driven oscillator is higher dimensional and nonlinear, hinting
at the wider scope and importance of the effect at hand. We
have even shown numerically that chaotic regions in parameter
space can be made stable by the same mechanism. If only the
quantities λ1 and �ψ , which describe time-averaged properties
of the system, are considered, the system looks the same
as in the case of driving with noise. However, in reality,
our fully deterministic example exhibits some time-localized

frequency entrainment, whereas none is exhibited in the case
of driving with bounded noise. It is therefore clear that the
nonautonomous deterministic system could be misinterpreted
as a noisy one if only time-averaged quantities are considered.

The enlarged stability region makes time-variable driving
very suitable for real-world modeling and for engineering,
where a controlled adjustment of the frequencies is often
of key importance. We believe that this type of model will
find applications in many fields, including physics, biology,
medicine, and climate dynamics.
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