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Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation
in optical fibers filled with chiral materials
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The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials
is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method,
the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients.
We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are
the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of
nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes
of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme
of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous
controllability of combined effects are underlined, showing their properties and their potential applications in
optical fibers and in a variety of complex dynamical systems.
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I. INTRODUCTION

After the investigation of fundamental problems of electro-
magnetic wave interaction with chiral materials, the area of
wave propagation in chiral media has renewed attention both
from theoretical and experimental points of view [1]. Chirality,
which refers to the handedness of an object or a medium, has to
play an important role in a variety of fields, including chemistry
[2], optics [3], particle physics [4,5], and mathematics [6].
The electromagnetic wave propagation through such medium
displays two unequal characteristic wave numbers for the right-
and left-circularly polarized eigenmodes, which results in both
optical activity and circular dichrosim, as consequences of the
circular birefringence [1,7]. Significant advances have taken
place on some aspects relating to the applications of chiral
media. One can mention the wave-guiding structures filled with
chiral materials, which show many interesting features through
the integrated optic applications like directional couplers,
which can be used as optical switches for energy transfer from
one fiber to another adjacent one. In fact, chiral medium has
many potentials and the development of integrated circuitry
with chiral substrates and the multiplexing in chiral fibers are
important progress with potential applications in optics [8,9].

In recent times, much attention has been focused on under-
standing of rogue wave propagation in optical fibers filled with
chiral materials. The nature of rogue waves has been discussed
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in hydrodynamics [10–12] and initiated in nonlinear optics, by
the pioneering measurement of Solli et al. [13] through the
analysis of the supercontinuum generation in optical fibers,
and later in a photonic crystal fiber [14]. Their occurrences
have been later observed in optical cavities [15], optical wave
guides [16], Bose-Einstein condensates [17–19], laser-plasma
interactions [20], econophysics [21], and even in finance [22].

The concept of rogue waves which refers to rogons has been
applied to pulses emerging from optical fibers, and both numer-
ical simulations and experiments show that the probability of
their generations increases with the increase of the initial noise
level responsible for the modulation instability (MI) [23]. It is
worth noting that the MI that leads to their generation evolves
two distinct directions with opposite sense. On the one hand,
it deals with the undesirable effects like the non-return-to-zero
code in optical communication, the drastic enhancement of MI
gain in the WDM (wavelength-division multiplexing) systems
which sets the limitation of the bandwidth window of the
communication system, MI lasers, and the new frequency
generations of ultrashort pulses in optical systems. On the
other hand, a suitable manipulation of MI has also found
important applications in optical amplification of weak signal,
dispersion management, optical switching, and the production
of ultrashort pulses.

Despite multiple observations in many other fields, the
origin and the predictability of rogons remains uncertain [24],
as does the kind of MI that leads to rogue wave generation
[25,26]. In fact, in optical communication systems [27–29],
many works have been done with the objective of reducing
the disastrous effects caused by MI. Important progress has
been made very recently by Baronio et al. [30], who showed
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that the MI is a necessary but not a sufficient condition for the
existence of rogue waves. Through their results, they confirmed
that rogue waves can exist if and only if the MI gain band
also contains the zero-frequency perturbation as a limiting case
known as baseband MI.

In the context of adequate model, the focusing nonlinear
Schrödinger (NLS) equation has played an important role of
universal model for rogue waves description in both optics
[31] and hydrodynamics [32] and, later on, in many physical
systems [33,34]. Therefore, the nonparaxial NLS equation
model was used in the literature by Baruch et al. [35]
and Chamoro-Posada et al. [36]. Moreover, the development
and testing of two alternative nonparaxial beam propagation
methods investigated by Chamoro-Posada et al. [37] have
provided the foundations upon which further investigations as
the modeling of numerous higher-order effects and different
physical geometries can now be undertaken with much greater
confidence. Therefore, the difference-differential approach
that is used in this work is flexible in the accommodation of
additional effects. Furthermore, the same model has been used
in the literature by many authors [38,39].

Then after many years, scientists [30,40] recognized that
describing complex systems with the standard NLS equation
is oversimplifying the nonlinear phenomena that can occur
in those systems. As a consequence, this problem pushes
researchers [41,42] to turn to higher-order NLS equations.
Moreover, it was pointed out that the vector NLS equations de-
scribe rogue waves with higher accuracy than the scalar models
[43–45]. Under this assumption, the existence of vector rogue
waves in the defocusing regime was a crucial progress in the
explanation of rogue waves in multicomponent systems [30].

Among different models that have been studied before, no
report to the best of our knowledge is adequate to perform the
description of the generation and the propagation of nonparax-
ial rogue waves in optical fibers filled with chiral materials.
As we are working under the assumption of high intensity
and beam narrowness, we investigated both scalar and vector
models, which can be used efficiently to describe simultaneous
effects of nonparaxiality, optical activity, and walk-off on
rogue waves propagating in optical fibers, filled with chiral
materials. As physical phenomena require modeling waves
with two or more components to account for different modes,
frequencies, or polarizations [7,43,46], it is also necessary to
use the vector NLS equations, which allow energy transfer
between components and which potentially yields rich and
significant new families of vector rogue wave solutions.

As methodology of resolution of the higher-order nonparax-
ial chiral NLS equations derived in Appendix A, we use both
similitude reduction and modified Darboux transformation
(MDT) methods [47–49] to find the analytical solutions of
the scalar model, and both difference-differential equation
method and Darboux dressing transformation (DDT) methods
[44,50–54] to find the numerical solutions of the vector
model. Indeed, the properties of simultaneous controllability of
nonparaxiality, optical activity, and walk-off effects on rogue
waves are underlined.

The paper is organized as follows: In Sec. II we find under
the boundedness condition the nonparaxial chiral optical rogue
waves with modulated coefficients via the MDT method. In
Sec. III we investigate the dynamical behavior and features of

nonparaxial chiral optical rogue waves through their specific
control parameters. In Sec. IV we analyze the influence of
nonparaxiality, optical activity, and walk-off on the vector
nonparaxial chiral NLS equations with constant coefficients.
In Sec. V we present the influence of combined effects through
the vector nonparaxial chiral NLS equations with modulated
coefficients. In Sec. VI we summarize the outcomes.

II. SIMILARITY REDUCTION, FIRST- AND
SECOND-ORDER NONPARAXIAL CHIRAL OPTICAL
ROGUE WAVES WITH MODULATED COEFFICIENTS

To describe the optical rogue wave propagation in chiral
media, we deduce from Eq. (A25), derived in Appendix A, the
nonparaxial chiral NLS equation with modulated coefficients,
in the form

d(ξ )
∂2ψ

∂ξ 2
+ j

∂ψ

∂ξ
+ P (ξ,τ )

∂2ψ

∂τ 2
− jγ (ξ )

∂3ψ

∂τ 3
+ jμ(ξ,τ )ψ

∓D(ξ,τ )ψ − C(ξ,τ )|ψ |2ψ + jα3(ξ )|ψ |2 ∂ψ

∂τ
+ η(ξ )

∂ψ

∂τ

±jσ3(ξ,τ )
∂ψ

∂τ
= 0, (1)

where ξ is the propagation distance, and τ is the retarded
time. The subscripts ξ and τ stand for partial differentiation.
The variable coefficients P (ξ,τ ), μ(ξ,τ ),D(ξ,τ ), C(ξ,τ ), and
σ3(ξ,τ ) are related to the space- and time-modulated group-
velocity dispersion (GVD), gain or loss term of the induced
optical activity, linear birefringence, self-phase modulation
(SPM), and linear group velocity or walk-off. Parameters
d(ξ ), γ (ξ ), α3(ξ ), and η(ξ ) are related to the space-modulated
nonparaxial parameter, TOD (third-order dispersion), SS (self-
steepening), and the differential gain or loss term, respectively.
Through Eq. (1), we can see the importance and the necessity
to take into account those parameters which are responsible of
nonparaxial, optical activity, and walk-off effects. These addi-
tional terms will help to improve the description and the control
of rogue wave propagation under the above assumptions. As
the assumption of controllability [55] is verified by the above
model, we are going to find the rational solutions with variable
coefficients which may be useful to control the propagation of
the nonparaxial chiral optical rogue waves.

Modulated coefficients in Eq. (1) can strongly affect the
wave propagation in chiral optical fiber because of the non-
integrability of the model. To solve this problem, we use the
symmetry reduction method [56,57] to obtain some integrabil-
ity conditions and to reduce the generalized nonparaxial chiral
NLS equation to the higher-order integrable Hirota equation.
So doing, we use the envelope field in the form [55,58,59]

ψ(ξ,τ ) = A(ξ )V [Z(ξ ),T (ξ,τ )] exp{iρ(ξ,τ )}, (2)

to construct the rational solutions related to nonparaxial chiral
optical rogue waves, where A(ξ ) is the amplitude, Z(ξ ) the
effective propagation distance, T (ξ,τ ) the similitude variable,
and V [Z(ξ ),T (ξ,τ )] the complex field. The variable ρ(ξ,τ ) is
the phase of the wave. This form of envelope field is also known
as the similarity transformation or the reduction method.
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Substituting Eq. (2) into Eq. (1) gives a coupled system of partial differential equations with variable coefficients:

d(ξ )
(
AξξV + 2AξZξVZ + 2AξTξVT + 2AZξTξVZT + AZξξVZ + ATξξVT + AZξ

2VZZ + ATξ
2VT T − Aρξ

2V
)

−AV ρξ + P (ξ,τ )
(
AVT T Tτ

2 + AVT Tττ − AV ρτ
2) + γ (ξ )

(
3AVT Tττρτ + 3AVT Tτρττ + 3AVT T Tτ

2ρτ

+AV ρτττ − AV ρτ
3
) ∓ D(ξ,τ )AV − C(ξ,τ )A2|V |2AV − α3(ξ )A2|V |2AV ρτ + η(ξ )ATτVT ∓ σ (ξ,τ )AV ρτ = 0, (3)

d(ξ )(AV ρξξ + 2AξρξV + 2AZξρξVZ + 2AρξTξVT ) + AξV + AVZZξ + AVT Tξ + P (ξ,τ )(AV ρττ + 2AVT Tτρτ )

− γ (ξ )(AVT Tτττ + 3AVT T TτTττ + AVT T T Tτ
3 − 3AVT Tτρτ

2 − 3AV ρττρτ ) + μ(ξ,τ )AV

+α3(ξ )A2|V |2AVT Tτ + η(ξ )AV ρτ ± σ (ξ,τ )ATτVT = 0, (4)

where the scripts of differential equations are simpli-
fied as A(ξ ) = A,Z(ξ ) = Z, T (ξ,τ ) = T , ρ(ξ,τ ) = ρ, and
V [Z(ξ ),T (ξ,τ )] = V . According to the previous works
[55,59], we use the symmetry reduction given by Eq. (2) that
would reduce Eq. (1) to the higher-order integrable Hirota
equation in the form [60]

i
∂V

∂Z
= −∂2V

∂T 2
+ G|V |2V

+ 2
√

2iν

(
∂3V

∂T 3
+ 3|V |2 ∂V

∂T

)
. (5)

In the case of rogue waves finding, we take G = −1 to obtain
rational solutions. The parameter ν is a real constant. With
V [Z(ξ ),T (ξ,τ )] satisfying the relation Eq. (5), the similarity
reduction of Eqs. (3) and (4) yields

γ (ξ )TτTττ = 0, (6)

Tξ + 2d(ξ )Tτρτ + 2P (ξ,τ )Tτρτ ± σ (ξ,τ )Tτ

−γ (ξ )(Tτττ − 3Tτρτ
2) = 0, (7)

Aξ + A[d(ξ )ρξξ + ρττP (ξ,τ ) + 3γ (ξ )ρττρτ + μ(ξ,τ )

+ η(ξ )ρτ ] = 0, (8)

γ (ξ )Tτ
3 + 2

√
2νZξ = 0, (9)

AξV + AZξVZ + ATξVT = 0, (10)

α3(ξ )A2Tτ − 6
√

2νZξ = 0, (11)

d(ξ )Tξξ + P (ξ,τ )Tττ + 3γ (ξ )(Tττρτ + Tτρττ )

+ η(ξ )Tτ = 0, (12)

Zξ + d(ξ )Tξ
2 + P (ξ,τ )Tτ

2 + 3γ (ξ )ρτTτ
2 = 0, (13)

ρξ + d(ξ )ρξ
2 + P (ξ,τ )ρτ

2 + γ (ξ )(ρτ
3 − ρτττ )

± σ (ξ,τ )ρτ ± D(ξ,τ ) = 0, (14)

GZξ + A2(C(ξ,τ ) + α3(ξ )ρτ ) = 0, (15)

AξξV + 2AξZξVZ + 2AξTξVT + 2AZξTξVZT

+AZξξVZ + AZξ
2VZZ = 0. (16)

Here, the subscripts ξ and τ denote spatial and temporal deriva-
tives, respectively. Through the above symmetry reduction
method, the constraints or integrability conditions of the model
given in Eq. (1) are derived from the differential equations of
which the simplified forms stand from Eq. (6) to Eq. (16),
respectively, as follows −3AVT T �= 0, AVT �= 0, V �= 0, −
AVT T T �= 0, 2dρξ �= 0, A|V |2VT �= 0, AVT �= 0, AVT T �= 0,

− AV �= 0, − A|V |2V �= 0, and d �= 0.
We should keep in mind that each constraint plays an im-

portant role in the choice of arbitrary functions and parameters
of the system. To have an aperture of dynamics behavior
of parameters, the above equations should be solved to give
the information on the form and order of each coefficient of
the model and on variables related to the complex field. The
resolution of Eq. (6) yields for γ (ξ ) �= 0 and for TτTττ = 0 to
the similarity variable

T (ξ,τ ) = T1(ξ )τ + T0(ξ ), (17)

where T1(ξ ) and T0(ξ ) are arbitrary functions. From Eq. (9),
the effective propagation distance Z(ξ ) will be

Z(ξ ) = −
√

2

4ν

∫ ξ

0
γ (s)T1(s)3ds. (18)

Equation (11) gives the result

α3(ξ ) = −3γ (ξ )T1
2(ξ )A−2(ξ ). (19)

α3(ξ ) has the physical sense of SS. The substitution of Eq. (17)
into Eq. (12) tends to d(ξ )Tξξ + 3γ (ξ )Tτρττ + η(ξ )Tτ = 0. As
γ (ξ ) �= 0, T1(ξ ) �= 0, and Tξξ = T1

ξξ
τ + T0ξξ

, the phase of the
envelope field can be written as

ρ(ξ,τ ) = ρ3(ξ )τ 3 + ρ2(ξ )τ 2 + ρ1(ξ )τ + ρ0(ξ ), (20)

with

ρ3(ξ ) = − 1

18

d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )
,

(21)

ρ2(ξ ) = −1

6

d(ξ )T0(ξ )ξξ + η(ξ )T1(ξ )

γ (ξ )T1(ξ )
,

where ρ1(ξ ) and ρ0(ξ ) are arbitrary functions. Through relation
Eq. (15), one finds that

C(ξ,τ ) = C2(ξ )τ 2 + C1(ξ )τ + C0(ξ ), (22)
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with

C2(ξ ) = −1

2

T1(ξ )d(ξ )T1(ξ )ξξ

A(ξ )2
,

C1(ξ ) = −T1(ξ )[d(ξ )T0(ξ )ξξ + T1(ξ )2η(ξ )]

A(ξ )2
, (23)

C0(ξ ) = γ (ξ ) T1(ξ )2

A(ξ )2

[
3 ρ1(ξ ) + 1

4

√
2GT1(ξ )

ν

]
.

C(ξ,τ ) is the space- and time-modulated SPM. Equation (13)
stands for

P (ξ,τ ) = P2(ξ )τ 2 + P1(ξ )τ + P0(ξ ), (24)

with

P2(ξ ) = 1

2

d(ξ )T1(ξ )ξξ

T1(ξ )
− d(ξ )T1(ξ )ξ 2

T1(ξ )2
,

P1(ξ ) = η(ξ ) + d(ξ )T0(ξ )ξξ

T1(ξ )
− 2

d(ξ )T1(ξ )ξT0(ξ )ξ
T1(ξ )2

,

P0(ξ ) = 1

4

γ (ξ ) T1(ξ )
√

2

ν
− 3 γ (ξ ) ρ1(ξ ) − d(ξ )T0(ξ )ξ 2

T1(ξ )2
.

(25)

P (ξ,τ ) is the space- and time-modulated GVD. Through
Eq. (7), we arrive at

±σ (ξ,τ ) = σ4(ξ )τ 4 + σ3(ξ )τ 3 + σ2(ξ )τ 2 + σ1(ξ )τ + σ0(ξ ),

(26)

where the parameters σ4(ξ ), σ3(ξ ), σ2(ξ ), σ1(ξ ), and σ0(ξ ) are
expressed in Appendix B. ±σ (ξ,τ ) is the left- and right-hand
side of the walk-off effect. Equation instead of relation Eq. (8)
is transformed to

A(ξ ) = A0 exp

{∫ ξ

0
f (s)ds

}
, (27)

where A0 is a constant and with

f = μ3(ξ )τ 3 + μ2(ξ )τ 2 + μ1(ξ )τ + μ0(ξ ) − μ(ξ,τ ),

μ(ξ,τ ) = μ3(ξ )τ 3 + μ2(ξ )τ 2 + μ1(ξ )τ + 2μ0(ξ ), (28)

where the parameters of the gain or loss term μ(ξ,τ ) are given
in Appendix C. μ(ξ,τ ) is the space- and time-modulated gain
or loss term. It follows from the above equations that the
amplitude of the envelope field becomes

A(ξ ) = A0 exp

{∫ ξ

0
−μ0(s)ds

}
, (29)

with

μ0(ξ ) = −1

3

d(ξ )T0(ξ )ξ 2η(ξ )

γ (ξ )T1(ξ )2
− 1

3

d(ξ )2T0(ξ )ξ 2T0(ξ )ξξ

γ (ξ )T1(ξ )3

+ 1

12

T1(ξ )
√

2η(ξ )

ν
− η(ξ )ρ1(ξ )

+ 1

12

√
2d(ξ )T0(ξ )ξξ

ν
− d(ξ )ρ0(ξ )ξξ . (30)

The result coming from Eq. (14) is

±D(ξ,τ ) = D6(ξ )τ 6 + D5(ξ )τ 5 + D4(ξ )τ 4 + D3(ξ )τ 3

+D2(ξ )τ 2 + D1(ξ )τ + D0(ξ ), (31)

with D−(ξ ) = −D+(ξ ) and where D6(ξ ),D5(ξ ),D4(ξ ),
D3(ξ ), D2(ξ ),D1(ξ ), and D0(ξ ) are given in Appendix D.
±D(ξ,τ ) is the left- and right-hand side of the space- and
time-modulated linear birefringence.

The resolution of the above differential equations reveals
and confirms the assumption of the space- and time-modulated
variable of the TOD, gain or loss term, linear birefringence,
SPM, and walk-off coefficients. More specifically, it reveals
the optically active nature of the system through the left-
and right-hand sides of mathematical expressions of the linear
birefringence and walk-off term. In fact, the chirality, known
as optical activity in optics, is the ability to rotate plane
polarized light and this happens when the plane polarized light
hits an optically active compound. The more compounds it
hits, the more it rotates. Physically, when the polarized light
leaves the chiral optical fiber which is optically active, we
have to rotate the analyzer to allow the plane of light to pass
through. This angle of rotation, called observed rotation, can
be directed to the right-hand side, that is a positive rotation or
clockwise rotation, also called dextrorotatory. In the case of
which the analyzer has to be rotated to the left-hand side for
the polarized light to pass through, that is a negative rotation
or counterclockwise rotation, called levorotatory. Hence, the
mathematical expressions of relation Eqs. (26) and (31) with
positive signs refer to the dextrorotatory components and the
ones with negative signs to the levorotatory components of
the system. As we can see, they are equal in magnitude but
opposite in sign.

We can observe through the above variable coefficients of
the model that P (ξ,τ ), μ(ξ,τ ),D(ξ,τ ), C(ξ,τ ), and σ3(ξ,τ )
are polynomials in τ with coefficients being functions of ξ .
Parameters d(ξ ), γ (ξ ), α3(ξ ), and η(ξ ) are arbitrary functions,
except the SS, which depends on the TOD and amplitude.
Since the nonparaxial parameter d(ξ ), the differential gain
or loss term η(ξ ), and third-order dispersion γ (ξ ) are major
functions of the base equation coefficients, it appears from
analytical results that they are are the main keys to control
the amplitude, the SS, the GVD, the SPM, the walk-off term,
and linear birefringence in optical fibers. Therefore, they can
be considered as specific control parameters of the system.
The TOD coefficient γ (ξ ) can also be used to control the
effective propagation distance Z(ξ ). The gain or loss term of
the induce optical activity μ(ξ,τ ) can be used to manage the
optical activity on the amplitude A(ξ ), SS coefficient α3(ξ ),
and on the SPM nonlinearity C(ξ,τ ).

According to the MDT method [47–49,61], which is well-
known and clearly derived by many authors, the first- and
second-order of the complex field V [Z(ξ ),T (ξ,τ )] are ex-
pressed by Akhmediev et al. [60]. It is good to mention that the
first-order of the complex field V [Z(ξ ),T (ξ,τ )] was found by
Peregrine [40] and the second-order by Akhmediev et al. [62].
Later, Ankiewicz et al. [60] found the first- and second-order
of the Hirota equation. By considering the correspondence
Z(ξ ) = x, 1√

2
T (ξ,τ ) = t , and ν = α3, in this last reference,
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the first-order complex field V [Z(ξ ),T (ξ,τ )] yields

V1[Z(ξ ),T (ξ,τ )] =
[

1 − G1 + iH1

D1

]
exp {iZ(ξ )}, (32)

where

G1 = 4, H1 = 8Z(ξ ),
(33)

D1 = 1 + [
√

2T (ξ,τ ) + 12νZ(ξ )]2 + 4Z(ξ )2.

The partial solution Eq. (32), is known as the Peregrine soliton
[40]. Then, collecting this solution together with the founded
amplitude and phase of the wave, we construct the first-order
rational solution related to the nonparaxial chiral optical rogue
wave given by

ψ1 = A(ξ )

[
1 − G1 + iH1

D1

]
exp {iZ(ξ ) + iρ(ξ,τ )}, (34)

which result becomes

ψ1 = A0 exp

{
−

∫ ξ

0
μ0(s)ds

}

×
[

1 − G1 + iH1

D1

]
exp {iZ(ξ ) + iρ(ξ,τ )}. (35)

This first-order rational solution is used to describe the propa-
gation of nonparaxial optical rogue wave in a fiber filled with
chiral materials. For suitable choice of arbitrary parameters of
the original Eq. (1), we can manage through a simultaneous
controllability, the rogue wave structures with the specific
control parameters. The second-order rational solution of the
complex field V [Z(ξ ),T (ξ,τ )] stands for

V2[Z(ξ ),T (ξ,τ )] =
[

1 + G2 + iZ(ξ )H2

D2

]
exp i{Z(ξ )}, (36)

where G2,H2, and D2 are given by the relations

G2 = −48T 4 − 1152
√

2νZT 3 − 144T 2[4Z2(36ν2 + 1) + 1]

− 576
√

2νZT [12Z2(12ν2 + 1) + 7] − 192Z4

× [216(6ν4 + ν2) + 5] − 864Z2(44ν2 + 1) − 36,

H2 = −96T 4 − 2304
√

2νZT 3 − 96T 2[4Z2(108ν2 + 1) − 3]

− 1152
√

2νZT [4Z2(36ν2 + 1)] − 384Z4(36ν2 + 1)2

− 192Z2(180ν2 + 1) + 360,

D2 = 8T 6 + 288
√

2νZT 5 − 432Z4(624ν4 − 40ν2 − 1)

+ 36Z2(556ν2 + 11) + 9 + 64Z6(36ν2 + 1)3 + 96
√

2

×ZT 3[12Z2(60ν2 + 1) − 1]

+ 12T 4[4Z2(180ν2 + 1) + 1]

+ 6T 2[16Z4[216ν2(30ν2 + 1) − 1]

− 24Z2(60ν2 + 1) + 9] + 72
√

2νZT [16Z4(36ν2 + 1)

+ 8Z2(1 − 108ν2) + 17]. (37)

According to the same correspondence joined with the founded
variables including the above solutions, the second-order
rational solution, related to a particular solution of Eq. (1),

was obtained:

ψ2 = A(ξ )

[
1 + G2 + iZ(ξ )H2

D2

]
exp {iZ(ξ ) + iρ(ξ,τ )}.

(38)

Then, the construction of the second-order nonparaxial chiral
optical rogue wave yields

ψ2 = A0 exp

{
−

∫ ξ

0
μ0(s)ds

}

×
[

1 + G2 + iZ(ξ )H2

D2

]
exp {iZ(ξ ) + iρ(ξ,τ )}. (39)

These second-order rational solutions arise due to the collision
between two or more ultrashort pulses in the optical fiber. More
specifically, they are nonparaxial chiral optical rogue waves
which can propagate through a fiber filled with chiral mate-
rials. The particularity of these solutions is the simultaneous
controllability of their amplitudes through the three specific
control parameters, which can be used to manage the intensity
and the shape of the waves. As the nonparaxiality, TOD,
and differential gain or loss terms depend on specific control
parameterts, they can therefore provide a more convenient
and controlled environment to experimentally study specific
optical communication problems.

III. DYNAMICS BEHAVIOR AND FEATURES OF
COMBINED EFFECT ON NONPARAXIAL CHIRAL

OPTICAL ROGUE WAVES

After the construction of the above solutions, the parameters
are chosen to investigate the dynamics behavior and the fea-
tures of combined effects on nonparaxial chiral optical rogue
waves. Afterwards, we plot the specific control parameters of
the system, the GVD, and the amplitudes of the envelope field
in the left- and right-hand sides to have an aperture of their
dynamic in the nonparaxial chiral optical fiber (see Figs. 1, 2,
and 3).

Then, we alternate the sign of chiral parameters in both
space and time in the first and second order of nonparaxial
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FIG. 1. Specific control parameters: the left- and right-hand side
of the gain or loss differential term η(ξ ), nonparaxial parameter d(ξ ),
and TOD γ (ξ ), where η(ξ ) = CT sn(ξ,k7), d(ξ ) = dn(ξ,k5), γ (ξ ) =
cn(ξ,k6), and CT = 1 ± KTc, with k5 = 0.2, k6 = 0.4, k7 = 0.5, and
KTc = 0.8.
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FIG. 2. The space- and time-modulated group velocity dispersion
P (ξ,τ ) on the left- and right-hand side, respectively, expressed in re-
lation Eq. (24), where η(ξ ) = CT sn(ξ,k7), d(ξ ) = dn(ξ,k5),γ (ξ ) =
cn(ξ,k6), T0(ξ ) = sn(ξ,k3), T1(ξ ) = dn(ξ,k3), ρ0(ξ ) = dn(ξ,k2),
ρ1(ξ ) = cn(ξ,k1), and CT = 1 ± KTc, with k1 = 0.3, k2 = 0.5, k3 =
0.6, k4 = 0.4, k5 = 0.2, k6 = 0.4, k7 = 0.5, ν = 0.2, and KTc = 0.8.

chiral optical rogue wave solutions to analyze their behavior
and therefore to optimize the eventual stability of the solutions
(see Figs. 4 and 5).

Figure 1 depicts the dynamical behavior of each specific
parameter in the system. On the one hand, we can observe the
influence of chiral nature of the differential gain or loss term
through its weak peak in the left-hand side and high peak in
the right-hand side. On the other hand, the amplitude and the
width of each parameter depend on the value of their moduli
ki(i = 5,6,7) and on the type of Jacobian elliptic function
they carry (cn,dn,sn). The left- and right-hand sides of the
space- and time-modulated group-velocity dispersion P (ξ,τ )
are illustrated in Fig. 2 and expressed by relation Eq. (24)
with their arbitrary Jacobian elliptic functions and moduli
given in the figure caption. It can be seen that the structure
of GVD differs from one side to the other. Figure 3 depicts the
profiles of the amplitudes of the envelope field A(ξ ) on both
sides. We remark on the trace of each evolution, the presence
of two dark-bright collisions in the right-hand side and two
bright-dark collisions in the left-hand side. These collisions
are better observed through analytical simulation of the first-
and second-order nonparaxial chiral optical rogue waves which

ξ
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A
(ξ

) -

0

1

2

ξ

-10 -5 0 5

A
(ξ

) +

0

1

2

3

4

5

FIG. 3. The left- and right-hand side amplitude A(ξ ), presented in
relation Eq. (29), where η(ξ ) = CT sn(ξ,k7), d(ξ ) = dn(ξ,k5),γ (ξ )=
cn(ξ,k6), T0(ξ ) = sn(ξ,k3), T1(ξ ) = dn(ξ,k3), ρ0(ξ ) = dn(ξ,k2),
ρ1(ξ ) = cn(ξ,k1), and CT = 1 ± KTc, with k1 = 0.3, k2 = 0.5, k3 =
0.6, k4 = 0.4, k5 = 0.2, k6 = 0.4, k7 = 0.5, and KTc = 0.8.

FIG. 4. First-order nonparaxial chiral optical rogue waves on the
left- and right-hand side of the rational solution given by Eq. (35),
where η(ξ ) = CT sn(ξ,k7), d(ξ ) = dn(ξ,k5), γ (ξ ) = cn(ξ,k6), T0(ξ )=
sn(ξ,k3), T1(ξ ) = dn(ξ,k3), ρ0(ξ ) = dn(ξ,k2), ρ1(ξ ) = cn(ξ,k1),
and CT = 1 ± KTc, with k1 = 0.3, k2 = 0.5, k3 = 0.6, k4 = 0.4,

k5 = 0.2, k6 = 0.4, k7 = 0.5, ν = 0.2, and KTc = 0.8.

are illustrated in Figs. 4 and 5. Throughout these figures, we
notice a main difference on the structure and on the amplitude
of the first- and second-order in both sides. We also remark an
energy transfer from the left-hand to right-hand side on each
solution.

More specifically, in Fig. 3 we can see the contrast of optical
activity in the sense of oscillation of each component of the
amplitude as it increase then decrease on the left-hand side,
whereas it decreases then increases on the right-hand side.
Generally, in optically active media, components are equal
in magnitude but different in sign. However, in this case, the
equality of magnitude is affected by the differential gain or loss
term η(ξ ) = (1 ± KTc)sn(ξ,k7), which is responsible for the
observed difference on both sides and, consequently, on both
sides of the amplitude. It can be seen throughout Fig. 1 that
the amplitude of the differential gain or loss term is four times
higher in the right-hand side compare to the left-hand side.
Now, when we look at the mathematical expression of the
space- and time-modulated GVD, we denote that it depends
also on the differential gain or loss term; however, GVD
profiles are nearly equal in magnitude, as shown in Fig. 2. This

FIG. 5. Second-order nonparaxial chiral optical rogue waves on
the left- and right-hand side of the rational solution given by Eq. (39),
where η(ξ ) = CT sn(ξ,k7), d(ξ ) = dn(ξ,k5), γ (ξ ) = cn(ξ,k6),T0(ξ )=
sn(ξ,k3), T1(ξ ) = dn(ξ,k3), ρ0(ξ ) = dn(ξ,k2), ρ1(ξ ) = cn(ξ,k1),
and CT = 1 ± KTc, with k1 = 0.3, k2 = 0.5, k3 = 0.6, k4 = 0.4, k5=
0.2, k6 = 0.4, k7 = 0.5, ν = 0.2, and KTc = 0.8.
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contrast is due to the fact that the differential gain or loss term
plays a role of loss in the expression of the amplitude and the
role of gain in the expression of GVD. This is an advantage for
the waves, which become more stable as we can see in Figs. 4

and 5. As the vector NLS equations describe extreme waves
with higher accuracy than the scalar NLS equation models,
we are going to use the vector nonparaxial NLS equations to
enrich the work.

IV. THE INFLUENCE OF COMBINED EFFECTS ON THE NUMERICAL SOLUTIONS OF VECTOR NONPARAXIAL NLS
EQUATIONS WITH CONSTANT COEFFICIENTS

To illustrate the nonparaxiality, optical activity, and walk-off effects on the propagation of nonparaxial chiral optical rogue
waves, we derive from the model obtained in Eq. (A25) the vector nonparaxial NLS equations with constant and modulated
coefficients which governs the propagation of rogons in optical fibers filled with chiral materials. So doing, the coupled system
of the nonparaxial NLS equation with constant coefficients is given by

dψ1ξξ + iψ1ξ + Pψ1ττ − iγψ1τττ + iμψ1 ∓ Dψ1 − C(|ψ1|2 + |ψ2|2)ψ1 + iα3(|ψ1|2 + |ψ2|2)ψ1τ + (η ± iσ )ψ1τ = 0,

dψ2ξξ + iψ2ξ + Pψ2ττ − iγψ2τττ + iμψ2 ∓ Dψ2 − C(|ψ1|2 + |ψ2|2)ψ2 + iα3(|ψ1|2 + |ψ2|2)ψ2τ + (η ± iσ )ψ2τ = 0.

(40)

To simplify the expressions of waves functions, we let ψ1(ξ,τ ) = u(ξ,τ ) and ψ2(ξ,τ ) = v(ξ,τ ). In this part of the work, we
focus our attention on the generation and propagation of bright and dark rogue wave solutions when the nonparaxial effect arises
fundamentally from chiral optical fibers. To study the influence of combined effects of the nonparaxiality, optical activity, and
walk-off on optical rogue wave propagation, we used an algorithm scheme derived by Chamorro-Posada et al. [37], namely,
difference-differential equation method that has a wider applicability on nonparaxial beam propagation methods. In this method,
we used the finite difference formulas to approximate derivatives with respect to ξ coordinate, and then the fast Fourier transforms
(FFTs) are used to compute efficiently the second- and third-order diffractions in the spectral domain.

The finite difference formulas for the derivatives are given in Appendix E. Substituting these formulas in the coupled nonparaxial
NLS equations with constant coefficients, we obtained the difference-differential equations below:

un+1(τ ) = 1

2d + i�ξ

[(
4d − 2P�ξ 2 ∂2

∂τ 2
+ 2iγ�ξ 2 ∂3

∂τ 3
− 2iμ�ξ 2 ± 2�ξ 2D + 2C�ξ 2(|un(τ )|2 + |vn(τ )|2)

− 2iα3�ξ 2(|un(τ )|2 + |vn(τ )|2)
∂

∂τ
− 2�ξ 2(η ± iσ )

∂

∂τ

)
un(τ ) − (2d − i�ξ )un−1(τ )

]
,

vn+1(τ ) = 1

2d + i�ξ

[(
4d − 2P�ξ 2 ∂2

∂τ 2
+ 2iγ�ξ 2 ∂3

∂τ 3
− 2iμ�ξ 2 ± 2�ξ 2D + 2C�ξ 2(|un(τ )|2 + |vn(τ )|2)

− 2iα3�ξ 2(|un(τ )|2 + |vn(τ )|2)
∂

∂τ
− 2�ξ 2(η ± iσ )

∂

∂τ

)
vn(τ ) − (2d − i�ξ )vn−1(τ )

]
. (41)

These equations define the explicit algorithm in which the effects of the transverse differential operators ∂2

∂τ 2 and ∂3

∂τ 3 are computed
efficiently and accurately by the FFTs. An implementation on the index n gives us the numerical solutions of each component. We
used as initial conditions, the rational solutions of the envelope fields [30], constructed by the DDT method, where we consider
the correspondence t → ξ and x → τ :

u(ξ,τ ) = u01

(
p2τ 2 + p4ξ 2 + pτ (α1 + βθ1) − iα1p

2ξ + βθ1

p2τ 2 + p4ξ 2 + β(pτ + 1)

)
(42)

v(ξ,τ ) = v01

(
p2τ 2 + p4ξ 2 + pτ (α2 + βθ2) − iα2p

2ξ + βθ2

p2τ 2 + p4ξ 2 + β(pτ + 1)

)
,

where the parameters are

u01 = a1 exp [i(q1τ − v1ξ )] v01 = a1 exp [i(q2τ − v2ξ )],

v1 = q2
1 + 2

(
a2

1 + a2
2

)
v2 = q2

2 + 2
(
a2

1 + a2
2

)
,

α1 = 4p2

p2 + 4q1
2

α2 = 4p2

p2 + 4q2
2
,

θ1 = 2q1 + ip

2q1 − ip
θ2 = 2q2 + ip

2q2 − ip
, (43)

with

p = 2Im(λ + k), χ = Im(k), q1 + q2 = 2Re(λ + k),

q1 − q2 = 2q, β = p3

χ (p2 + 4q1q2)
,

k = 2.36954 + 1.1972i,

λ = −1.69162 − 1.79721i. (44)

To plot the numerical solutions, we choose appropriately, free
functions T1(ξ ), T0(ξ ), μ(ξ ), and γ (ξ ) and the Jacobian elliptic
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FIG. 6. Nonparaxial chiral optical vector rogue waves with con-
stant coefficients on the right- and left-hand side |ψ1,2(ξ,τ )|, where
the parameters are a1 = 3, a2 = 3, d = 10, P = − 0.5, γ = 0.4,μ=
0.3,D = ±0.6, C = 2, α3 = 0.2, η = 0.5, σ = ±0.1, k1 = 0.3,

k2 = 0.5, k3 = 0.6, k4 = 0.4, k5 = 0.2, k6 = 0.4, and k7 = 0.5.
Here, the initial conditions take the form of exact solution Eqs. (42),
(43), and (44).

functions below [64]:

dn(z,k) = 1 − k2 sin (z)2

2
,

cn(z,k) = cos(z) − k2 sin(z)

[
z − sin(z) cos(z)

4

]
, (45)

sn(z,k) = sin(z) − k2 cos(z)

[
z − sin(z) cos(z)

4

]
.

The parameters are chosen to be bounded in the intervals
−10 < ξ < 10 and −10 < τ < 10. Curves are plotted with
the help of Matlab through a pseudospectral method. So doing,
we obtained identical right- and left-hand sides of nonparaxial
chiral optical vector rogue waves with constant coefficients
(see Figs. 6, 7, and 8).

These representations showed us the rapid convergence of
the pseudospectral method based on the difference-differential
equation method [37] when �ξ/d → 0. In the case of con-
stant coefficients, it can be seen that the vector nonparaxial

FIG. 7. Two-dimensional representations of the nonparaxial chi-
ral optical vector rogue waves with constant coefficients in both
sides, where the initial conditions take the form of exact solution
Eqs. (42), (43), and (44) with the following parameters: a1 =
1, a2 = 1, d = 100, P = −0.5, γ = 0.4, μ = 0.3, D = ±0.6, C =
2, α3 = 0.2, η = 0.5, σ = ±0.1, k1 = 0.3, k2 = 0.5, k3 = 0.6, k4 =
0.4, k5 = 0.2, k6 = 0.4, and k7 = 0.5.

FIG. 8. Nonparaxial chiral optical vector rogue waves with
constant coefficients in both sides, where the initial conditions
are expressed in the form of exact solutions Eqs. (42), (43), and
(44) with the parameters a1 = 1, a2 = 1, d = 10, P = −0.5, γ =
0.4, μ = 0.3, D = ±0.6, C = 2, α3 = 0.2, η = 10, σ = ±10, k1 =
0.3, k2 = 0.5, k3 = 0.6, k4 = 0.4, k5 = 0.2, k6 = 0.4, and k7 = 0.5.

chiral optical rogue waves are localized in space and time
as usual rogue waves and that the forward and backward
of each component are similar. We notice that the mixture
of bright and dark structures on each component are due to

FIG. 9. The nonparaxial chiral optical rogue waves with man-
agement are derived from Eqs. (49), where the parameters of the
base equations are given in relation Eqs. (47) and (46) and the
initial conditions take the form of exact solutions given in relation
Eqs. 42, 43, and 44, with the following arbitrary constants: a1 =
3, a2 = 3, k5 = 0.2, k6 = 0.4, k7 = 0.5, P (ξ,τ ) = dn(ξ,k)τ 2 +
cn(ξ,k)τ + sn(ξ,k),KTc = 0.8, and CT = 1 ± KTc.
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the coupling of vectorial model on the one hand, and to the
interaction between waves as consequence of narrowness of
the two components in the system on the other hand. The
two-dimensional representations of Fig. 7 showed the limit
of the extension of bright and dark spectral structures in the
retarded time axis at τ = 0. We can see how the intensity of
each spectrum increases when τ → 0 and the attenuation when
we are moving from each side of τ = 0. We noted that the weak
values of the walk-off are responsible for the wave smoothing.

V. INFLUENCE OF COMBINED EFFECTS ON THE
VECTOR NONPARAXIAL CHIRAL NLS EQUATIONS

WITH MODULATED COEFFICIENTS

To improve the description of the waves, we use the vector
nonparaxial chiral NLS equations with modulated coefficients.
From the model obtained in Eq. (A25), the coupled system
of the nonparaxial NLS equations in chiral optical fibers
with coupled space-dependence coupling field is expressed

as

d(ξ )ψ1ξξ + iψ1ξ + P (ξ,τ )ψ1ττ − iγ (ξ )ψ1τττ + iμ(ξ,τ )ψ1

∓D(ξ,τ )ψ1 − C(ξ,τ )(|ψ1|2 + |ψ2|2)ψ1 + iα3(ξ )

× (|ψ1|2 + |ψ2|2)ψ1τ + [η(ξ ) ± iσ (ξ,τ )]ψ1τ = 0,

d(ξ )ψ2ξξ + iψ2ξ + P (ξ,τ )ψ2ττ − iγ (ξ )ψ2τττ + iμ(ξ,τ )ψ2

∓D(ξ,τ )ψ2 − C(ξ,τ )(|ψ1|2 + |ψ2|2)ψ2 + iα3(ξ )

× (|ψ1|2 + |ψ2|2)ψ2τ + [η(ξ ) ± iσ (ξ,τ )]ψ2τ = 0. (46)

It can been seen from Eqs. (2) that the differential gain and
loss term η(ξ ), the self-steepening α3(ξ ), the gain or loss term
μ(ξ,τ ), and the self-phase modulation C(ξ,τ ) depend on chiral
parameter Tc through the relation CT = 1 ± KTc and the linear
birefringence D(ξ,τ ) and walk-off term σ (ξ,τ ) are functions
of chiral parameter Tc. Considering the order of polynomials
of each parameter of the number like Eq. (1) obtained from
the analytical results, we can choose them as Jacobian elliptic
functions for the good stability of the waves and their forms,
arbitrarily

α3(ξ ) = CT × cn(ξ,k), η(ξ ) = CT × sn(ξ,k),

d(ξ ) = dn(ξ,k), γ (ξ ) = cn(ξ,k),

C(ξ,τ ) = [dn(ξ,k)τ 2 + cn(ξ,k)τ + sn(ξ,k)] × CT ,

P (ξ,τ ) = −[dn(ξ,k)τ 2 + cn(ξ,k)τ + sn(ξ,k)],

μ(ξ,τ ) = [dn(ξ,k)τ 3 + cn(ξ,k)τ 2 + sn(ξ,k)τ + dn(ξ,k)] × CT ,

σ (ξ,τ ) = [dn(ξ,k)τ 4 + cn(ξ,k)τ 3 + sn(ξ,k)τ 2 + dn(ξ,k)τ + cn(ξ,k)] × KTc,

D(ξ,τ ) = [dn(ξ,k)τ 6 + cn(ξ,k)τ 5 + sn(ξ,k)τ 4 + dn(ξ,k)τ 3 + cn(ξ,k)τ 2 + sn(ξ,k)τ + dn(ξ,k)]KTc. (47)

One may also choose them as polynomial functions but our interest is motivated by functions that can generate stable waves. As
the propagation variable ξ tends to n�ξ in the discretized domain, the Jacobian elliptic functions take the form

dn(ξ,k) → dn(n�ξ,k) = 1 − k2 sin (n�ξ )2

2
,

cn(ξ,k) → cn(n�ξ,k) = cos(n�ξ ) − k2 sin(n�ξ )

{
n�ξ − sin[n�ξ cos(n�ξ )]

4

}
, (48)

sn(ξ,k) → sn(n�ξ,k) = sin(n�ξ ) − k2 cos(n�ξ )

{
n�ξ − sin[n�ξ cos(n�ξ )]

4

}
.

It can be seen that, by splitting Eqs. (46) in the right- and left-hand sides, we obtained four coupled nonparaxial NLS equations
which differ by the signs of linear birefringence and walk-off term. The substitution of the finite difference formulas in Eqs. (46)
yields

un+1(τ ) = 1

2d(n�ξ ) + i�ξ

[(
4d(n�ξ ) − 2P (n�ξ,τ )�ξ 2 ∂2

∂τ 2
+ 2iγ (n�ξ )�ξ 2 ∂3

∂τ 3
− 2iμ(n�ξ,τ )�ξ 2 ± 2�ξ 2D(n�ξ,τ )

+ 2C(n�ξ,τ )�ξ 2(|un(τ )|2 + |vn(τ )|2) − 2iα3(n�ξ )�ξ 2(|un(τ )|2 + |vn(τ )|2)
∂

∂τ

− 2�ξ 2(η(n�ξ ) ± iσ (n�ξ,τ ))
∂

∂τ

)
un(τ ) − (2d(n�ξ,τ ) − i�ξ )un−1(τ )

]
,

vn+1(τ ) = 1

2d(n�ξ ) + i�ξ

[(
4d(n�ξ ) − 2P (n�ξ,τ )�ξ 2 ∂2

∂τ 2
+ 2iγ (n�ξ )�ξ 2 ∂3

∂τ 3
− 2iμ(n�ξ,τ )�ξ 2 ± 2�ξ 2D(n�ξ,τ )

+ 2C(n�ξ,τ )�ξ 2(|un(τ )|2 + |vn(τ )|2) − 2iα3(n�ξ )�ξ 2(|un(τ )|2 + |vn(τ )|2)
∂

∂τ

− 2�ξ 2(η(n�ξ ) ± iσ (n�ξ,τ ))
∂

∂τ

)
vn(τ ) − (2d(n�ξ,τ ) − i�ξ )vn−1(τ )

]
. (49)
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FIG. 10. The two-dimensional representation of the nonparaxial
chiral optical vector rogue waves with variable coefficients are
derived from Eqs. (49), where the parameters of the base equations
are given in relation Eqs. (47) and (46) and the initial conditions
take the form of exact solutions given in relation Eqs. (42), (43)
and (44), with the following arbitrary constants: a1 = 1, a2 =
1, k5 = 0.2, k6 = 0.4, k7 = 0.5, P (ξ,τ ) = dn(ξ,k)τ 2 + cn(ξ,k)τ +
sn(ξ,k),KTc = 0.8, and CT = 1 ± KTc.

By using the difference-differential equation method and fast
Fourier transforms (FFTs), we plot the numerical solutions
of the coupled nonparaxial chiral NLS equations of each
beam (ψ1 and ψ2) in both sides, left (−) and right (+)
(see Figs. 9–11).

Throughout these figures, we remark that the structure of
each component is similar from one hand to the other but a
notable difference is observed in the amplitude as we can see
in Fig. 9. The two-dimensional representations depict in Fig.
10(a), the symmetries of the bright and dark maxima through
the retarded time axis τ and the dark-dark symmetries through
the propagation distance axis ξ in both side. On Fig. 10(b), we
can observe a significant decrease of the envelope fields when
we reduce the amplitudes of the seeding solutions. We also
denote a similitude on the structure and amplitude in Figs. 11.
The appearance of curvatures in the four components are due
to the unity value of their moduli as expressed in Fig. 11.

VI. CONCLUSION

We derived both scalar and vector nonparaxial NLS equa-
tions with constant and modulated coefficients to improve

FIG. 11. Nonparaxial chiral optical vector rogue waves with mod-
ulated coefficients are derived from Eqs. (49) where the parameters
of the base equations are given in relations Eqs. (47) and (46)
and where the initial conditions take the form of exact solutions
given in relations Eqs. (42), (43), and (44), with the following arbi-
trary constants: a1 = 1, a2 = 1 and k5 = k6 = k7 = 1, d(ξ ) = 10 ×
dn(ξ,k), P (ξ,τ ) = −(dn(ξ,k)τ 2 + cn(ξ,k)τ + sn(ξ,k)), KTc =
0.8, and CT = 1 ± KTc.

the description of rogue waves propagation in optical fibers
filled with chiral materials. Our models, in particular, verified
the assumption of controllability on the one hand, and takes
into account the parameters responsible for the nonparaxiality,
optical activity, and walk-off effect, on the other hand. The
first- and second-order nonparaxial chiral optical rogue waves
were investigated by the MDT method. As the nonparaxiality,
TOD, and differential gain or loss terms depend on specific
control parameters d(ξ ), γ (ξ ), and η(ξ ), it appeared that they
are the main keys to control the amplitude of the envelope
fields, SS, GVD, SPM, walk-off effect, linear birefringence,
and the effective propagation distance. Therefore, we have
concluded that among previous models that have been studied
before, the models derived in this work allowed us to improve
the description of rogue waves and their control in chiral optical
fibers with higher-order nonlinear effects. In these models,
we also denoted the influences of TOD and differential gain
or loss term. Then, the algorithm scheme derived for the
nonparaxial beam propagation methods, namely, difference-
differential equation method, was used to compute efficiently
the diffractions in the spectral domain. After many numerical
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simulation tests, we remarked that the increase or decrease
of the three specific control parameters can affect the wave
shape and the amplitude of each component. We have also
shown that, among those specific control parameters, the
nonparaxial coefficient has the most influential effect, whereas
the two others that are differential gain or loss and walk-off
terms are physically inactive. We found that in the absence
of nonparaxial parameter, the influence of the two others are
effective and equivalent. We also noticed that in the absence
of two specific control parameters, the last one becomes the
powerful influential effect in the system.

We improved our understanding through models under
consideration of combined effects on rogue wave propagation
in optical fibers filled with chiral materials. We have shown the
necessity to take into account the parameters responsible of the
simultaneous controllability of different effects in the system.
Those parameters revealed the control key and the novel
properties of nonparaxial chiral optical rogue wave solutions.
For specific parameter values, usual rogue waves, such as
the vector Peregrine, were obtained, showing the collisions
between bright and dark rogue waves. The study of combined
effects has allowed us to determine the powerful influence
among the effects, and the nonparaxial effect was claimed to be
the most influential one. The vector rogue wave solutions based
on the vector nonparaxial NLS equations, which modeled the
coupling of two nonlinear waves under the assumptions of
nonparaxiality, optical activity, and walk-off, contributed to
better control rogue wave phenomena in optical fibers filled
with chiral materials and in a variety of complex dynamics.
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APPENDIX A: THE DERIVATION OF THE
HOMOGENEOUS HIGHER-ORDER NONPARAXIAL NLS

IN CHIRAL OPTICAL FIBERS

We consider a model that satisfies both the breakdown of
the paraxial approximation as well as the requirements of
time-reversal symmetry and reciprocity through the Drude-
Born-Federov formalism. Under this formalism, the adequate
constitutive relations for the study of propagation of waves in

chiral medium are expressed as [63–65]

�D = εn
�E + ε0Tc

�∇ × �E, �B = μ0( �H + Tc
�∇ × �H ), (A1)

where the flux densities �D and �B arise in response to the
electric and magnetic field �E and �H propagating in the chiral

medium with εn = ε0 + ε2| �E|2. Here, ε0 and ε2 are linear and
nonlinear permittivity, respectively. μ0 is the permeability and
Tc the chiral parameter of the optical fiber. In the chiral optical
medium, the predicted Maxwell equations can be written as

�∇ · �D = ρv, �∇ · �B = 0,
(A2)

�∇ × �E = −∂ �B
∂t

, �∇ × �H = �J + ∂ �D
∂t

,

where the current density �J = σ �E and the charge density
ρ represents the sources for the electromagnetic field. The
quantity σ is the electrical conductivity and v is the volume.
Substituting Eq. (A1) into Eq. (A2), we obtain the following
wave equation:

∇2 �E + μ0εT
2 ∂2 �∇2 �E

∂t2

= μ0ε0
∂2 �E
∂t2

+ μ0σ
∂ �E
∂t

+ μ0ε2| �E|2 ∂2 �E
∂t2

+2μ0ε0T �∇ × ∂2 �E
∂t2

+ μ0ε2T | �E|2 �∇ × ∂2 �E
∂t2

+μ0σT �∇ × ∂ �E
∂t

. (A3)

The optical field �E is represented by right-hand (R) or left-hand
(L) polarizations in the z direction as

�E(�r,t) = (x̂ ∓ j ŷ)A(�r,t) exp[−j (k±z − ω0t)]

= �ψR,L exp[−j (k±z − ω0t)], (A4)

where �ψR,L is the complex envelope of the optical field in the
nonlinear chiral medium, K is the wave number, and ω0 is the
frequency.

After evaluation of different derivations of �E in x, y, and
z directions in Eq. (A3), we neglect all the second-order
terms, except the nonparaxial one. Considering that the wave
is propagating in the z direction implies

Kx = Ky = 0, Ez = 0. (A5)

Therefore, Eq. (A3) is reduced in x, y, and z directions,
respectively, as follows:

(
1 − μ0ε0T

2
c ω2

)[∂2Ex

∂x2
+ ∂2Ex

∂y2
+ ∂2Ex

∂z2

]
− 2jKz

∂Ex

∂z
− K2

z Ex

+μ0εT
2
c

(
ω2K2

z Ex + 2jKzω
2 ∂Ex

∂z
− 2jK2

z ω
∂Ex

∂t
− K2

z

∂2Ex

∂t2

)

= (μ0ε0 + μ0ε2| �E|2)

[
∂2Ex

∂t2
+ 2jω

∂Ex

∂t
− ω2Ex

]
+ μ0σ

(
∂Ex

∂t
+ jωEx

)

+(2μ0ε0Tc + μ0ε2Tc| �E|2)

[
ω2 ∂Ey

∂z
+ jKz

(
∂2Ey

∂t2
+ 2jω

∂Ey

∂t
− ω2Ey

)]
+ μ0σTc

(
− jω

∂Ey

∂z
+ jKz

∂Ey

∂t
− ωKzEy

)
,

(A6)
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(
1 − μ0ε0T

2
c ω2

)[∂2Ey

∂x2
+ ∂2Ey

∂y2
+ ∂2Ey

∂z2

]
− 2jKz

∂Ey

∂z
− K2

z Ey

+μ0εT
2
c

(
ω2K2

z Ey + 2jKzω
2 ∂Ey

∂z
− 2jK2

z ω
∂Ey

∂t
− K2

z

∂2Ey

∂t2

)

= (μ0ε0 + μ0ε2| �E|2)

[
∂2Ey

∂t2
+ 2jω

∂Ey

∂t
− ω2Ey

]
+ μ0σ

(
∂Ey

∂t
+ jωEy

)
+ (2μ0ε0T + μ0ε2T | �E|2)

×
[

− ω2 ∂Ex

∂z
− jKz

(
∂2Ex

∂t2
+ 2jω

∂Ex

∂t
− ω2Ex

)]
+ μ0σT (jω

∂Ex

∂z
− jKz

∂Ex

∂t
+ ωKzEx), (A7)

[−(2μ0ε0Tc + μ0ε2Tc| �E|2)ω2 + jωμ0σTc]

[
∂Ey

∂x
− ∂Ex

∂y

]
= 0. (A8)

Equation (A8) leads to

∂Ey

∂x
= ∂Ex

∂y
= cst, Ey = Ey(z,t), Ex = Ex(z,t). (A9)

We multiply Eq. (A7) by ±j , and we do the addition of Eqs. (A6) and (A7), where we consider the conditions given in relation
Eq. (A9) and the following approximations:∣∣∣∣∂Ex

∂t

∣∣∣∣ � |2jωEx |,
∣∣∣∣∂2Ey

∂z2

∣∣∣∣ � |2jωEy |. (A10)

Therefore, the alternative form of the wave equation can be written as

(
1 − μ0ε0T

2
c ω2

)∂2ψR,L

∂z2
+ {−2jKz + 2jKzω

2μ0εT
2
c ± j [(2μ0ε0Tc + μ0ε2Tc| �E|2)ω2 − jωμ0σTc]}∂ψR,L

∂z

+{−K2
z + μ0ε0T

2
c ω2K2

z + ω2(μ0ε0 + μ0ε2| �E|2) − jωμ0σ ± j [−jKzω
2(2μ0ε0Tc + μ0ε2Tc| �E|2)

−Kzωμ0σTc]}ψR,L + {−2jK2
z ωμ0ε0T

2
c − μ0σ − 2jω(μ0ε0 + μ0ε2| �E|2) ± j [−2ωKz(2μ0ε0Tc

+μ0ε2Tc| �E|2) + jKzμ0σTc]}∂ψR,L

∂t
= 0, (A11)

where ψR,L = Ex ± jEy . Then, the reference changing is

ψR = Ex + jEy ψL = Ex − jEy,
(A12)

Ex = ψR + ψL

2
Ey = ψR − ψL

2
.

The division of Eq. (A6) by −2Kz yields

−
(
1 − μ0ε0T

2
c ω2

)
2Kz

∂2ψR,L

∂z2
+ j

(
1 − K2

0 T 2
c

)∂ψR,L

∂z
∓ j

K2
0 Tc

Kz

∂ψR,L

∂z
+ j

ωμ0ε2

Kz

∣∣ψR,L

∣∣2 ∂ψR,L

∂t
∓ j

μ0ε2ω
2Tc

2Kz

×|ψR,L|2 ∂ψR,L

∂z
+ j

K0

Kzc

(
1 + K2

z T 2
c

)∂ψR,L

∂t
± jωμ0σTc

2
ψR,L + 1

2

(
Kz − KzK

2
0 T 2

c − K2
0

Kz

)
ψR,L

−μ0ε2ω
2

2Kz

∣∣ψR,L

∣∣2
ψR,L ∓ ω2

2

(
μ0ε2Tc

∣∣ψR,L

∣∣2
)
ψR,L + j

ωμ0σ

2Kz

ψR,L ∓ K2
0 TcψR,L ∓ ωμ0σT

2Kz

∂ψR,L

∂z

±μ0σTc

2

∂ψR,L

∂t
± j

2K0Tc

C

∂ψR,L

∂t
+ μ0σ

2Kz

∂ψR,L

∂t
± jωμ0ε2Tc

∣∣ψR,L

∣∣2 ∂ψR,L

∂t
= 0, (A13)

where

K0 = ω

c
, μ0ε0c

2 = 1. (A14)

The dispersion relation is given by

Kz = K0

1 ± K0Tc

. (A15)
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For K2
0 T 2

c � 1, we get Kz = K0. By neglecting the nonlinear diffraction, the second and the last terms of Eq. (A13), and for the
following set of parameters become

v2 = 1

μ0ε0
, α = μ0σ, β = μ0ε2, K0 = ω

v
, z∗ = z

1 − K2
0 T 2

c

. (A16)

Equation (A13) takes the form

− 1

2K0

∂2ψR,L

∂z∗2 + j
∂ψR,L

∂z∗ + j
1

v

∂ψR,L

∂t
+ j

ωα

2K0
(1 ± K0Tc)ψR,L ∓ K2

0 TcψR,L − βω2

2K0
(1 ± K0Tc)

×|ψR,L|2ψR,L + α

2K0
(1 ± K0Tc)

∂ψR,L

∂t
± j2K2

0 Tc

ω

∂ψR,L

∂t
+ jωβ

K0
(1 ± K0Tc)|ψR,L|2 ∂ψR,L

∂t
= 0. (A17)

If we let

ψR,L = φ, then K = K0 = Kz. (A18)

Equation (A16) yields

− 1

2K

∂2φ

∂z∗2 + j
∂φ

∂z∗ + j
1

v

∂φ

∂t
+ j

ωα

2K
(1 ∓ KTc)φ − βω2

2K
(1 ∓ KTc)|φ|2φ ∓ K2Tcφ

+ α

2K
(1 ± KTc)

∂φ

∂t
± j

2K2Tc

ω

∂ψR,L

∂t
+ j

ωβ

K0
(1 ± KTc)|φ|2 ∂φ

∂t
= 0. (A19)

The Taylor series of the wave number K(ω) at the third-order and the Fourier transform of �ω and �K help to express in an
approximate form, the second term of Eq. (A18) as

j
1

v

∂φ

∂t
= j

1

vg

∂φ

∂t
+ 1

2
K ′′ ∂

2φ

∂t2
− j

1

6
K ′′′ ∂

3φ

∂t3
, (A20)

where

K ′′ = ∂2K

∂ω2
,K ′′′ = ∂3K

∂ω3
,K ′ = 1

vg

= ∂K

∂ω
. (A21)

Then, for the following change of variable:

t ′ = t − 1

vg

z∗

z′ = z∗,
⇒

∂

∂t
→ ∂

∂t ′

∂

∂z∗ → ∂

∂z′ − 1

vg

∂

∂t ′
,

(A22)

Eq. (A19) stands for

− 1

2K

∂2φ

∂z′2 + j
∂φ

∂z′ + 1

2

(
K ′′ − K ′2

K

)
∂2φ

∂t ′2
− j

1

6
K ′′′ ∂

3φ

∂t ′3
+ j

ωα

2K
(1 ± KTc)φ − βω2

2K
(1 ∓ KTc)|φ|2φ ∓ K2T φ

+ α

2K
(1 ± KTc)

∂φ

∂t ′
± j

2K2Tc

ω

∂φ

∂t ′
+ j

ωβ

K
|φ|2(1 ± KTc)

∂φ

∂t ′
= 0, (A23)

where K ′ = ∂K
∂ω

= 1
vg

is the inverse of group-velocity, K ′′ = ∂K ′
∂ω

is the group-velocity dispersion (GVD) coefficient, which can
take the plus and minus signs (±), representing the anomalous and normal dispersion regimes, respectively. The parameter
K ′′′ = ∂K ′ ′

∂ω
is the third-order dispersion (TOD) term. In the fourth term, the attenuation coefficient α is weighted toward the chiral

parameter Tc. The factor to |φ|2φ is the self-phase modulation (SPM) and the term K2Tcφ occurs as an additional correction to the
chirality of the fiber. The expressions at the eighth and ninth positions are the differential gain or loss term and the walk-off effect.
The last term has the physical sense of self-steepening (SS) and is necessary to perform the description of spontaneous waves.

The new variables, namely,

q = ω0
2/3β1/3

(2K0)1/3 φ, ξ = ω0
2/3β1/3

(2K0)1/3 z′, d = −β1/3ω0
2/3

(2k0)4/3 ,

η = αCT√
K ′′ω0

1/3β1/6(2k0)5/6
, τ = ω0

1/3β1/16

√
K ′′(2K0)1/6

t ′,

γ = K ′′′

6

β1/6ω0
1/3

(2K0)1/6(K ′′)3/2 , CT = 1 ∓ TcK,
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� = ω0
1/3α

(2K0)1/3β1/3
, μ = CT �, P = 1

2

(
1 − k′2

K ′′k0

)
,

σ3 = k0Tc(2k0)7/6

√
K ′′ω0

4/3β1/6
, D = K2Tc(2K0)1/3

β1/3ω0
2/3

,

α3 = CT (2K0)5/6β1/6

√
K ′′ω0

2/3K0

, (A24)

allow us to express for q(ξ,τ ) = ψ(ξ,τ ), and Eq. (A23) in the form

d
∂2ψ

∂ξ 2
+ j

∂ψ

∂ξ
+ P

∂2ψ

∂τ 2
− jγ

∂3ψ

∂τ 3
+ jμψ ∓ Dψ − CT |ψ |2ψ + jα3|ψ |2 ∂ψ

∂τ
+ η

∂ψ

∂τ
± jσ3

∂ψ

∂τ
= 0. (A25)

Equation (A25) is the higher-order nonparaxial chiral NLSE and can be used to describe the propagation of the right-hand (+)
and left-hand (−) polarized rogue waves in a higher-order dispersive and nonlinear chiral optical fiber. For d = 0, P = 1

2 , Tc = 0,
CT = 1,D = 0, γ = 0, μ = 0, η = 0, and σ3 = 0, Eq. (A25) stands for the standard NLS equation.

APPENDIX B: THE PARAMETERS OF THE WALK-OFF EFFECT σ (ξ,τ )

σ4(ξ ) = −1

3

d(ξ )2T1(ξ )2
ξ T1(ξ )ξξ

T1(ξ )3γ (ξ )
+ 1

12

d(ξ )2T1(ξ )ξξ
2

T1(ξ )2γ (ξ )
− 1

9

d(ξ )T1(ξ )ξ
( d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )

)
ξ

T1(ξ )
, (B1)

σ3(ξ ) = −2

3

d(ξ )2T1(ξ )ξ 2T0(ξ )ξξ

T1(ξ )3γ (ξ )
− 2

3

d(ξ )2T1(ξ )ξT0(ξ )ξ T1(ξ )ξξ

T1(ξ )3γ (ξ )
− 2

3

d(ξ ) T1z
2η(ξ )

T1(ξ )2γ (ξ )
+ 1

3

d(ξ )T1(ξ )ξ
( d(ξ )T0(ξ )ξξ +η(ξ )T1(ξ )

γ (ξ )T1(ξ )

)
ξ

T1(ξ )

+1

3

dξ T1(ξ )ξξ η(ξ )

γ (ξ )T1(ξ )
+ 1

3

d(ξ )2T1(ξ )ξξT0(ξ )ξξ

T1(ξ )2γ (ξ )
+ 1

9

d(ξ )T0(ξ )ξ
( dξ T1(ξ )ξξ

γ (ξ )T1(ξ )

)
ξ

T1(ξ )
, (B2)

σ2(ξ ) = 2
d(ξ )T1(ξ )2

ξ ρ1(ξ )

T1(ξ )2
− 2

d(ξ )T1(ξ )ξρ1(ξ )ξ
T1(ξ )

− d(ξ )T1(ξ )ξξρ1(ξ )

T1(ξ )
+ 2

3

d(ξ )T0(ξ )ξξ η(ξ )

γ (ξ ) T1(ξ )
− 4

3

d(ξ ) T1(ξ )2
ξ η(ξ )

T1(ξ )2γ (ξ )

+1

3

η(ξ )2

γ (ξ )
+ 1

3

d(ξ )T0(ξ )ξ
( d(ξ ) T0(ξ )ξξ +η(ξ )T1(ξ )

γ (ξ ) T1(ξ )

)
ξ

T1(ξ )
+ 1

3

d(ξ )2T0(ξ )2
ξξ

γ (ξ ) T1(ξ )2
+ 1

12

√
2d(ξ )T1(ξ )ξξ

ν

−4

3

d(ξ )2T1(ξ )ξ T0(ξ )ξT0(ξ )ξξ

T1(ξ )3γ (ξ )
− 1

3

d(ξ )2T0(ξ )2
ξT1(ξ )ξξ

T1(ξ )3γ (ξ )
, (B3)

σ1(ξ ) = −2 η(ξ )ρ1(ξ ) − 2
d(ξ )T1(ξ )ξρ0(ξ )ξ

T1(ξ )
− 2

d(ξ ) T0(ξ )ξξρ1(ξ )

T1(ξ )
+ 1

6

√
2T1(ξ )η(ξ )

ν
− 2

d(ξ )T0(ξ )ξρ1(ξ )ξ
T1(ξ )

+4
d(ξ ) T1(ξ )ξ T0(ξ )ξρ1(ξ )

T1(ξ )2
− 2

3

d(ξ )T0(ξ )2
ξ η(ξ )

T1(ξ )2γ (ξ )
+ 1

6

√
2d(ξ )T0(ξ )ξξ

ν
− 2

3

d(ξ )2T0(ξ )2
ξT0(ξ )ξξ

T1(ξ )3γ (ξ )
− T1(ξ )ξ

T1(ξ )
, (B4)

σ0(ξ ) = −12

√
2γ (ξ )T1(ξ )ρ1(ξ )

ν
− T0(ξ )ξ

T1(ξ )
+ 3 γ (ξ )ρ1(ξ )2 + 2

d(ξ ) T0(ξ )2
ξρ1(ξ )

T1(ξ )2
− 2

d(ξ )T0(ξ )ξρ0(ξ )ξ
T1(ξ )

. (B5)

APPENDIX C: THE PARAMETERS OF THE GAIN OR LOSS TERM μ(ξ,τ )

μ3(ξ ) = −1

3

d(ξ )2T1(ξ )2
ξT1(ξ )ξξ

T1(ξ )3γ (ξ )
+ 1

18
d(ξ )

(
d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )

)
ξξ

, (C1)

μ2(ξ ) = 1

6

η(ξ )d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )
− 1

3

d(ξ )T1(ξ )2
ξ η(ξ )

T1(ξ )2γ (ξ )
− 2

3

d(ξ )2T1(ξ )ξT0(ξ )ξT1(ξ )ξξ

T1(ξ )3γ (ξ )
− 1

3

d(ξ )2T1(ξ )2
ξT0(ξ )ξξ

T1(ξ )3γ (ξ )

+1

6
d(ξ )

(
d(ξ )T0(ξ )ξξ + η(ξ )T1(ξ )

γ (ξ )T1(ξ )

)
ξξ

, (C2)

μ1(ξ ) = −2

3

d(ξ )T1(ξ )ξT0(ξ )ξ η(ξ )

T1(ξ )2γ (ξ )
+ 1

3

η(ξ )d(ξ )T0(ξ )ξξ

γ (ξ )T1(ξ )
+ 1

3

η(ξ )2

γ (ξ )
− 2

3

d(ξ )2T1(ξ )ξT0(ξ )ξ T0(ξ )ξξ

T1(ξ )3γ (ξ )

−1

3

d(ξ )2T0(ξ )2
ξT1(ξ )ξξ

T1(ξ )3γ (ξ )
+ 1

12

√
2d(ξ )T1(ξ )ξξ

ν
− d(ξ )ρ1(ξ )ξξ , (C3)
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μ0(ξ ) = −1

3

d(ξ )T0(ξ )2
ξ η(ξ )

γ (ξ )T1(ξ )2
− 1

3

d(ξ )2T0(ξ )2
ξT0(ξ )ξξ

γ (ξ )T1(ξ )3

+ 1

12

T1(ξ )
√

2η(ξ )

ν
− η(ξ )ρ1(ξ ) + 1

12

√
2d(ξ )T0(ξ )ξξ

ν
− d(ξ )ρ0(ξ )ξξ . (C4)

APPENDIX D: THE PARAMETERS OF THE LINEAR BIREFRINGENCE D(ξ,τ )

D6(ξ ) = −
d(ξ )2T1(ξ )ξ T1(ξ )ξξ

d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ ) ξ

54 γ (ξ )T1(ξ )2
− d(ξ )3T1(ξ )3

ξξ

216 γ (ξ )2T1(ξ )3
+ 1

36

d(ξ )3T1(ξ )2
ξT1(ξ )2

ξξ

T1(ξ )4γ (ξ )2
, (D1)

D5(ξ ) = 1

9

d(ξ )2T1(ξ )2
ξT1(ξ )ξξ η(ξ )

T1(ξ )3γ (ξ )2
−

d(ξ )2T0(ξ )ξT1(ξ )ξξ

( d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )

)
ξ

54 γ (ξ )T1(ξ )2

− 1

18

d(ξ )2T1(ξ )ξT1(ξ )ξξ ( d(ξ )T0(ξ )ξξ +η(ξ )T1(ξ )
γ (ξ )T1(ξ ) )ξ

γ (ξ )T1(ξ )2
−

d(ξ )2T1(ξ )ξ T0(ξ )ξξ

( d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )

)
ξ

54 γ (ξ )T1(ξ )2

+ 1

18

d(ξ )3T1(ξ )ξT0(ξ )ξ T1(ξ )2
ξξ

T1(ξ )4γ (ξ )2
+ 1

9

d(ξ )3T1(ξ )2
ξT1(ξ )ξξ T0(ξ )ξξ

T1(ξ )4γ (ξ )2 − 1

36

d(ξ )2T1(ξ )2
ξξ η(ξ )

γ (ξ )2T1(ξ )2

− 1

27

d(ξ )T1(ξ )ξ η(ξ )
( d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )

)
ξ

γ (ξ )T1(ξ )
− 1

36

d(ξ )3T1(ξ )2
ξξ T0(ξ )ξξ

T1(ξ )3γ (ξ )2
, (D2)

D4(ξ ) = −1

3

d(ξ )2T1(ξ )2
ξ T1(ξ )ξξρ1(ξ )

T1(ξ )3γ (ξ )
+ 2

9

d(ξ )2T1(ξ )2
ξ T0(ξ )ξξ η(ξ )

T1(ξ )3γ (ξ )2

− 1

18

d(ξ )2T0(ξ )ξT1(ξ )ξξ

( d(ξ )T0(ξ )ξξ +η(ξ )T1(ξ )
γ (ξ )T1(ξ )

)
ξ

γ (ξ )T1(ξ )2
+ 1

3

d(ξ )2T1(ξ )ξT1(ξ )ξξρ1(ξ )ξ
γ (ξ )T1(ξ )2

−1

9

d(ξ )2T1(ξ )ξ T0(ξ )ξξ
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D3(ξ ) = 2
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APPENDIX E: THE FINITE DIFFERENCE FORMULAE FOR THE DERIVATIVES[
∂2u(ξ,τ )

∂ξ 2

]
ξ=n�ξ

= un+1(τ ) − 2un(τ ) + un−1(τ )

�ξ 2
+ 0(�ξ 2),

(E1)[
∂u(ξ,τ )

∂ξ

]
ξ=n�ξ

= un+1(τ ) − un−1(τ )

2�ξ
+ 0(�ξ 2),

[
∂2v(ξ,τ )

∂ξ 2

]
ξ=n�ξ

= vn+1(τ ) − 2vn(τ ) + vn−1(τ )

�ξ 2
+ 0(�ξ 2),

(E2)[
∂v(ξ,τ )

∂ξ

]
ξ=n�ξ

= vn+1(τ ) − vn−1(τ )

2�ξ
+ 0(�ξ 2),
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where

un(τ ) ≡ u(n�ξ,τ )

un−1(τ ) ≡ u((n − 1)�ξ,τ ) (E3)

un+1(τ ) ≡ f (un(τ ),un−1(τ ),vn(τ ))

vn(τ ) ≡ v(n�ξ,τ )

vn−1(τ ) ≡ v((n − 1)�ξ,τ ) (E4)

vn+1(τ ) ≡ f (vn(τ ),vn−1(τ ),un(τ ))
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