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Coupled harmonic oscillators and their quantum entanglement

Dmitry N. Makarov*

Northern (Arctic) Federal University, nab. Severnoi Dviny 17, 163002, Arkhangelsk, Russia

(Received 21 November 2017; published 5 April 2018)

A system of two coupled quantum harmonic oscillators with the Hamiltonian Ĥ = 1
2 ( 1

m1
p̂2

1 + 1
m2

p̂2
2 +

Ax2
1 + Bx2

2 + Cx1x2) can be found in many applications of quantum and nonlinear physics, molecular chemistry,
and biophysics. The stationary wave function of such a system is known, but its use for the analysis of quantum
entanglement is complicated because of the complexity of computing the Schmidt modes. Moreover, there is no
exact analytical solution to the nonstationary Schrodinger equation Ĥ� = ih̄ ∂�

∂t
and Schmidt modes for such a

dynamic system. In this paper we find a solution to the nonstationary Schrodinger equation; we also find in an
analytical form a solution to the Schmidt mode for both stationary and dynamic problems. On the basis of the
Schmidt modes, the quantum entanglement of the system under consideration is analyzed. It is shown that for
certain parameters of the system, quantum entanglement can be very large.
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I. INTRODUCTION

The behavior of systems that contain coupled harmonic
oscillators is currently an area of very active research; this
interest is primarily due to the fact that models of such
systems are encountered in many applications of quantum and
nonlinear physics [1–14] and biophysics [15–17]. In quantum
physics specifically, this interest is because of the quantum
entanglement for such a system. In particular, using entangled
states, it is possible to explain quantum communication pro-
tocols, such as quantum cryptography [18], quantum-coding
[19], quantum computing algorithms [20], and quantum state
teleportation [21]. On the other hand, physical models of
coupled harmonic oscillators have been used in many studies in
physics, such as the Lee model in quantum field theory [2–5].
There are also models in which one of the oscillator variables
is not observed [1]. These physical models are examples of
the remainder of the Feynman universe [7,22]. A Hamiltonian
with coupled oscillators is used to study vibronic molecules
(for example, [12]) in molecular chemistry, and a similar
Hamiltonian is used in biophysics, to explain the process of
photosynthesis [15–17].

Of particular interest is the system with the Hamiltonian

Ĥ = 1

2

(
1

m1
p̂2

1 + 1

m2
p̂2

2 + Ax2
1 + Bx2

2 + Cx1x2

)
, (1)

where p̂k = −ih̄ ∂
∂xk

[where k = (1,2)] is the momentum op-
erator. In spite of the fact that the solution of the stationary
Schrodinger equation with the Hamiltonian (1) is known [7],
there are a number of problems, one being the complexity of
calculating and analyzing quantum entanglement for such a
system. Usually, quantum entanglement is analyzed for the
ground state of the oscillators [7] because the Schmidt modes
λk [23], which are used in the analysis of quantum entan-
glement, are not calculated in general form. In addition, the
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quantum entanglement of continuous variables for Gaussian
systems, for example, [24,25] based on the covariant matrix,
has been well studied. In a more general case, the study of the
quantum entanglement of continuous variables using a covari-
ant matrix is difficult and is possible only when performing
complex numerical calculations. In general terms, it is more
convenient to study the quantum entanglement of the system
under consideration when using the Schmidt modes, which
will be done in this paper. In connection with the importance
of the system with the Hamiltonian (1), this problem is topical
and requires a solution. Also, the parametrization [7], which
is usually used in solving the Schrodinger equation (1), is
difficult to analyze and needs to be simplified. In addition
to these problems, there is also a need for an analytical
solution to the nonstationary Schrodinger equation with the
Hamiltonian (1), as well as an analysis of the solution obtained
for quantum entanglement using the Schmidt modes. All the
above problems are considered in this work and solved. It is
also shown that for certain parameters of the system there can
be a large quantum entanglement. All results are presented in
an analytical form.

II. QUANTUM ENTANGLEMENT FOR
A STATIONARY SYSTEM

Consider a system with Hamiltonian (1). In order to solve
the stationary Schrodinger equation with the Hamiltonian
(1), it must first be brought to diagonal form. Details of
the diagonalization of the Hamiltonian (1) can be found, for
example, in [7], the result being

Ĥ = 1

2M

(
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2
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(
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4
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,
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where y1 = x1 cos α − x2 sin α, y2 = x1 sin α + x2 cos α,
tan (2α) = C

B−A
, p̂k = −ih̄ ∂

∂yk
, M = √

m1m2. It should be

added that in [7] and in many other studies e2η is used in
expression (3) without the parameter A−B

|A−B| . This, of course, is
not mathematically correct, so this refinement should be taken
into account (although it can be ignored for A > B). There
is also a singular point for A = B, where e2η is not defined,
which takes two values.

Usually, just such a parametrization (3) is used in many
problems of the system under consideration. In fact, this is
not a simple parametrization, and therefore it is not the most
convenient for analyzing the results. Using the properties of
trigonometric functions one can obtain the Hamiltonian (2) in
the form

Ĥ = 1

2M

(
p̂2

1 + p̂2
2

) + 1

2

(
A

′
y2

1 + B
′
y2

2

)
, (4)

where

A
′ = A − C

2
tan α, B

′ = B + C

2
tan α, (5)

tan α = ε

|ε|
√

ε2 + 1 − ε. (6)

In the expression (6) tan α ∈ (−1,1), where ε = B−A
C

, and
hence α ∈ (−π/4,π/4). Thus, the angle α is bounded from
(−π/4,π/4), which must be taken into account for the analysis
of the system under consideration. Further, for convenience, we
pass to the system of units, where M = 1, h̄ = 1 (similar to the
atomic system of units). Let us write out the eigenvalue of the
energy of the system and its wave function, we obtain

En,m =
√

A
′
(
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2

)
+

√
B

′
(
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2

)
, (7)
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y2), (8)

where cn = A
′ 1/8

/
√√

πn!2n, cm = B
′ 1/8

/
√√

πm!2m, and
n,m are quantum numbers.

From Schmidt’s theorem [23,26], it is known that the
wave function of the pure state � can be decomposed as
� = ∑

k

√
λkuk(x1)vk(x2), where uk(x1) and vk(x2) are some

orthogonal eigenstates; and λk is the Schmidt mode, which is
the eigenvalue of the reduced density matrix, i.e., ρ1(x1,x

′
1) =∑

k λkuk(x1)u∗
k(x

′
1) or ρ2(x2,x

′
2) = ∑

k λkvk(x2)v∗
k (x

′
2). If we

find the Schmidt mode λk , we can then calculate the measure
of the quantum entanglement of the system. To do this, various
measures of entanglement can be used, for example, the
Schmidt parameter [23,26] K = (

∑
k λ2

k)
−1

or Von Neumann
entropy [27,28] SN = −∑

k λk ln (λk). The main difficulty in
calculating quantum entanglement is the search for λk of the
system under consideration, and this parameter is considered
below.

We decompose �n,m(y1,y2) = ∑
k,p A

k,p
n,mφk(x1)ϕp(x2),

where φk(x1) and ϕp(x2) are the wave functions of 1 and 2 of
the unbound system, respectively, and A

k,p
n,m are the coefficients

of expansion. Using the orthogonality condition, these coeffi-
cients can be found using A

k,p
n,m = 〈�n,m(y1,y2)|φk(x1)ϕp(x2)〉.

Next, a simplification can be made, connected with the fact that

the parameter C in expression (8) will be a small value, i.e.,
C � A,C � B. Indeed, in realistic models, the relationship
between systems is always many times less than the interac-
tions within these systems. It can be seen from expressions (5)
and (8), that for C � A,C � B the quantum entanglement of
the system will be significant in the case when ε is of finite size.
Since C � 1, and ε is a finite (not small) quantity, we obtain
A ≈ B, and A − B is less than or of order C. We write out
expression (8), retaining the basic terms under the condition
C � 1 and A − B � C

�n,m(y1,y2)

= A1/4

√
πn!2nm!2m

e−
√

A
2 (x1 cos α−x2 sin α)2

e−
√

A
2 (x1 sin α+x2 cos α)2

×Hn(A1/4(x1 cos α − x2 sin α))

×Hm(A1/4(x1 sin α + x2 cos α)). (9)

It can be seen from expression (9) that quantum entanglement
can be large, since α ∈ (−π/4,π/4), in spite of the fact that
C � A,C � B. It can also be seen that the wave function (9)
is an exact wave function (without C � A,C � B).

In order to calculate A
k,p
n,m with the wave function (9), the

results of [29] can be used, where an integral of this kind was
calculated. As a result, we obtain

Ak,p
n,m = μk+n

√
m!n!

(1 + μ2)
n+m

2
√

k!p!
P (−(1+m+n),m−k)

n

(
−2 + μ2

μ2

)
,

(10)

where P (b,c)
a (x) is the Jacobi polynomial, and μ = tan α. In

the expression (10), as was shown in [29] in calculating the
integral, the condition k + p = m + n is fulfilled. Further,
after finding the reduced density matrices, we obtain

ρ1(x1,x
′
1) =

m+n∑
k=0

∣∣Ak,m+n−k
n,m

∣∣2
φk(x1)φ∗

k (x ′
1),

ρ2(x2,x
′
2) =

m+n∑
k=0

∣∣Ak,m+n−k
n,m

∣∣2
ϕm+n−k(x2)ϕ∗

m+n−k(x ′
2). (11)

As a result, we obtain the Schmidt mode in the form

λk =
μ2(k+n)m!n!

(
P −(1+m+n,m−k)

n

(− 2+μ2

μ2

))2

(1 + μ2)m+nk!(m + n − k)!
. (12)

It should be noted that expression (12) is not a discontinuous
function, since it depends on μ2, in spite of the fact that μ, at
ε = 0 is a discontinuous function. As a result, for example,
the Von Neumann entropy and the Schmidt parameter are,

respectively, S = −∑m+n
k=0 λk ln λk , K = (

∑m+n
k=0 λ2

k)
−1

. As an
example, in Fig. 1 we present the graphs for S and K depending
on the parameter μ for various combinations of quantum
numbers (m,n). Since the Schmidt mode λk is an even function
of μ, it is sufficient to change the parameter μ within μ ∈ (0,1).
Figure 1 shows that quantum entanglement strongly depends
on quantum numbers (m,n). With increasing quantum numbers
(m, n) and near mu close to unity, the quantum entanglement
of the system increases. The same conclusions are valid for
(m, n) going beyond the limits shown in Fig. 1 (at least this was
checked for m and n ∼ 1000), where quantum entanglement
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FIG. 1. Results of calculations of quantum entanglement for the Von Neumann entropy S and the Schmidt parameter K . The parameter
μ ∈ (0,1) varies from the minimum to the maximum possible value, and the pairs of quantum numbers are denoted as (m, n) [for example, for
m = 5 and n = 10, denoted as (5, 10)].

becomes very large (for example, the Schmidt parameter
becomes K ∼ 1000).

We should also add that for n = 0, using the known
expression for the sum [30], the Schmidt parameter is obtained
in the form

K = (1 + μ2)2m

2F1(−m, − m; 1,μ4)
, (13)

where 2F1(a,b; c,x) is a hypergeometric function. Expression
(13) for K is an increasing function of m for finite μ, so
the quantum entanglement of such a system is unlimited. In
general, quantum entanglement can reach very large values at
large quantum numbers m,n.

III. QUANTUM ENTANGLEMENT OF
THE DYNAMIC SYSTEM

Consider the non-stationary Schrodinger equation with the
Hamiltonian (1). We assume that the system at the initial
instant of time t = 0 was in the states |s1〉,|s2〉, which are
the eigenfunctions of undisturbed oscillators whose quantum
numbers are s1,s2. The Hamiltonian for such an unbound
system will be in the form

Ĥt=0 = 1

2

(
1

m1
p̂2

1 + 1

m2
p̂2

2 + Ax2
1 + Bx2

2

)
. (14)

Making the substitutions of the variable, analogous to the
stationary Schrodinger equation, and reapplying the same
system of units M = 1, h̄ = 1, we obtain

�(x1,x2,t) =
∑
n,m

an,me−iEn,mt�n,m(y1,y2), (15)

where En,m is determined by expression (7), and �n,m(y1,y2)
by expression (8) for y1 = x1 cos α − x2 sin α, y2 = x1 sin α +
x2 cos α. As with the previous problem, if we assume that the
parameter C within expression (8) is a small value, i.e., C �
A,C � B, then �n,m(y1,y2) for C � A,C � B is defined by
expression (9). The coefficient an,m can be easily found by
knowing the wave function of the system at t = 0. As a result,
we obtain an integral analogous to that considered earlier,
where an,m = As1,s2

n,m and is defined by expression (10). It should

be added that, as with the case considered above, the condition
s1 + s2 = n + m will be satisfied.

In order to find the Schmidt modes of the problem under
consideration, we have to expand �(x1,x2,t) in the form

�(x1,x2,t) =
∑
k,p

ck,p(t)φk(x1,t)ϕp(x2,t), (16)

where φk(x1,t) and ϕp(x2,t) are the eigenfrequencies of the
unrelated systems 1 and 2, respectively, and ck,p(t) are the
expansion coefficients. It is not difficult to find the coefficient
ck,p(t) using the orthogonality condition and the integral
already considered

ck,p(t) =
s1+s2∑
n=0

A
s1,s2
n,s1+s2−nA

∗k,p
n,s1+s2−ne

−i�En,s1+s2−nt , (17)

where

�En,s1+s2−n = En,s1+s2−n −
√

A

(
s1+1

2

)
−

√
B

(
s2 + 1

2

)
.

(18)

In expression (17), proceeding from the properties of the
integral considered in [29], it should be noted that k + p =
s1 + s2. Then, using the density matrix and the Schmidt mode
definition, as the latter is an eigenvalue of the reduced density
matrix, it is easy to obtain λk(t) = |ck,s1+s2−k(t)|2. It should
be added that when calculating the quantum entanglement
using the Schmidt mode λk(t), the expression for �En,s1+s2−n

[see Eq. (18)] can be replaced by �En,s1+s2−n → δn, where
δ = C(ε+μ)√

A′+√
B ′ (in the considered units of dimension, δ can

be considered a frequency, which evaluates how quickly the
system goes to quantum entanglement). It can also be observed
that λk(t) is a smooth function, in spite of the fact that ε = 0
has a discontinuity at ε = 0. We represent the results of the
quantum entanglement of the system under consideration using
the Von Neumann entropy S. As an example, in Fig. 2 we
consider the dependence of S = S(δt) on the dimensionless
parameter δt , with μ = (1,3/4,1/2,1/10,1/100) and four
variants s1,s2. Figure 2 shows that quantum entanglement
strongly depends on quantum numbers (m, n). With increasing
quantum numbers (m, n), the quantum entanglement of the

042203-3



DMITRY N. MAKAROV PHYSICAL REVIEW E 97, 042203 (2018)

(a)

(c)

(b)

(d)

FIG. 2. The results of calculating the Von Neumann entropy S = S(δt) for μ = (1,3/4,1/2,1/10,1/100) and a) s1 = 0,s2 = 10; b) s1 =
5,s2 = 10; c) s1 = 10,s2 = 10; d) s1 = 20,s2 = 10.

system increases, and when μ is close to unity it has the greatest
value. Also from the formula (17) it can be seen that the Von
Neumann entropy is a 2π periodic function with respect to
the variable δt . In addition, for (m, n) going beyond the limits
shown in Fig. 2 (at least this was checked for m and n ∼ 1000),
quantum entanglement becomes very large (for example, for
these values S ∼ 7).

IV. CONCLUSION

A system consisting of two coupled harmonic oscillators has
been studied. This work has demonstrated that it is possible
to obtain in an analytical form the main characteristics of
the quantum entanglement of a system, for example, the Von
Neumann entropy or the Schmidt parameter. The Hamiltonian
considered is of great interest for various branches of physics,
chemistry, and biology particularly because the obtained ana-
lytical expressions can be used for analysis and corresponding
conclusions without resorting to numerical calculations that
are difficult to undertake for large values of quantum numbers.
Also, the Schmidt mode λk [see Eq. (12)] was obtained for the
first time for arbitrary quantum numbers, which undoubtedly
has not only theoretical interest but also practical. In addition, it
has been shown that quantum entanglement can be very large,
which is a result that can be used in various fields of quantum
informatics and other fields in physics, for example, in models
that are examples of the remainder of the Feynman universe.
For example, in the Feynman model the universe is divided
into two parts, namely, this is the system in which we are

interested and the rest of the universe (the simplest analog are
two coupled oscillators). It is usually believed that the system
in which we are interested consists of the entire universe and
there are no other parts. Analyzing the quantum entanglement
of the two systems, one can say how much the assumption
about one universe is true.

Despite the obtained analytical expressions for the quantum
entanglement of two coupled oscillators, there is a problem
of using the proposed method to study the quantum entan-
glement of multicomponent systems. In this paper, quantum
entanglement based on the Schmidt modes λk is studied. Such
modes cannot be obtained for multicomponent systems (more
than two systems), for example, connected more than two
oscillators. In this case, it is necessary to use other measures
of quantum entanglement, for example, negativity [31]. To do
this, you need to know the covariant matrix, which is calculated
quite difficult. For example, when studying the effect of
quantum decoherence on the quantum entanglement of two
coupled oscillators (see, for example, [32,33]), the presented
analytical expressions can be used in the preliminary stage of
estimating quantum entanglement with a weak influence of the
external environment on oscillators.
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