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Consistency properties of chaotic systems driven by time-delayed feedback
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Consistency refers to the property of an externally driven dynamical system to respond in similar ways to similar
inputs. In a delay system, the delayed feedback can be considered as an external drive to the undelayed subsystem.
We analyze the degree of consistency in a generic chaotic system with delayed feedback by means of the auxiliary
system approach. In this scheme an identical copy of the nonlinear node is driven by exactly the same signal as the
original, allowing us to verify complete consistency via complete synchronization. In the past, the phenomenon
of synchronization in delay-coupled chaotic systems has been widely studied using correlation functions. Here,
we analytically derive relationships between characteristic signatures of the correlation functions in such systems
and unequivocally relate them to the degree of consistency. The analytical framework is illustrated and supported
by numerical calculations of the logistic map with delayed feedback for different replica configurations. We
further apply the formalism to time series from an experiment based on a semiconductor laser with a double
fiber-optical feedback loop. The experiment constitutes a high-quality replica scheme for studying consistency
of the delay-driven laser and confirms the general theoretical results.

DOI: 10.1103/PhysRevE.97.042202

I. INTRODUCTION

Synchronization phenomena in networks of dynamical
systems have been studied abundantly for three decades
[1,2]. Within this paradigm, generalized synchronization has
received comparably little attention despite its broad relevance,
mostly because of the inherent intricacy of the concept [3–6].
The extension of generalized synchronization to an open envi-
ronment, in which nonlinear units respond to arbitrary driving
signals, has been hardly addressed at all on a fundamental
level. In the context of neuroscience, the question about the
relationship between external stimuli and the corresponding
response of a network of excitable elements is a key to the
functionality of the nervous system. In information technol-
ogy and computer science, networks of nonlinear dynamical
systems have been receiving increasing attention with regard
to their information-processing capabilities [7,8]. In particular,
driven physical systems that naturally support fast nonlinear
dynamics are of interest, since they can ideally serve as
a hardware basis for fast and efficient implementation of
machine-learning schemes [9,10]. With the emergence of com-
plexity science, the network representation of many real-world
systems, ranging from the social to the geological domain,
offers a new perspective in which the dynamical relationship
of local communities to their environmental drive becomes a
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crucial aspect of investigation [11,12]. In this work, we provide
a contribution to the understanding of nonlinear dynamical
response beyond conventional synchronization. Our approach
follows the idea in Ref. [13], in which the reliability of the
signal transformation by a dynamical system is quantified. We
focus on the elementary case of a chaotic delay system, where
drive and response are identical except for a time shift. This
allows us to access analytical relationships that reveal new
aspects of delay dynamics, but also have general implications
for arbitrary driven systems.

Chaotic dynamics with its irregular and sensitive behavior
is a well-known feature of many nonlinear systems. In an
externally modulated system, it is not straightforward to
identify chaos if the driving signal is irregular, like in the case of
information-carrying signals. Certain features of the observed
chaos might be a consequence of the drive only, meanwhile
others truly originate from instabilities of the driven system
[14]. The difference between these cases is that in the former
the output is a function of the input, whereas in the latter
the dynamical system adds new information. This dilemma
has previously been discussed in the context of generalized
synchronization, in which the driving signal typically stems
from another dynamical system [15,16]. In this regard, there
exist a few measures like the conditional Lyapunov exponent
(conditional LE or also sub-LE, see Refs. [17–20]) or the
degree of consistency [21–23] that can be helpful to clarify
which part of the nonlinear response corresponds to the
inherent chaotic dynamics and which to the drive.

Consistency refers to the overall degree of intertrial variabil-
ity produced by the externally modulated dynamical node. A
low degree of variability corresponds to a consistent response.
In turn, we speak of inconsistency when the distribution of
the response states is not significantly affected by the drive,
like for instance in case of a small parametric modulation of a
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chaotic system. Note that an inconsistent behavior might be un-
expected in certain frameworks, although from the perspective
of nonlinear dynamics it is a common phenomenon. The level
of consistency can be determined by repeating the input signals
and comparing the corresponding outputs, for instance via a
correlation coefficient [21,24]. Although consistency can only
be determined by repetition of driving signals, it is inherent to
the nonlinear transformation of signals from input to output,
even when not repeatedly driven. Consistency depends on
both the properties of the dynamical node and on the driving
signals [21]. In the framework of information processing, a
consistent response is desired, since inconsistency leads to
a certain level of response variation in a task and hence
to potentially unreliable computation [25,26]. In contrast to
a (sub-)Lyapunov exponent, the consistency correlation is a
robust measure that is easier to apply to experimental data.
Both measures are not necessarily linked to each other or to the
richness of the nonlinear response characteristics that is desired
for certain processing tasks. A thorough understanding of the
consistency property will be useful to exploit the full range of
dynamical responses that a nonlinear node can exhibit.

In this work, we study the consistency correlation of
generic chaotic systems driven by time-delayed feedback. Such
systems typically have a delay signature in the auto-correlation
function (correlation echo or delay echo), which reflects the
linear part of the input-output transformation. In contrast to the
consistency property, delay echoes can be analyzed sufficiently
well from time series of a single system. Delay signatures
have been related to strong and weak chaos [27,28]; however,
their role within a consistency theory has not been elaborated
yet. Our goal is to derive an explicit fundamental relationship
between consistency properties and the delay echoes. We
achieve this by incorporating in the calculations the correlation
echo from the time series of the replica, meaning the response
to the repetition of the time-delayed input of the dynamical
node. In Sec. II, we introduce the basic theoretical scheme
consisting of two delay systems, as well as an extension
with functional maps, in which the first forms a closed loop
and the second (replica system) forms an open loop driven
by the first one. Based on the definition of the correlation
functions in this scheme, we split the partially consistent output
into a fully consistent component and a fully inconsistent
component. By this ansatz, we derive relationships between
the correlation measures in the form of outer limits, where a
section for a constant level of consistency forms an elliptic
domain of allowed correlation values. In Sec. III, we present
numerical results for the logistic map with delayed feedback
in the consistency scheme, and we compare the correlation
functions with the limits given by the ellipse. Further, we
extend the scheme to an ensemble of driven maps which
allows us to calculate its mean and thus provides support and
illustration of the analytical tools of the previous section. In
Sec. IV we apply the theoretical framework to time series from
a semiconductor laser experiment, validating the theory and
providing an understanding of the general results.

II. ANALYTICAL FRAMEWORK

The framework of this study is given by delay systems
in the limit of large delays. The response properties of the

dynamical node to its own time-delayed feedback can be
studied by means of replica setups [4,27,29–34]. In Sec. IV,
we report on an experimental realization of such a setup
using a semiconductor laser with optical feedback. Here, we
aim for a theoretical description of the dynamics in such a
scheme in general, which reveals basic relationships between
characteristic correlation signatures of delay systems. We
will explore these relationships by analyzing the mapping of
consecutive time series segments over each delay cycle.

The initial point of our considerations is given by a delay
system (closed-loop system) and a copy of the dynamical node
driven by the same feedback signal (open-loop system), as
described in, e.g., Refs. [34–36] (see also the scheme in Fig. 2),

ẋ(t) = f(x(t)) + h(x(t − τ ))
(1)

ẏ(t) = f(y(t)) + h(x(t − τ )),

with x,y ∈ RN and the delay time τ > 0. f(·) and h(·) describe
the nonlinear response function of the undelayed node and
the delayed feedback, respectively. We assume that the delay
time is much larger than any characteristic time of the unde-
layed system, and the trajectories have settled on a—typically
chaotic—attractor. Moreover, we consider scalar recordings
from the vectorial states as x(t) = g(x(t)) and y(t) = g(y(t)).
To simplify matters, let the time series be normalized such
that 〈x(t)〉t = 〈y(t)〉t = 0 and 〈x2(t)〉t = 〈y2(t)〉t = 1, with the
average denoting 〈x(t)〉t = lim

T →∞
1
T

∫ T

0 dtx(t). These infinite

stationary time series are then split into consecutive delay
intervals such that xn(t) = x(t + nτ ) and yn(t) = y(t + nτ )
with t ∈ [0,τ [ and n ∈ N. With the extra discrete time index n,
the set of segments can be understood as the “spatiotemporal”
representation of the delay systems [37]. We are interested
in the mapping of one τ -segment to the next. One might
formally consider a functional map of the form xn+1 = G(xn)
that follows from Eq. (1). Such a deterministic rule applies
only to the vectorial states and not to the scalar projections. The
main problem, however, is the inappropriate representation of
the evolution of different initial conditions, that gives rise to the
difference in x and y. The same argument holds for the reaction
to a small amount of intrinsic noise as it appears in experimental
realizations of delay systems. We therefore consider a different
model that acts as an extension to the above delay systems. The
evolution of τ -segments xn(t) and yn(t) will be governed by
stochastic maps:

xn+1 = F(xn) + ξn,
(2)

yn+1 = F(xn) + ηn.

Here, F(·) represents a nonlinear functional map acting on
the time series of length τ . The additional signals ξn(t),ηn(t)
are independent realizations of a noise process with limited
variance and correlation time. The introduction of the noise
terms is motivated by three arguments. First, as compared to
the deterministic Eq. (1), the noise accounts for the loss of
information about the vector state in the scalar signals. Second,
a delay system can exhibit strong chaos, meaning that the
nonlinear node’s response to the drive exhibits an instability
at a timescale much shorter than the delay time. This insta-
bility amplifies different initial conditions and small intrinsic
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noise, resulting in different responses despite receiving the
same drive. The noise terms account for this type of chaotic
variability. Third, both intrinsic noise and measurement noise,
directly contributes to ξ and η. The main difference between
both models lies in the (non-)existence of a synchronous
solution x(t) = y(t), regardless of its stability. It exists for the
noise-free delay systems, but not for the stochastic map, unless
further constraints are applied to the noise terms. The theory
that we develop in the following holds for time series obtained
from both models. We will use an explicit example of the delay
systems in Sec. III.

The causal structure given by Eqs. (1) and (2) typically
leaves measurable relationships in the resulting time series.
In this work, we restrict our analysis to linear correlation
functions. On the one hand, their explanatory power might be
limited—in particular for nonlinear systems—although their
main advantage is their fast calculation and their straight-
forward interpretation. On the other hand, a sophisticated
nonlinear relationship is mapped to a simple linear correlation
by virtue of the replica setup, thus extending its relevance
beyond conventional linear relationships. Apart from the
replica scheme, a recent work also demonstrated how details
of the correlation function can contain valuable fingerprints
of dynamical features of the system, despite its apparent
simplicity [38]. Figure 1 shows an example of autocorrelation
(AC) and cross-correlation (CC) functions obtained from time
series of a replica setup with the logistic map with delay
according to Eq. (19).

While the general shape of such correlation functions might
deviate significantly from the depicted example, a common
feature among many nonlinear delay systems is the occurrence
of a delay echo. The delay signature or delay echo is a
peak structure in the AC and CC functions characterized
firstly by a certain height and width; see Figs. 1(d)–1(f).
The aforementioned criterion of timescale separation between
delay time and the timescale of the oscillator can be expressed
by a clear separation of the different peak structures or by the
delay time being much larger than the characteristic width of
the delay echo. It was shown that, in this large delay regime,
the shape of the delay echoes does not change under a variation
of the delay time, while the position of the peak relative to the
delay time is fixed [28]. In the following, we focus on selected
values of the correlation functions within the peak structures.
These can be either the largest peak, regardless of its sign, or the
correlation at integer multiples of the delay time, considering
also a small and arbitrary offset from the delay time as long
as it remains within the peak structure. In the example shown
in Fig. 1, the position of the peak coincides with the delay
time, however, this is not generally the case as can be seen
in the examples in Fig. 6; see also Ref. [38]. For the sake of
simplicity, we will refer to the selected correlations as “peaks”
and specify the corresponding time shift for detailed analysis.

There are two fundamentally different contributions behind
each of the peaks. First, a correlation peak might reflect a causal
relationship. In our scheme, the first echoes of AC and CC
(peaks labeled “α” in Fig. 1) correspond to the underlying
direct connection. This means that the external signal, here
from the delay term x(t − τ ), is injected in both systems and
thus causally affects x(t) and y(t) in the same way; see also
Ref. [39]. Second, a peak might indicate the correlation only
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FIG. 1. Correlation functions from time series of delay-coupled
logistic maps, Eq. (19) for k = 0.3 and τ = 100, showing char-
acteristic peak structures. (a) Autocorrelation function of closed-
loop system. (b) Cross-correlation function between closed-loop and
open-loop system. (c) auto-correlation function of open-loop system.
(d)–(f) Zoom into the peak structures from (a)–(c), respectively. In
this example, delay time and peak position coincide.

because of a corresponding correlation in the drive. The central
peak of the CC (peak “γ 2”) stems from the identical drive and
cannot arise from an instantaneous communication between
the systems. The same argument holds for the first AC echo in
the replica system which compares y(t − τ ) with y(t) (peak
“β”). Since the replica has no feedback, this peak only reflects
the underlying correlation between x(t − τ ) and x(t). Memory
from the dynamical unit causing this echo is excluded, as it is
closely related to the width of the peak structures, whereas
the echo is linked to the delay time. It is worth mentioning
that, apart from these causal relationships, the γ 2 peak also
plays a distinct role because of its connection to the complete
synchronization manifold x(t) = y(t) in the noise-free Eq. (1).
The peak indicates the closeness of the trajectories to the
completely synchronous solution. In contrast, there are no
trivial manifolds related to the α and β peaks, regardless of
which time shift within the corresponding echoes is considered.

The goal of this work is to derive general relationships
between the different correlation peaks, based on the replica
scheme, on consistency properties, and on the interplay of the
aforementioned principles related to causality. To this end,
we structure the dynamics generating the time series x(t) and
y(t) in a way as indicated symbolically in Fig. 2. We define
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FIG. 2. Basic structure for the analytics. Left: Coupling scheme
corresponding to the auxiliary system approach. Right: Symbolic
representation of input and output for time series from X and Y .

four pairs of input and output vectors, (A,B), (B,C), (A,B ′),
and (B,C ′). Each vector corresponds to a τ -segment xn(t)
or yn(t) for different consecutive iterations n of either the
space-time representation of Eq. (1), or directly from the more
general Eq. (2). In this manner, we have defined a rename
and duplication procedure towards a new set of time series.
These time series take into account the structure given by
the replica scheme, in which x(t − τ ) is a component of the
common input underlying x(t) and y(t). The original idea
for this trivial but helpful step is motivated by the iterative
generation of τ -segments in the delay system by passing of
the signals through the nonlinear node [37,39–41]. Although
we allow the limit τ → ∞ as well, we introduce overlaps for
finite τ by extending the vectors to the entire time series instead
of the τ -segment. With this procedure we do not deteriorate
any feature based on the original idea while gaining the
possibility to average over long time. In detail, we set A(t) =
x(t − τ ), B(t) = x(t), and C(t) = x(t + τ ), and analogously
B ′(t) = y(t) and C ′(t) = y(t + τ ). Such assignments could be
extended to include further multiples of the delay time, but
considering the shown four drive-response pairs turns out to
be sufficient to derive the basic relationships of the correlation
echoes. A possible extension is given by changing the time
shift from τ to τ + δ, where δ is chosen to point at the peak
position or an arbitrary position within the delay echoes. The
same relationships are expected to hold when such a small
‘reaction time’ related to the inertia of the dynamical system
is included as a part of the signal transformation, so that a time
shift equal to τ can be considered without loss of generality.

A. Correlation measures

We start by defining the transformation correlation as
the linear relationship between input and output in terms
of the above vectors. The term transformation gives credit to
the fact that an input waveform passes through a dynamical
(nonlinear) node that generates an output waveform. With the
normalization of the time series as introduced above, four pairs
satisfy the equality

〈AB〉 = 〈BC〉 = 〈AB ′〉 = 〈BC ′〉 = α, (3)

where the averages are taken over time t . The equality can first
be explained by time-translation symmetry for each system.
Second, all vectors have the same statistical properties because
of stationarity. We assume ergodicity in the sense that the
output of the original and of the replica system are equiva-

Y1
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Y2

τ

ττ

YJ...
τ

FIG. 3. Illustration of an ensemble of J replica systems attached
to a single closed-loop unit.

lent realizations of the same process, yielding identical time
averages. The first and the second term are the AC coefficient
〈x(t)x(t + τ )〉, whereas the third and the fourth are the CC
coefficient 〈x(t)y(t + τ )〉. From the time shift we see that this
refers to the first delay echo.

We are further interested in the cross-correlation without
time shift 〈x(t)y(t)〉, which relates to the identical synchro-
nization manifold. This is the consistency correlation [23],
and it reads

〈BB ′〉 = 〈CC ′〉 = γ 2. (4)

The final correlation measure is the first delay echo of the
response system, 〈y(t)y(t + τ )〉, which is the spurious corre-
lation

〈B ′C ′〉 = β. (5)

Notably, the same echo appears in the cross-correlation func-
tion 〈y(t)x(t + τ )〉; see Fig. 1. This identity is less clear than
the match of the α-echoes, unless further insight into the
consistency properties is provided.

B. Consistency properties

For the following steps, we attach J � 1 replica units
Y1, . . . YJ to our setup, such that together with X we have
in total J + 1 identical dynamical systems driven by the same
signal; see Fig. 3. Each unit has been initiated with slightly
different initial conditions. In the limit J → ∞, their responses
B1(t), . . . BJ (t) form a distribution ρB(t). In the same way, we
define the distribution ρC(t), which is connected to ρB via
time translation ρB(t + τ ) = ρC(t). Using these distribution
functions we calculate an ensemble average, which can be
interpreted as the consistent component F of the responses
B and C; as well as B ′ and C ′ of X and Y , respectively,

FA(t) = 〈Bi(t)〉i = 〈B ′
i(t)〉i =

∫
zρB(z,t)dz,

(6)

FB(t) = 〈Ci(t)〉i = 〈C ′
i(t)〉i =

∫
zρC(z,t)dz.

The different notations Bi and B ′
i (or Ci,C

′
i) give credit to

the fact that the additional replica units can be understood
as an ensemble of possible realisations of the original X or
the single replica Y , respectively. The main point here is that
both systems have a common mean response. The idea of an
ensemble of responses with their mean reflecting a very general
form of synchronization to the drive is essentially different
from the conventional forms of synchronization and has been
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elaborated on in Ref. [13]. In Appendix 1 we show how our
ansatz can be interpreted as being specifically motivated by
the correlation coefficients which we apply to the time series.
In other words, the consistent component of the response
depends on the measure characterizing the conditional density
of the response system. In our case, the inconsistent component
N follows consequently as the difference between consistent
component and the original vector:

FA(t) + NA(t) = B(t),
(7)

FB(t) + NB(t) = C(t).

The indices indicate that the signals result from a response
from the inputs A and B, where F suggests the presence of
a functional relationship and N the modeling of a noiselike
process, like in Eq. (2). In this picture, by definition it follows
that

FA(t) + N ′
A(t) = B ′(t),

(8)
FB(t) + N ′

B(t) = C ′(t),

meaning that the consistent components of the responses agree
in both realizations, whereas the inconsistent components are
different. One can further calculate the properties of the time
averages:

〈FA〉 = 〈FB〉 = 〈NA〉 = 〈N ′
A〉 = 〈NB〉 = 〈N ′

B〉 = 0.

Less trivial is the property of the consistent and inconsistent
components not to be correlated, neither the inconsistent
components among each other, see Appendix 2,

〈FANA〉 = 〈FAN ′
A〉 = . . . = 0, (9)

〈NAN ′
A〉 = 〈NANB〉 = . . . = 0. (10)

The timescale separation due to the large delay is an important
precondition for this feature. However, there is one important
exception. In contrast to the independent signal N ′

A from
the response system, the signal NA from the drive system is
underlying the generation of the signal C, which implies a
nonzero correlation:

〈FBNA〉 	= 0. (11)

This term highlights the main difference between closed loop
and open loop. The corresponding counterpart 〈FBN ′

A〉 is zero,
because N ′

A does not causally affect FB .
We use the decomposition in consistent and inconsistent

component to express the correlation measures Eqs. (3)–(5).
For the consistency correlation we obtain

〈BB ′〉 = 〈(FA + NA)(FA + N ′
A)〉

= 〈
F 2

A

〉
= γ 2. (12)

In terms of the presented decomposition of the vectors, we can
also write the expression for the AC echoes (transformation

correlation)

〈BC〉 = 〈(FA + NA)(FB + NB)〉
= 〈FAFB〉 + 〈NAFB〉
= α. (13)

Here we see the transfer of information due to the self-feedback
in the second term. In contrast, in the AC echo of the response
system (spurious correlation) this term is missing

〈B ′C ′〉 = 〈(FA + N ′
A)(FB + N ′

B)〉
= 〈FAFB〉
= β. (14)

The identity of the AC and the CC echoes can also be
shown using the properties of the consistent and inconsistent
components in Eqs. (9)–(11). Changing the ansatz in Eq. (13)
yields 〈BC ′〉 = α, and accordingly the counterpiece of Eq. (14)
is 〈B ′C〉 = β.

C. Estimation of the correlation echoes

Due to time translation symmetry, the size of the vectors
FA and FB is both γ . The desired correlation measure, β =
〈FAFB〉, is therefore determined by the angle between them.
Trivially, we can already conclude that the product will be
bounded by

|β| � γ 2.

Using information from the transformation correlations we can
derive a stronger estimate. We know from the principal identity
of these correlations that we obtain α also from the projection
of B and C ′, where the inconsistent component of C ′ drops

α = 〈BC ′〉 = 〈BFB〉.
Since B is a unit vector and the size of FB is γ , we can write
for the angle ϕ between them

cos ϕ = α

γ
.

Second, we can use the decomposition of B into its own
consistent and inconsistent component to calculate the angle θ

between B and FA,

cos θ = γ.

We cannot specify further the orientation of B,FA,FB in their
three-dimensional subspace, which leads to the restriction of
the angle between FA,FB . The final expression for the upper
and lower bounds for β reads

β± = γ 2 cos

(
arccos

α

γ
± arccos γ

)

= γ 2

[
α ±

√
(1 − γ 2)

(
1 − α2

γ 2

)]
. (15)

This defines an ellipse in the space of α,β as shown in
Fig. 4. The extension of the ellipse on the parameter axes
implies a relationship between transformation correlation and
consistency correlation,

|α| � γ. (16)
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tangents α = γ and β = γ 2 (black dashed lines in top panel).

Together with the bound |β| < γ 2, this relation shows how
the consistency property fundamentally affects the correlation
echoes.

Within the elliptic domain formed by the consistency
boundaries, there is no a priori preference for the location
of correlation pairs (α,β), unless system-specific information
is included. Nevertheless, a distinct constellation is given by
the case when the plane spanned by B,FB is perpendicular
to the plane of B,FA. The interpretation of this geometry is
that the consistent component of the output (here FB) has
no preference between the consistent (FA) or the inconsistent
component (NA) of the input. This argument defines the mean
of β+ and β−, which is

β0 = αγ 2. (17)

Figure 4 illustrates the analytical boundaries including this
“neutral line” for different values of the consistency corre-
lation γ 2.

The meaning of γ , in addition to the interpretation of
γ 2 as the consistency correlation, becomes clear by treating
the consistent component of the responses as an independent
signal. In contrast to Eq. (12), in which the magnitude of FA

was preserved, we apply here the normalization as for the time
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correlation γ 2 and its root are plotted to validate the outer extensions
of the ellipse on the α- and β-axis. The additional γe (circles) is
the correlation between x and the ensemble mean of replicas [using
Eqs. (20)–(21) with J = 1000 and Eq. (18)], which coincides with√

γ 2 from a single replica.

series from individual units. With F̃A = FA/
√

〈F 2
A〉 = FA/γ

we obtain the correlation

〈BF̃A〉 = 〈(FA + NA)FA/γ 〉
= 〈

F 2
A

〉
/γ

= γ. (18)

The consistent component yields the optimal prediction of the
output state of the driven nonlinear system given only the input.
Optimality is understood in the sense of a least-squares fit given
the ensemble of all possible responses, which is equivalent
to the ensemble mean and maximizes the correlation. Thus,
the coefficient γ is the degree of complete consistency which
is inherent to the signal transformation. It defines the limit
of predictability without inclusion of the initial conditions
of the driven system, which in turn affects the information
transfer through the system. The reduced value of γ 2 � γ is a
consequence of the inconsistent component N ′

A of a single
replica unit that deteriorates its relationship to the original
system as compared to the mean of many replicas. In Fig. 5 we
demonstrate this principle by the excellent agreement of the
value of

√
γ 2 from the single replica with γ from an ensemble

mean according to Sec. III B.

III. EXAMPLE: LOGISTIC MAP WITH DELAYED
FEEDBACK

In the following, we exemplarily study the logistic map with
delayed feedback numerically, which is discrete in time and
has an explicit nonlinearity in its feedback and instantaneous
term [42]. We consider two cases. First, a single replica unit
is attached to the delayed map, and the correlation signatures
of this auxiliary system set are calculated and compared to the
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general framework. Second, we attach a set of many replica
forming an ensemble, from which we are able to determine
the consistent and inconsistent component of the responses,
and thus illustrate and test the analytical calculations of
Sec. II.

A. Two maps in the auxiliary system setup

The replica setup for the delayed discrete map reads

xt+1 = (1 − k)M(xt ) + kM(xt−τ ),
(19)

yt+1 = (1 − k)M(yt ) + kM(xt−τ ),

with M(x) = 4x(1 − x) revealing the logistic map for k = 0.
For the analysis, the default normalization of the time series
xt and yt are applied. For k ∈ [0,0.5] and τ = 30, the basic
correlation signatures are depicted in Fig. 5, where α and β

are picked up at time shift �t = τ , and both ellipse edges γ

and γ 2 are plotted. Indeed, the relations |α| < γ and |β| < γ 2

are fulfilled over the entire range. The same holds true if α and
β were selected to be the peak values whose position does not
necessarily coincide with τ at all k (not shown in Fig. 5, see the
examples in Fig. 6). We recall that, unlike the flexibility for α

and β, the consistency correlation is always calculated from the
CC at zero time shift. The map offers a large variety of different
correlation triples. Most significant are the phase flip around
k = 0.2 within the first consistent region, the flat response of β

for k < 0.1, and the observation that α largely follows a smooth
curve whereas β seems to repeat the consistency breakdowns.
The latter highlights the subtle intrinsic nature of consistency,
which is not directly reflected in the AC echo α, and hence sets
the demand for the replica scheme. Moreover, the similarities
between the β and γ curve support the neutral line hypothesis:
The AC peak α—apart from being bounded by γ —develops
largely independently, but the open-loop peak β is explicitly
linked to the consistency by β = αγ 2. Consequently, β and
γ 2 show the same structures like the sharp breakdowns in the
inconsistency episodes. Finally, it is worth mentioning that the
disruptive behavior for k > 0.42 in the completely consistent
regime is related to a change in the dynamics from chaotic to
(quasi-)periodic behavior. The central correlation peak and the
delay echoes merge to a coherent structure corresponding to
the sustained oscillations.

For some selected feedback values, the entire CC function
and the peak structures in the corresponding ellipse are shown
in Fig. 6. It is sufficient to focus on the CC only, because in the
ideal replica setup simulated here the corresponding AC and
CC peaks for α and β are identical. We plot the entire peak
structure α(�t) and β(�t) with a simultaneous time shift �t =
−τ − δ and �t = τ + δ, respectively. The offset δ is chosen
such that the peak envelope is above a small threshold value.
The ellipse boundaries are not violated by the correlations, but
the peak values can approach the edge closely. The resulting
structures orient along the neutral line (blue dashed line in
Fig. 6), and deviations stay small. It is remarkable that the
aforementioned sign flip in the echoes comes along with a flip
in the preferred side on which the echo structure deviates from
the neutral line (compare k = 0.125 with k = 0.25).
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FIG. 6. Examples of correlation parameters from the coupled
logistic maps, see Eq. (19), drawn in the corresponding ellipse. Left:
entire cross-correlation function between xt and yt , including the first
delay echoes around the delay time τ = 30. The value at zero time
shift corresponds to γ 2 and the vertical extent of the ellipse, α (β) is
picked up from the peaks at the negative (positive) time shift. Right:
Corresponding ellipses (yellow/light gray) with entire delay echoes
plotted inside (red/dark gray) including the neutral line β0 = αγ 2

(gray, dashed).

B. Ensemble of many identical maps

To illustrate and support the derivations in Sec. II, we cal-
culate numerically an ensemble of discrete maps (see Fig. 3),
which allows us to study the consistent and inconsistent com-
ponents of the trajectories separately. The nonlinear dynamical
node contains again the quadratic function M(x) = 4x(1 − x)
from the logistic map, as in the previous section. Here, we
consider a closed-loop delay system X with J open-loop
attached units Y1 . . .YJ following the equations

xt+1 = (1 − k)M(xt ) + kM(xt−τ ),

y1,t+1 = (1 − k)M(y1,t ) + kM(xt−τ ),

...

yJ,t+1 = (1 − k)M(yJ,t ) + kM(xt−τ ). (20)

Normalization of the resulting individual time series is applied
as in the previous sections.
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FIG. 7. Pairwise projections of the consistent component f and
the inconsistent components nx,ny of the responses x and y, obtained
from Eq. (20) for delayed logistic maps with delay τ = 30. Time
shifts �t range from −40 to 40 to include τ . (a) Projection of the
consistent components. (b) Consistent component f and inconsistent
component nx showing the peak related to the closed-loop connection.
(c) No correlation between f and ny in open loop. (d) No correlation
between inconsistent responses nx and ny due to independence. (e, f)
Autoprojection of nx and ny , respectively, identical and without delay
echoes.

The ensemble average is calculated as

ft = 1

J

J∑
j=1

yj,t . (21)

It corresponds to the consistent component of the responses FA

and FB from the symbolic representation. Having calculated
ft , we go back to the minimal set of closed-loop xt and
open-loop yt ≡ y1,t . The inconsistent components of these two
trajectories are nx,t = xt − ft and ny,t = yt − ft . The former
corresponds to the symbolic NA and NB and the latter to N ′

A

and N ′
B , respectively, when applying proper time shifts.

We calculate the pairwise scalar products of the vectors
f,nx,ny with time shifts such that contributions to the correla-
tion functions of x and y are visualized. These pairwise projec-
tions are shown in Fig. 7. Parameters of the simulation are k =
0.25,τ = 30,J = 105. There are six possible combinations
shown in the corresponding panels. In the self-projection of
the consistent component f [Fig. 7(a)], the resulting function
includes the measure γ 2 in the central peak and β in the
symmetric side peaks; see Eqs. (12) and (14). When projecting
f onto nx or ny [Figs. 7(b) and 7(c)], their independence,
except for a single peak, becomes visible; see Eqs. (9) and
(11). This peak indicates the closed-loop property of system
X and occurs only at the point where nx causally affects f .
The cross-projection of nx and ny [Fig. 7(d)] illustrates the
independence of these vectors according to Eq. (10), whereas
their autoprojections are identical and reveal the value 1 − γ 2

at zero time shift [Figs. 7(e) and 7(f), respectively]. The
delay echoes are eliminated in both, because inconsistency is

generated locally regardless of the delay loops. In summary,
the result from the map ensemble agrees in all aspects with the
analytically derived relations.

IV. SEMICONDUCTOR LASER EXPERIMENT

Semiconductor lasers with fiber-optical feedback provide
an excellent testbed for experiments on delay dynamics. We
analyze intensity time series of delay-driven chaotic lasers
and study their correlation properties in the context of the
presented consistency theory. A semiconductor laser subject to
delayed optical feedback is known to exhibit instabilities that
can result in high-dimensional chaotic behavior [43]. Under
the conditions of long delays, the complex optical waveforms
generated by the delay system can often be treated as an
external drive to the laser. This drive then again excites a
dynamical response of the laser. The response exhibits the
same statistical properties as the drive, as soon as the delay
system has settled on its chaotic attractor. In general, the
degree of consistency of the delayed feedback laser response
will mainly depend on conditional stability. By means of time
series analysis of a single laser with feedback, it is difficult
to access this property directly and reliably [20]. Both, the
analysis of the sub-LE, as well as the consistency property
would benefit from recurrences in the (Banach) state space of
the delay system, meaning that highly similar patterns reoccur
at different points in time. For the typically large delays, this is
very rare, as a reasonably long time series does not sample the
huge state space sufficiently. We, therefore, rely on a replica
experiment, in which we can capture at least two different
laser responses to the same driving signal and compare them
directly.

A. Experiment

An elegant realization of a replica scheme is given by an
experiment in which a single laser is repeatedly driven with
the same optical waveform, generated by itself under delayed
feedback conditions. Recording the signal and replaying it
repeatedly is difficult for systems with optical feedback. Al-
though feasible for scalar drive signals, this is very challenging
for the high-bandwidth signals with amplitude and optical
phase, generated by the typical complex chaotic dynamics.
Amplitude and optical phase fluctuations are coupled, and
the fastest components reach up to tens of GHz in frequency.
Therefore, it is required to store the signal by optical means.

A possible manner to realize optical storage and replay is
to branch off a part of the light from the primary feedback
loop, by which the dynamics is generated, and to transmit it in
a much longer second fiber that acts as an optical memory.
The double-delay-loop scheme is illustrated in Fig. 8. The
semiconductor laser in our experiment is a discrete-mode laser
lasing at 1544 μm and exhibiting a threshold current of Ith

= 11.8 mA without feedback. The laser light is split, and
simultaneously enters two optical fiber loops with significantly
different propagation delays: τ1 = 111 ns for the short loop
and τ2 = 21 μs for the long loop. To switch between short and
long loop we employ electro-optic modulators controlled by a
pulse generator, such that one path is blocked at any time. This
experimental scheme has been presented in an earlier work
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current
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FIG. 8. Simplified scheme of the double-delay-loop experiment.
The laser is subject to optical feedback from either a short delay line or
a long one. A pulse generator in combination with two Mach-Zehnder
modulators controls that only one of the feedback paths at most is
active at any given time.

[23]. In the same work, consistency correlation was discussed
and compared with the autocorrelation echoes of short and long
loop, corresponding to all of the relevant theoretical quantities
of the consistency theory, i.e., the peak values γ 2, α, and β.
Therein, however, the latter two delay echo peaks were only
obtained from the AC, and further information from the peak
structures had not been analyzed.

B. Time series and correlation signatures

The intensity time traces of short-loop and long-loop dy-
namics already reveal the high degree of consistency attainable
with the double-delay-loop experiment. The sample shown in
Fig. 9 covers a window of 10 ns. The time traces have been
deskewed to account for the difference in delay lines so that
both responses can be directly compared. As a convention, we
will also speak of original and replica to refer to the time-
corrected short-loop and long-loop dynamics, respectively.
The temporal oscillations match in phase and amplitude most
of the time, displaying only small deviations that are quickly
recovered. This behavior, corresponding to I = 1.48Ith, is
considered a dynamical regime with a high level of consistency.
Nevertheless, it is through the calculation of the consistency
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FIG. 9. Temporal dynamics from short and long loop acquired for
a pump current of I = 17.5 mA. The time traces have been deskewed
to overlap in time.
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FIG. 10. Correlation peaks in the double-delay-loop experiment.
(a) Central peak structure of AC from original and replica coincide.
(b) First delay echo α of original AC and CC coincide. (c) Central
CC peak structure is symmetric and reveals consistency correlation
γ 2 at its center. (d) First delay echo β of replica AC coincides with
CC where original and replica is exchanged.

correlation γ 2 that the similarity of the responses can be
quantified. The average optical power in the long fiber loop
remains relatively low (<0.5 mW) for pump currents below
2Ith so that fiber nonlinearities can be excluded.

Beyond the mere extraction of the correlation measures,
the study of the entire correlation functions can also eluci-
date characteristic relationships between the delay echoes.
Figure 10(a) shows the central peaks of the AC curves for
the original (short loop) and replica (long loop). The perfect
agreement of both curves indicates the identical statistical
properties of the short-time patterns. The peak structures for
the delay echoes of α and β are illustrated in Figs. 10(b) and
10(d), respectively. The correlation peaks for α and β are not
symmetric around the center, but still coincide for AC and CC
functions. A high degree of proportionality between α and β

is also unveiled. Here, the peak structure of α obtained from
the CC has been mirrored to a positive time shift to overlay the
curve. The oscillations from the central CC peak as shown in
Fig. 10(c) contain valuable information related to consistency.
The structure is symmetric and a scaled-down version of the
AC peaks shown in Fig. 10(a). We discuss the meaning of these
signatures further in Sec. IV D.

Figure 11 shows a complete picture of the correlation
quantities as a function of the pump current. The consistency
correlation γ 2 exhibits a single minimum around 13 mA and
increases with the pump current until it saturates in values
close to 0.99 [23]. Considering that γ 2 is calculated from
the central peak of the cross-correlation function, this degree
of consistency reflects the high quality of the replay by the
long loop. The transformation correlation α and the spurious
correlation β follow largely the same trend as the consistency
correlation. The disparity between α and β is intrinsic to the
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FIG. 11. Five selected peak values of correlation functions in de-
pendence on the pump current I of the laser: Consistency correlation
γ 2 from CC, transformation correlation α from AC of original and
CC (coinciding), and spurious correlation β from AC of replica and
CC (coinciding).

consistency properties and satisfies the theoretical relation-
ships from Sec. II, which we will further discuss in Sec. IV C.
Under ideal conditions, the two correlation coefficients can be
obtained from the autocorrelation function, as well as from the
cross-correlation, where the delay echoes are identical. Re-
markably, the experimental data provides the same correlation
values within high accuracy, as they perfectly overlap in the
plot. Moreover, when we resolve the entire echoes as in Fig. 10,
the match between AC and CC signatures is excellent.

C. Delay echoes and the consistency ellipse

The theoretical framework from Sec. II provides a unifying
perspective on correlations in delay systems based on the
concept of consistency. The key ingredient of this theory is a
decomposition of the dynamical response into a completely
consistent component and an inconsistent component that
leads to basic relationships between the presented correlation
measures α, β, and γ 2. They are essentially obtained from the
three central peak structures in the cross-correlation function
between original and replica time series. In previous works, α

had been used as an indicator of the consistency property, and
the similarity with the revealed γ 2 values confirms this par-
ticular finding for semiconductor lasers with optical feedback
[23]. The intuition behind the apparent proportionality between
α and γ 2 already leads into the right direction: Inconsistency
caused by a positive sub-LE means a high degree of variability
in the output given a certain input. When input and output
are then directly compared, the correlation coefficient will
consequently be limited by the degree of inconsistency. This
is quantitatively reflected in the bound |α| < γ . In the laser
experiment the stronger relationship between α and γ is a
system-specific property.

To shed more light on that argument we look at a coun-
terexample provided by the Ikeda delay system dx(t)/dt =

−x(t) + κ sin[x(t − τ )]. This system is completely consistent
because of the sub-LE λ0 ≡ −1. The consistency correlation
is γ 2 = 1 for all parameter values if we neglect noise effects,
and like other typical delay systems it shows a delay echo
with α 	= 0. For large feedbacks |κ| � 1, however, this delay
echo vanishes. Thus, the laser with optical feedback, and the
Ikeda system which models an electro-optic oscillator, are very
distinct in terms of the relationships between the characteristic
correlation measures. This relates to qualitatively different
forms of transformation of the delayed feedback signal. A
high value of the transformation correlation α close to its
consistency limit indicates, that the signal transformation
can be regarded as mostly linear apart from the inconsistent
component. If in contrast the spread between α and γ is large,
this is because of a high degree of nonlinearity in the consistent
part of the transformation. Note that this nonlinear relationship
might be too intricate to be detected reliably even by more
advanced time series measures [15,16,34,44].

The most direct way to study the effect of consistency in
the correlation echoes, and to compare the experimental results
with the theory, is to locate the experimental correlation values
relative to the theoretical boundaries according to Eq. (15). The
precondition of the theory is a complete symmetry between
original and replica. It is therefore interesting to ask whether
the inevitable experimental parameter mismatches will result
in violation of the predictions or whether the elliptic domain
is robust against typical small perturbations. Noise occurring
in experiment is principally incorporated in the theory. Mea-
surement noise can be regarded as a direct contribution to
the inconsistent response component, unless it is desired to
quantify the dynamical properties of the system only.

From the experimental time series we select an example
for low and high consistency values. For each condition, we
obtain the α and β values from the auto-correlation functions
of original and replica time series. A predefined window
�t ∈ [t1,t2] around the delay time is selected, in which the
delay echoes are significantly above the noise floor. The delay
time τ is the short-loop roundtrip time. It is worth mentioning
that we could have also obtained similar delay echoes from
the cross-correlation function. However, with the finite sam-
pling the central consistency correlation peak position does
not automatically coincide with sampling points. Moreover,
mismatches between original and replica affect the cross-
correlation echoes stronger than the autocorrelation echoes. In
Fig. 12, the echoes α(�t) and β(�t) are plotted against each
other within the corresponding consistency ellipse Eq. (15).

It is evident that for the selected conditions the theoretical
boundaries are not violated. While this does not imply any gen-
eral statement on the robustness with respect to mismatches, we
can at least exclude a strong sensitivity to small perturbations
of the scheme. The peak signatures individually show some
oscillations which, however, are almost in phase for α and β,
so that their portrait practically collapses onto a single line.
The line is located between the identity line β = α and the
“neutral” line β = αγ 2. The latter is interpreted such that the
transformation of the signal from input to output does not
distinguish between consistent and inconsistent component.
If we assume that this neutrality is a typical condition for
the laser system, the deviation toward the identity line can
be regarded as a result of measurement noise. In other words,
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FIG. 12. Examples of AC delay echoes (thick violet) within the
corresponding analytic consistency ellipse Eq. (15) (light green). The
first delay echo around the main delay time τ is calculated for the
original signal yielding the α values, and from the replica signal
yielding the corresponding β values. Left panel: high consistency
example. Right panel: low consistency example. Note the different
scales. The peak structures tend to collapse approximately on a single
line between identical (α = β, black) and neutral line (β = αγ 2, dark
green). Delay echoes from other conditions (not shown) have a similar
appearance. Despite experimental conditions, the boundaries of the
ellipse are never violated.

the experimental peaks might indicate the noise-free neutral
line of an ellipse with higher consistency than the plotted one
which corresponds to the measured consistency correlation.
Numerical simulations of similar systems might in the future
provide more insight into this feature.

D. Beyond the ellipse

The experimental correlation functions reveal more than
what is covered by the analytical relationships behind the
ellipse. In Fig. 10, there are two particular findings worth
mentioning. First, the peak structure of the AC functions from
original and replica around zero time shift coincides very
well. In view of the deviations between the first delay echoes
captured by α and β, this result is surprising. Note, however,
that this deviation between α and β stems from the input-output
relationship that is revealed in the vicinity of the delay time. For
time shifts significantly smaller than the delay, the oscillation
patterns of original and replica are not distinguishable [39],
which is reflected in the central peak structure.

Second, the consistency correlation is picked up only at zero
time shift. The central peak structure enclosing this particular
point gives us further insight into the relationship between orig-
inal and replica. The peak structure appears symmetric within
the experimental accuracy. This is supported by an analytical
argument. Since the CC of the inconsistent components is zero,
the remaining contribution to the CC stems from the consistent
component which is identical for original and replica. Hence,
the CC zero peak is proportional to the self-projection of the
consistent component and therefore symmetric; see also Fig. 7.
We further observe that the peak is largely proportional to the
central AC structure that we discussed before. This, however,
lacks a rigorous argument and is a specific property of the
laser dynamics. It means that the ratio of the contributions
of consistent component and inconsistent component to the

zero peak remains constant for the considered interval of time
shifts. It might be related to the neutrality hypothesis that we
discussed before for the relationship of the α and β peaks.
Further investigations including different feedback systems
could shed more light on this property.

V. CONCLUSION

We have studied basic relationships between correlation
coefficients in a replica scheme in closed-loop and open-loop
configuration. In this scheme, we considered stationary time
series from a generic delay system with large delays exhibiting
chaotic dynamics. We focused on three distinctive coefficients:
α, the input-output correlation characterizing the transfor-
mation of signals by the nonlinear nodes; β, the spurious
correlation resulting only from the correlation α in the drive
of the node; and γ 2, the consistency correlation measuring the
degree of reliability of the node to repeated identical inputs.
We found that, for a given value of the consistency, the other
two correlation coefficients are bounded to an elliptic domain
whose size is monotonically increasing with γ . The analytical
derivation of the ellipse already reveals an interpretation of
this dependency. The response of a nonlinear node to its
input is split into a completely consistent component and a
completely inconsistent component. By numerical results of
the logistic map with delayed feedback, we confirmed the
analytical calculations and illustrated the decomposition into
the two components. Moreover, we identified the value ofγ , the
root of the consistency correlation, as the inherent consistency
which defines the fundamental limit of inferring the output of
a driven system from its input only.

We have also verified our consistency theory in a semi-
conductor laser setup, in which optical delayed feedback
gives rise to broadband chaotic dynamics. A double-delay-
loop experiment realizes the replica scheme to determine the
consistency of the laser with respect to its feedback drive.
The laser is driven repeatedly by the chaotic signals generated
in a short loop, and by the replay of these signals that have
been stored in a long loop. We have analyzed the correlation
signatures from the experimental intensity time series. The
transformation correlation α is the autocorrelation around the
primary delay time. The spurious correlation β is the same
autocorrelation signature but in the time series of the replay
from the secondary delay line. The consistency correlation γ 2

is the correlation between original and replica without time
shift. All experimental signatures are in excellent agreement
with the theory.

Our results contribute towards an unraveling of the question:
In which way, and to which extent, is the signal transformation
by a nonlinear dynamical system related to chaotic variability?
This problem appears in the context of driven dynamical
systems in general and neuro-inspired information processing
in particular, where generic nonlinear systems are employed
instead of neural oscillators or simple activation functions.
We suggest that our approach based on the replica setup is
the most reliable way to access the consistency property. The
perspective of two distinct components in the input-output
transformation does not only open alternative pathways to the
study of delay systems. Together with the resulting consistency
limit, it is relevant for the general case of a driven system, in
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which input and output have different properties, including
nonstationarity.
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APPENDIX: PROPERTIES OF THE (IN-)CONSISTENT
RESPONSE COMPONENT

1. Definition of the consistent component

Given the responses x(t) and y(t) of two identical units
driven by the same signal x(t − τ ), the consistency correlation
reads γ 2 = 〈x(t)y(t)〉, given the typical normalization. We
now extend the setup to an ensemble of J identical units
like in Sec. III B for the logistic maps, with the responses
y1(t),y2(t),...,yJ (t). Each of these time series is representative
in the sense that the correlation of any pair of two responses
reveals γ 2. Hence, we rewrite the consistency correlation as an
intercorrelation of the ensemble:

γ 2 = 2

J (J − 1)

J∑
i<j

〈yi(t)yj (t)〉t .

In the limit of J → ∞ this term becomes the product of
the ensemble means γ 2 = 〈f (t)2〉t with f (t) = 〈yi(t)〉i . We
denote this ensemble mean f (t) as the consistent component
of the response with respect to the correlation measure, because
the consistency correlation is directly determined by this mean.
One may conclude that a different measure for consistency
would result in another decomposition of an individual re-
sponse signal into consistent and inconsistent component.

2. Correlation between consistent and inconsistent component

We consider a single input-output transformation, in which
we produce an ensemble of equivalent output realizations
simultaneously. Let xi(t) be such a single output, with i being
the ensemble index. We assume the time series to be stationary
and with ergodicity properties that we will explicitly use in the

following calculations. With respect to the linear correlation
functions, we average over the ensemble to obtain the time-
dependent mean, which we denote as the consistent component
of the response, or the consistent part of the transformation,

f (t) = 〈xi(t)〉i .
The difference to this mean is the inconsistent component of
the response

ni(t) = xi(t) − f (t).

Our goal is to show that, by this definition, the correlation
between consistent and inconsistent component vanishes for
all time shifts �, i.e., for t ′ = t + �, 〈f (t)ni(t ′)〉t = 0. First,
from the definition follows directly that the ensemble mean of
ni(t) vanishes for all times

〈ni(t)〉i = 0.

This property of the ensemble distribution function of ni(t)
affects distribution functions obtained by the single realization
over time. Let tk, k ∈ N be the times at which the consistent
response takes a certain value, f (tk) = φ. The distribution
obtained from all the values ni(tk) is ρ(n|φ), and since every
ni(tk) is drawn from a distribution with zero mean, the mean of
ρ must be zero as well according to the central limit theorem∫

nρ(n|φ)dn = 0.

The same argument holds for different conditioning of the
distribution to time-shifted arguments or to more than a single
sample of f . We apply this property to calculate the correlation
function

〈f (t)ni(t
′)〉t =

∫
dft

∫
dnt ′ ftnt ′ρ(ft ,nt ′ )

=
∫

dftftρf (ft )
∫

dnt ′nt ′ρn(nt ′ |ft )

= 0. (A1)

We can also apply this procedure to correlations between differ-
ent realizations ni(t) and nj (t ′) of the inconsistent component.
The time average is the same for all i 	= j , and the realizations
are drawn independently from their distribution at each time,
so that for t ′ = t + �,

〈ni(t)nj (t ′)〉t = 0. (A2)

The vanishing numerical correlation functions from the en-
semble of driven logistic maps in Fig. 7 clearly illustrate these
results.
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