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Husimi-cactus approximation study on the diluted spin ice
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We investigate dilution effects on the classical spin-ice materials such as Ho2Ti2O7 and Dy2Ti2O7. In particular,
we derive a formula of the thermodynamic quantities as functions of the temperature and a nonmagnetic ion
concentration based on a Husimi-cactus approximation. We find that the formula predicts a dilution-induced
crossover from the cooperative to the conventional paramagnets in a ground state, and that it also reproduces the
“generalized Pauling’s entropy” given by Ke et al. To verify the formula from a numerical viewpoint, we compare
these results with Monte Carlo simulation calculation data, and then find good agreement for all parameter values.
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I. INTRODUCTION

The pyrochlore lattice consisting of corner-sharing tetra-
hedra is one of the most important structures in condensed
matter physics because the geometrical frustrations inhibit the
stabilization of a magnetic order in the pyrochlore compounds,
which then provide an opportunity for research on uncon-
ventional phases and exotic excitations [1,2]. The so-called
spin-ice materials Ho2Ti2O7 and Dy2Ti2O7 are examples of
pyrochlores [3–5]; despite their large magnetic moments μ �
10μB, the experiments cannot find any ordered phases, but the
ice-type degeneracy in the ground state is found instead [6,7].
Furthermore, with the proposal [8] and the observation [9] of
magnetic monopole-like excitations in the spin-ice materials,
intensive investigations have been carried out to account for
their static and dynamical properties [10–17].

Recently, the diluted spin-ice materials (R1−xYx)2Ti2O7

(R = Dy or Ho) that the magnetic ions R3+ on the pyrochlore
lattice �p are substituted for by the nonmagnetic ions Y3+
were synthesized in some groups, and on which detailed
measurements were performed [18–20]. They reported, for
instance, the nonmonotonic dependence of the residual entropy
on the nonmagnetic ion density, and discussed its relevance to
the generalized formula of Pauling’s entropy [18]. Moreover,
an intriguing theoretical proposal that a new type of spin
glass state emerges by disorder effects on the liquidity of the
so-called Coulomb phase was made [21]. Therefore, the diluted
materials break new ground in the research of the dilution-
induced phenomena observed in the spin-ice systems [22,23].

In this paper, we consider the nearest-neighbor spin-
ice model with dilution, whose Hamiltonian, including the
Zeeman energy, is as follows:

H = −3J
∑
〈p,p′〉

S̃p · S̃p′ −
∑

p

S̃p · H, (1)

where S̃p = cpSp (p ∈ �p) and Sp is the magnetic moment of
the rare-earth ion. To represent the site dilution, we introduced
the quenched random variable cp (=0 or 1) which obeys the
probability distribution Pr(cp) = xδcp,0 + (1 − x)δcp,1 (where

δ is Kronecker’s delta) [24]. Thus, x ∈ [0,1] means the density
of the nonmagnetic ions. Due to the crystal field effects,
each magnetic moment exhibits a local easy axis anisotropy;
namely, if we denote the unit vectors parallel to the edges
of the diamond lattice �d (whose medial lattice is �p) as
up, then Sp = σpup (σp = ±1). Because up · up′ = − 1

3 for
nearest-neighboring sites p,p′ ∈ �p, Eq. (1) gives the diluted
antiferromagnetic (AF) Ising model with the coupling J > 0.
In the following discussion, we treat the magnetic field in
the [100] direction. That is, we suppose that H is parallel
to one of the cubic cell axes, e.g., H ‖ ez. Then, we define
h = |up · H| = H/

√
3.

For the pure case x = 0, the ground state of Eq. (1) consists
of the “two-in–two-out” tetrahedra; this shows the ice-type
degeneracy [7] and the algebraic decay of spin correlations
characterizing the Coulomb phase [25]. At finite temperature
T , the defects to represent the breaking of the ice rule behave as
emergent particles diffusively moving on �d [8,9]; we define
their charges as qd = ηd

∑
p∈{p(d)} σp (d ∈ �d), where {p(d)}

and ηd = ±1 represent four corner sites of the dth tetrahedron
and the sublattice-dependent sign factor, respectively (i.e.,
qd = ±2 and ±4 for x = 0). For the Coulomb phase, their
effects are relevant and yield an off-critical one. Conversely, for
the case x 	= 0, the tetrahedra including diluted sites may play
a role in quenched defects also disturbing spin correlations,
and may bring about the paramagnetic phase. In the following,
we provide a formula that is based upon the Husimi-cactus
approximation (HCA) of corner-sharing tetrahedra [26,27] and
predict, for instance, the dilution-induced crossover from the
cooperative to the conventional paramagnets even at T = 0. To
proffer evidence of these predictions, we perform the Monte
Carlo (MC) calculations; in doing them, we extend a cluster
algorithm of the MC simulation [28] to be adaptable for the
diluted spin ice.

Here, we should note that the nearest-neighbor spin-ice
model has been employed despite the long-range dipolar
interaction being non-negligible for quantitative arguments on
experiments [29,30]. As one can see below, this is because
the model permits us to accurately treat the dilution effects on
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FIG. 1. The Husimi-cactus construction for �p. The four red sites
in the central tetrahedron (shown with bold lines) form a red shell,
whereas the 12 blue sites in four tetrahedra connected to the red
shell form a blue shell. Similarly, the 36 green sites in 12 tetrahedra
connected to the blue shell (only a quarter of them are depicted) form
a green shell. Then, the Bethe tree �B draws lines through the centers
of the tetrahedra, and represents the shell structure of the tetrahedra
constructed, as above.

the spin ice by analytical and numerical methods. Moreover,
our treatment can capture the main qualitative features of
experiments, which thus can provide a basic understanding
of the dilution effects commonly observed in a group of
pyrochlore magnets [18–20,31].

II. HUSIMI CACTUS OF TETRAHEDRA

For the pure case, Jaubert et al. applied the Husimi-cactus
approximation and succeeded in describing properties of the
spin ice including the ground-state Kasteleyn transition driven
by the magnetic field in the [100] direction [11,14,32]. We
thus extend their argument to incorporate the effects of the
quenched randomness on the pyrochlore magnets obeying the
ice rule.

First, we explain the Husimi cactus of corner-sharing
tetrahedra, which is illustrated in Fig. 1. As on�p, each existing
tetrahedron is connected to four others. However, there are no
closed loops of tetrahedra. Therefore, the Husimi cactus for
�p is isomorphic to the Bethe tree with four neighbors �B,
where the center tetrahedron and the four parts jointed to it at
the red sites correspond to a center site and four branches of
�B, respectively. The Husimi-cactus approximation means to
treat Eq. (1) defined on the medial lattice of �B instead of �p.

Then, our ansatz for the quenched average of the diluted
spin ice is expressed as follows [33]:

ln Z(x,T ,h) =
4∑

l=0

Bl(4,x) ln Zl, (2)

where Bl(4,x) = (4
l

)
xl(1 − x)4−l is a probability that the

tetrahedron includes l diluted sites; i.e., l obeys the binomial
distribution l ∼ B(4,x). Zl represents a partition function of
a tree consisting of the center tetrahedron with l diluted sites
and 4 − l jointed branches. This ansatz means that the partition
functions Zl depend not on the diluted-site configurations,

but only on their numbers l. We attain this condition by
(if necessary) taking an average of the dependence over the
diluted-site configurations under a given l. When we denote a
partition function of one branch with the spin on the joint site
satisfying S · H = h as U (x,T ,h) [S · H = −h as D(x,T ,h)],
owing to the Bethe tree structure, explicit expressions on
Zl are given in their terms, e.g., Z1 = u(U 3 + D3) + (2u +
u−3)(U 2D + UD2), where u := eβJ , but the Zeeman energy
factor v := eβh was merged into U and D. One can find an
expression of Z0 in Ref. [32], and also those of Zl in the
Appendix.

Now, we give the caution on boundary effects in the
calculations using the Bethe tree. Because the number of
boundary sites is extensive [34], any measurements of physical
quantities O on a whole system suffer from strong boundary
effects. To circumvent them, we focus on the center tetrahe-
dron: Because the expressions of Zl retain some statistical
mechanical information of (4 − l)-spin states in the center
tetrahedron with l diluted sites, we can read off a contribution
Ol to calculate the physical quantities as

O(x,T ,h) =
4∑

l=0

Bl(4,x)Ol. (3)

Because Ol is expressed as a ratio of (4 − l)th-order homo-
geneous polynomials, instead of U and D, their ratio Y =
D/U is enough to calculate physical quantities [32]. For
example, the uniform magnetization in the ez direction can
be calculated as M(x,T ,h) = ∑4

l=0 Bl(4,x)Ml , where Ml :=
(∂/∂ ln U − ∂/∂ ln D) ln Zl in units of 1/

√
3 (explicit expres-

sions are summarized in the Appendix). One can see that this
formula satisfies the symmetry property of M = 0 at h = 0,
because the partition functions should be equal, and thus Y = 1
for h = 0.

To proceed, let us examine U and D. These satisfy recursion
relations that are conveniently represented by introducing shell
indices of �B, i.e., U (n), D(n), and Y (n). Following Ref. [32],
we suppose that n decreases with going to the outer shells of
�B (see Fig. 1) and is zero at the shell of boundary sites. Then,
using the same quenched average ansatz with Eq. (2), we can
represent the relations as

ln U (n+1) =
3∑

l=0

Bl(3,x) ln Xl(U
(n),D(n)) + ln v, (4)

ln D(n+1) =
3∑

l=0

Bl(3,x) ln Xl(D
(n),U (n)) − ln v, (5)

where Bl(3,x) = (3
l

)
xl(1 − x)3−l is the probability that the

tetrahedron with one spin in a fixed direction includes l diluted
sites, i.e., l ∼ B(3,x). These couple of equations are invariant
under the interchange U ↔ D accompanied by v ↔ v−1 due
to the symmetry of the system in Eq. (1). After a small
calculation, one obtains Xl(U,D), e.g., X1(U,D) = uU 2 +
1
3 (2u + u−3)(2UD + D2). As a result, we find the recursion
relations for Y (n) to be

ln Y (n+1) =
3∑

l=0

Bl(3,x) ln ψl(Y
(n)) − 2 ln v, (6)

042132-2



HUSIMI-CACTUS APPROXIMATION STUDY ON THE … PHYSICAL REVIEW E 97, 042132 (2018)

where ψl(Y ) := Xl(D,U )/Xl(U,D), and, for instance,

ψ1(Y ) = 3uY 2 + (2u + u−3)(2Y + 1)

3u + (2u + u−3)(2Y + Y 2)
.

To obtain a stationary solution of Eq. (6), we numerically
evaluate its asymptotic behavior in large n under the initial
condition Y (0)(x,T ,h) = 1, where the magnetic field is zero
on the boundary sites. Then, we find that it does converge, i.e.,
Y ∗ = limn→∞ Y (n). As expected, for h = 0, Eq. (6) results in
giving Y ∗ = 1 for all x and T , which implies that the system is
in the paramagnetic phase and does not exhibit a magnetic
phase transition [35]. In Fig. 2, we give the values of the
stationary solution ln Y ∗(x,T ,h) in a color map for x = 0.0,
0.1, 0.3, and 0.5, as examples. While these data are necessary
for investigations of diluted pyrochlores in a magnetic field
(we discuss this issue elsewhere), we concentrate on the h = 0
case and employ the stationary solution Y ∗(x,T ,0) = 1 in the
following (see also Sec. IV).

As an example of physical quantities, we first consider
the uniform magnetic susceptibility: 3T χ = ∂M/∂ ln v|v=1 =∑4

l=0 Bl(4,x)3T χl, where 3T χl := ∂Ml/∂Y |Y=Y ∗ × ∂Y/

∂ ln v|v=1. Because the second factor is determined via Eq. (6),
one can find the HCA result of 3T χ :

3T χl = 2∂Ml/∂Y∑3
j=0 Bl(3,x)(∂ψj/∂Y − 1)

∣∣∣∣
Y=Y ∗

. (7)

In particular, in the pure case, our formula reduces to

3T χ = 2∂M0/∂Y

∂ψ0/∂Y − 1

∣∣∣∣
Y=Y ∗

= 8(u2 + 1)

u2 + 2 + u−6
,
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FIG. 2. The color map of the stationary solution ln Y ∗(x,T ,h) for
x = (a) 0.0, (b) 0.1, (c) 0.3, and (d) 0.5. The horizontal and the vertical
directions indicate T ∈ [0.1,0.5] and h ∈ [0.0,0.4], respectively.
Note that ln Y ∗(x,T , − h) = − ln Y ∗(x,T , + h), so only the case
h > 0 was plotted.

which is the known result given by Jaubert et al. [14].
Also, the low-T limit is of importance to characterize the
dilution effects on the cooperative paramagnetic phase of
the spin ice [10]. The Curie constant per spin is extracted as
3CCurie = limT →0 3T χ/4/(1−x) = 6/(2x3−2x2+x+2) − 1
and exhibits a decrease from 2 to 1 with an increase of x. In the
following, we also check this dilution-induced crossover to a
conventional paramagnet by using the numerical simulation.

Next, we consider the defect number density n(x,T ) whose
HCA is given by an average of |qd | at the center tetrahedron.
Suppose thatn(x,T ) = ∑4

l=0 Bl(4,x)nl ; then, immediately, we
obtain

n0 = 4(2 + u−6)

3u2 + 4 + u−6
, n1 = 3(u + u−3)

3u + u−3
,

n2 = 2u−1

u + u−1
, n3 = 1, and n4 = 0. (8)

This expression (for instance n1) possesses expected behaviors
in high-T (n1 → 3

2 ) and low-T (n1 → 1) limits. One can see
that n(x,0) is symmetric about x = 1

2 , which is a consequence
of the ice-type constraint.

Similarly, the internal energy and the specific heat
are given, respectively, as E(x,T ) = ∑4

l=0 Bl(4,x)El with
El = −∂ ln Z∗

l /∂ ln u and C(x,T ) = ∑4
l=0 Bl(4,x)Cl with

FIG. 3. The comparison of the HCA results (solid curves) and the
MC data (marks) of the T dependence of (a) n(x,T ), (b) E(x,T ), (c)
3T χ (x,T ), and (d) C(x,T ); the statistical errors are roughly within
the mark size. We plot the values of the defect number per tetrahedron,
and those of other quantities per spin. The correspondence of values
of x with the colors and the marks is given in (b). The inset of (d)
gives the HCA results of the peak temperature of the specific heat
Tpeak and the peak height Cpeak = C(x,Tpeak). The vertical dotted line
indicates x � 0.61 (see text).
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T 2Cl = −∂El/∂ ln u (we denoted the partition function for
the stationary solution as Z∗

l ). The straightforward calculation
gives El and T 2Cl (see the Appendix) as follows:

E0 = 8(1 + u−6)

3u2 + 4 + u−6
− 2, E1 = 4u−3

3u + u−3
− 1,

E2 = 2u−1

u + u−1
− 1, and E3,4 = 0. (9)

At this stage, we consider the residual entropy per tetrahedron
to connect our result with previous calculations [7,18]. When
we write the first term of El as Ethermal

l to denote a thermal
energy measured from the ground-state energy (the second
term), our formula derives the entropy difference as S(x,∞) −
S(x,0+) = ∑4

l=0 Bl(4,x)
Sl with


Sl =
∫ ∞

0

Cl

T
dT =

∫ ∞

0
Ethermal

l d ln u. (10)

Then, one can perform the integrals on the right-hand side, and
find that 
S0 = ln 8

3 , 
S1 = ln 4
3 , 
S2 = ln 2, and 
S3,4 =

0, respectively. As a result, the residual entropy per spin
is given by Sres(x) = ln 2 − [1/2/(1 − x)]

∑4
l=0 Bl(4,x)
Sl ,

which reproduces the result given by Ke et al. [18] and, of
course, Pauling’s entropy Sres(0) = 1

2 ln 3
2 [7]. In Fig. 3, we

provide the curves of the T dependence of n(x,T ), E(x,T ),
3T χ (x,T ), and C(x,T ) for several values of x.

III. MONTE CARLO SIMULATIONS

As mentioned in the above, we first extend the loop-string
algorithm [28,36] to be adaptable for the diluted spin ice.
This extension is done in an additive manner to the original
algorithm: Imagine that the diluted tetrahedra are randomly
distributed on �d, and let us denote a set of those with l-diluted
sites as {dl}. Then, we can apply the original algorithm for {d0},
but we do nothing for {d3} and {d4} because they do not have
interaction energy. Further, for {d2}, two Ising spins in a tetra-
hedron can be treated by the Swendsen-Wang algorithm [37],
where two spins are bonded together with the probability
1 − u−2, if they form a one-in–one-out pair. For the remaining
tetrahedra {d1}, we should consider a decomposition equation
of the Boltzmann weights for three frustrated Ising spins at
the corners of a triangular plaquette [38,39]. Additionally, for
these remaining tetrahedra, we bond a one-in–one-out pair with
a certain probability: To make this concrete, we refer to the
left-handpanel of Fig. 1 in Ref. [28] and borrow the definitions
of the states and the graphs therein under an assumption that
the apex site is diluted. The eight states form two multiplets
(S2

0 , . . . ,S2
5 ) with −J and (S0

0 ,S4
0 ) with +3J ; we thus employ

two types of graphs, namely one zero-bond graph G0
0 and three

one-bond graphs G1
0, G1

2, and G1
4; their compatibility condition


(Sμ
u ,Gν

v) (=0 or 1) was given in Ref. [17]. From the symmetry
consideration, the graph weights should not depend on the
subscript [i.e., Wμ := W (Gμ

u )], and satisfy W 0 + 2W 1 = u

and W 0 = u−3. Therefore, we can obtain the probability to
bond one of two one-in–one-out pairs as

Pr
(
G1

u

∣∣S2
v

) = W 1

u
= 1 − u−4

2
. (11)

Consequently, the application of three kinds of algorithms
to {d0}, {d1}, and {d2} yields the random cluster represen-
tation [40] of the diluted spin ice. In the following MC
simulations, we do not encounter the so-called spin-freezing
difficulty (also known as the critical slowing down) that exists
in single-spin-flip algorithms (see Ref. [41]). This implies that
the dilution effects do not introduce a glassy nature into the
present nearest-neighbor spin-ice model [42,43], and the loops
and strings properly represent spin correlations in the frustrated
random spin system.

Now, we summarize our MC simulation results: The sys-
tems simulated are rhombohedral and subject to periodic
boundary conditions in all directions. We demonstrate the x

and T dependence of the above thermodynamic quantities for
systems with the linear dimension L = 64 (|�p| = 4×L3 =
1,048,576). We prepare 128 ∼ 256 diluted lattices to control
the statistical errors stemming from the random sample aver-
ages. In Fig. 3, we provide the results of the T dependence for
five dilution parameters x = 0.1, 0.3, 0.5, 0.7, and 0.9, and also
for the pure case x = 0 for comparison [14]. The solid curves
exhibit the HCA results derived in the above, and the marks plot
the MC data, where the errors are roughly within the mark size.
Then, it is clear that the agreements of analytical and numerical
results are very good for all parameter values ranging over three
decades of T and from weak to strong dilutions. Therefore, we
can say that our generalized HCA method provides reliable
results and offers a different approach in research on diluted
spin ice.

FIG. 4. The comparison of the HCA results (solid curves) and the
MC data (open circles) for the ground state, i.e., (a) n(x,0), (b) E(x,0),
(c) 3CCurie(x), and (d) Sres(x). We plot the MC data at the lowest
temperature simulated (kBT = 0.1J ) in (a)–(c), and the estimations
by the numerical T integration in (d), respectively. Statistical errors
are roughly within the mark size.
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Finally, we check our predictions on the ground-state
properties. In Fig. 4, we summarize the results of n(x,0),
E(x,0), 3CCurie(x), and Sres(x). With respect to Sres(x), two
of the present authors carried out the Wang-Landau MC
simulations [44] and succeeded in reproducing the gener-
alized Pauling entropy [22]. Nevertheless, for comparison,
we also provide MC data in Fig. 4(d), which were obtained
by numerical temperature integration of C(x,T )/T given
in Fig. 3(d). These exhibit how the HCA method provides
an accurate description of the ground-state properties of
the diluted spin ice and, in particular, the dilution-induced
crossover from the cooperative to the conventional paramagnet
that is signaled by the change of the Curie constant from
3CCurie = 2 to 1 occurring with the increase of the dilution
[see Fig. 4(c)]. Simultaneously, we confirm that the spin-
freezing difficulty is absent from our ground-state MC sim-
ulations using the generalized loop-string algorithm proposed
in this paper.

IV. DISCUSSION

Based on the HCA, we have investigated the dilution effects
on the spin-ice materials. Reflecting the absence of a magnetic
phase transition, Eq. (6) yields the ratio of partition functions
Y ∗ = 1 as its stationary solution at H = 0. Except for the
estimation of the magnetic susceptibility, this condition means
to treat the pyrochlore as independent tetrahedra: For instance,
for the internal energy, Eq. (9) represents the estimates of the
single tetrahedron at the center. Nevertheless, our approach
provides near-exact results on the thermodynamic quantities
evaluated in this research. This may be because the diluted sys-
tem is deep in the phase with short-range spin correlations, and
thus the contributions beyond the single tetrahedron are almost
negligible for these quantities. The same situation was already
reported for a diluted pyrochlore magnet SrCr9−9xGa3+9xO19,
where a cluster calculation also provided reliable results [33].

With respect to the experiments on diluted spin-ice materials
(R1−xYx)2Ti2O7 [18], the dipolar spin-ice (DSI) model with
the site dilution has been employed; the MC calculations
were performed and succeeded in accurately reproducing the
broad peak structure in the specific heat in the wide range
of x [19]. For the residual entropy, however, difficulties were
experienced in both their MC and the experiments: Due to
the spin-freezing dynamics at low T , it is difficult to carry
out thermal equilibrium measurements, which thus prevents
precise estimation [18,19]. Additionally, DSI was recognized
as exhibiting the phase transition to a magnetically ordered
state in the pure case [41], and thus the residual entropy,
strictly speaking, vanishes at x = 0 [45] (also see Ref. [46]).
On the one hand, although the present site-diluted nearest-
neighbor spin-ice (NSI) model is an oversimplified one, it
can qualitatively capture the dilution effects on the spin-ice
materials, for instance, for the broad peak structure in the
specific heat, the x dependence of the peak temperature
Tpeak and the nonmonotonic behavior of Cpeak = C(x,Tpeak)
[see the inset of Fig. 3(d)] as well as the nonmonotonic
behavior of Sres in Fig. 4(d). Our formula based on HCA
provides analytical expressions of these quantities, which were
revealed to be almost exact for NSI via comparisons with
MC data; this demonstrates, for instance, that Cpeak takes a

maximum at around the threshold of the site percolation on
�p, pc = 1 − x � 0.39 [43,47], which may imply a relevance
of the lattice connectivity to this peak formation mechanism.
We will report more detailed applications of our approach
elsewhere.

To summarize, we studied the diluted spin-ice model by
the use of both the Husimi-cactus approximation method
and the Monte Carlo method based on the generalized loop-
string algorithm. The comparison between them revealed the
remarkable accuracy and the qualitative predictability of our
formula for physical quantities. Based on our comparison, we
clarified the dilution-induced crossover from the cooperative to
the conventional paramagnets that may be commonly observed
in the spin-ice materials.
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APPENDIX: QUANTITIES USED IN HCA CALCULATIONS

In this Appendix, we write out quantities used (but, not
explicitly given) in the Sec. II. It is noted that quantities defined
in the text, but not listed below, take zero.

In Eq. (2), we introduced Zl , which are given as follows:

Z0 = u2(U 4+D4) + 4(U 3D + UD3) + 2(2u2 + u−6)U 2D2,

Z1 = u(U 3 + D3) + (2u + u−3)(U 2D + UD2),

Z2 = 1
3 (2u + u−1)(U 2 + D2) + 2

3 (u + 2u−1)UD,

Z3 = U + D,

Z4 = 1.

Below Eq. (3), we defined Ml(Y ) as contributions to the
uniform magnetic moment, which are given as follows:

M0 = 4u2(1 − Y 4) + 8(Y − Y 3)

u2(1 + Y 4) + 4(Y + Y 3) + 2(2u2 + u−6)Y 2
,

M1 = 3u(1 − Y 3) + (2u + u−3)(Y − Y 2)

u(1 + Y 3) + (2u + u−3)(Y + Y 2)
,

M2 = 2(2u + u−1)(1 − Y 2)

(2u + u−1)(1 + Y 2) + 2(u + 2u−1)Y
,

M3 = 1 − Y

1 + Y
.

The quantities Xl(U,D) and ψl(Y ) in the recursion relations
Eqs. (4)–(6) are given, respectively, as

X0 = u2U 3 + 3U 2D + (2u2 + u−6)UD2 + D3,

X1 = uU 2 + 1
3 (2u + u−3)(2UD + D2),

X2 = 1
3 (2u + u−1)U + 1

3 (u + 2u−1)D,

X3 = 1,
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and

ψ0 = u2Y 3 + 3Y 2 + (2u2 + u−6)Y + 1

u2 + 3Y + (2u2 + u−6)Y 2 + Y 3
,

ψ1 = 3uY 2 + (2u + u−3)(2Y + 1)

3u + (2u + u−3)(2Y + Y 2)
,

ψ2 = (2u + u−1)Y + (u + 2u−1)

(2u + u−1) + (u + 2u−1)Y
,

ψ3 = 1.

The derivatives in Eq. (7) are given as follows:

∂M0

∂Y

∣∣∣
Y=1

= − 8(u2 + 1)

3u2 + 4 + u−6
,

∂M1

∂Y

∣∣∣
Y=1

= − 11u + u−3

2(3u + u−3)
,

∂M2

∂Y

∣∣∣
Y=1

= −2(2u + u−1)

3(u + u−1)
,

∂M3

∂Y

∣∣∣
Y=1

= −1

2
,

and

∂ψ0

∂Y

∣∣∣
Y=1

= u2 − u−6

3u2 + 4 + u−6
,

∂ψ1

∂Y

∣∣∣
Y=1

= 2(u − u−3)

3(3u + u−3)
,

∂ψ2

∂Y

∣∣∣
Y=1

= u − u−1

3(u + u−1)
.

In the last paragraph of Sec. II, we defined Cl as
contributions to the specific heat, which are given as
follows:

T 2C0 = 48(u2 + 4u−4 + 3u−6)

(3u2 + 4 + u−6)2
,

T 2C1 = 48u−2

(3u + u−3)2
,

T 2C2 = 4

(u + u−1)2
.
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