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Density profiles of a self-gravitating lattice gas in one, two, and three dimensions
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We consider a lattice gas in spaces of dimensionality D = 1,2,3. The particles are subject to a hardcore
exclusion interaction and an attractive pair interaction that satisfies Gauss’ law as do Newtonian gravity in D = 3,
a logarithmic potential in D = 2, and a distance-independent force in D = 1. Under mild additional assumptions
regarding symmetry and fluctuations we investigate equilibrium states of self-gravitating material clusters, in
particular radial density profiles for closed and open systems. We present exact analytic results in several instances
and high-precision numerical data in others. The density profile of a cluster with finite mass is found to exhibit
exponential decay in D = 1 and power-law decay in D = 2 with temperature-dependent exponents in both cases.
In D = 2 the gas evaporates in a continuous transition at a nonzero critical temperature. We describe clusters
of infinite mass in D = 3 with a density profile consisting of three layers (core, shell, halo) and an algebraic
large-distance asymptotic decay. In D = 3 a cluster of finite mass can be stabilized at T > 0 via confinement to
a sphere of finite radius. In some parameter regime, the gas thus enclosed undergoes a discontinuous transition
between distinct density profiles. For the free energy needed to identify the equilibrium state we introduce a
construction of gravitational self-energy that works in all D for the lattice gas. The decay rate of the density
profile of an open cluster is shown to transform via a stretched exponential for 1 < D < 2, whereas it crosses
over from one power-law at intermediate distances to a different power-law at larger distances for 2 < D < 3.
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I. INTRODUCTION

This is a statistical mechanical study of a classical gas of
massive particles involving short-range repulsive and long-
range attractive pair interactions. The former is a hardcore
exclusion interaction and the latter a Newtonian gravitational
force analyzed in situations of spherical, cylindrical, and
planar symmetry. The latter two situations are customarily
described as modified long-range interactions operating in
lower-dimensional spaces.

The interplay between interactions and thermal fluctuations
is well known to produce ordering tendencies that strongly
depend on dimensionality D. In cases of interactions that are
exclusively of short range, all evidence points to a weakening
of fluctuations and a strengthening of ordering tendencies
with increasing D. Long-range attractive forces reverse the
relationship between ordering tendency and dimensionality
in at least one sense: the stability of self-gravitating clusters
against evaporation decreases as D increases.

The lattice gas with short-range attractive forces confined
to a box is known to undergo a phase transition at temperatures
T > 0 only in D � 2. Mean-field predictions for the critical
singularities are accurate only at D � 4 [1,2]. The self-
gravitating lattice gas also features marginal dimensionalities.
InD < 2 the gas is stable against evaporation at all finite T and
no transitions of any kind occur. Stable clusters of finite mass
at finite T only exist in D � 2. Stable clusters in D � 3 do
exist at T > 0 but have infinite mass. Thermal fluctuations are
reined in by the long-range interactions to render mean-field
predictions accurate in all D with few caveats.

A different but no less vital part of the lattice gas is played
by the hardcore exclusion interaction. It prevents the gas from
suffering a gravitational collapse at low T , which is well known
to happen to a classical gas of point particles [3,4]. Different
schemes [3,5–11] of short-distance regularization have been
used before with considerable success and consistency as
substitutes for the Pauli principle operating in fermionic matter
[10,12].

The lattice gas has rarely been invoked for collapse-
proof self-gravitating gases. Notable exceptions are papers by
Chavanis [13] and by Pirjol and Schat [14]. The advantages
offered by the lattice-gas equation of state include that its struc-
ture is simple, fully transparent, microscopically grounded,
and independent of D. Its built-in hardcore repulsion serves
the dual purpose of removing short-distance divergences and
of providing stability against (artificial) gravitational collapse.
The density profiles of all macrostates that are mechanically
and thermally stable can be derived from a single nonlinear
second-order ordinary differential equation (ODE) with phys-
ically motivated boundary conditions and the two parameters
T and D.

The study of self-gravitating gases has a long tradition in
statistical physics and astrophysics with an impressive record
of findings for stable and metastable states and for processes
close to and far from equilibrium [15–17]. The topics closest
to our work have been admirably reviewed by Chavanis [18]
and Padmanabhan [19].

The inequivalence of statistical ensembles and the validity
range of mean-field theory are two aspects that matter for our
study but will not be points of emphasis. They have already
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been treated rather comprehensively [20–29]. Our work adds
to the numerous studies of self-gravitating classical gases new
results for the shape and the decay laws of density profiles in
open and closed, finite and infinite clusters, at high and low T ,
in D-dimensional space.

Existing results for density profiles pertaining to a gas of
classical point particles are readily reproduced in the low-
density limit of our analysis. The lattice gas model at higher
densities exhibits signature effects of the hardcore repulsion in
the density and pressure profiles.

In Sec. II we establish the dual conditions of mechanical and
thermal equilibrium that constitute the foundation for the sta-
tistical mechanical analysis. We derive differential equations
for the radial profiles of density, pressure, and gravitational
potential, including boundary conditions for closed and open
systems. We also construct an expression for the gravitational
self-energy that can be used consistently in all D, specifically
as part of the free energy needed to identify the equilibrium
state among multiple solutions. In Sec. III we present density
and pressure profiles for a closed system of finite mass in
D = 1,2,3, stabilized into a cluster by gravity alone or assisted
by an outer wall. Density profiles of an open system with finite
or infinite mass are analyzed in Sec. IV.

II. EQUILIBRIUM CONDITIONS

The foundations of our model and the tools for its analysis
are in line with a host of previous work. Our claim to originality
is the lattice-gas context with focus on density profiles aided
by an alternative free-energy expression.

A. Thermal equilibrium

The ideal lattice gas (ILG) in a closed, homogeneous
environment consists of Nc cells of volume Vc with N particles
distributed among them. The prohibition of multiple cell
occupancy represents a hardcore repulsive interaction between
particles. The equation of state (EOS), which expresses the
equilibrium relation between the (spatially uniform) intensive
state variables pressure p, temperature T , and density ρ, is well
known for the ILG and approaches that of the ideal classical
gas (ICG) upon dilution [30–34]:

pVc

kBT
= − ln(1 − ρ)

ρ�1� ρ, ρ = N

Nc
. (1)

A graphical representation of the EOS for the ILG and its ICG
asymptotics is shown in Fig. 1 (main plot).

The hardcore repulsive interaction of the ILG provides
mechanical stability against collapse at high p or low T and
approximates (in overly sturdy manner) an effect of the Pauli
exclusion principle operating in fermionic matter [12,18]. For
comparison we show in Fig. 1 (inset) isotherms of the ideal
Fermi-Dirac (FD) gas in dimensions D = 1,2,3.

B. Mechanical equilibrium

In the presence of an external potential U (r), the thermal
equilibrium state is described, at uniform T , by profiles
p(r) and ρ(r). The EOS (1) still holds locally under mild
assumptions. The local balancing of forces is expressed by

FIG. 1. Main plot: EOS for the ILG (solid line) and the ICG
(dashed line) valid in anyD. Inset: Isotherms for the ideal Fermi-Dirac
gas in D = 1,2,3 (solid lines from top down) with reference values
vT

.= λD
T and pT

.= kBT/vT (see Appendix E) and ideal Maxwell-
Boltzmann gas (dashed line). The curves cross over from a linear, ICG-
like behavior at low densities to a power-law behavior, ∼(vT /v)1+2/D ,
at high densities.

an equation of motion (EOM) that relates U (r) with p(r)
and ρ(r).

In the self-gravitating ILG, the potential U (r) is derived
from the interaction potential (energy) between particles of
mass mc occupying cells a distance rij apart:

Vij

Gm2
c

=

⎧⎪⎨
⎪⎩

rij : D = 1,

ln rij : D = 2,

−r−1
ij : D = 3,

(2)

where G is a (D-dependent) constant of gravitation. The
gravitational interaction force,

Fij = −Gm2
c

rD−1
ij

, (3)

obeys the familiar inverse-square law in D = 3 and has been
generalized to satisfy Gauss’ law also in D = 1,2.

In a radially symmetric self-gravitating cluster with center
of mass at r = 0, Gauss’ law for the gravitational field g(r) or
potential U (r) reduces to

g(r)
.= −dU

dr
= −Gmin

rD−1
, (4)

where min is the mass of all occupied cells inside radius r and
related to the density profile ρ(r) as follows:

min = mc

Vc

∫ r

0
dr ′(ADr ′D−1)ρ(r ′), (5)

where

AD = 2πD/2

�(D/2)
=

⎧⎨
⎩

2 : D = 1,

2π : D = 2,

4π : D = 3,

(6)

is the surface area of the D-dimensional unit sphere.
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The two conditions of thermal equilibrium (EOS) and
hydrostatic equilibrium (EOM),

p(r)Vc

kBT
= − ln[1 − ρ(r)], (7)

d

dr
p(r) = mc

Vc
ρ(r)g(r), (8)

respectively, the latter in conjunction with Eqs. (4) and (5),
constitute a closed set of relations between the functions ρ(r),
p(r), and U (r) at given (uniform) T .

C. Differential equations

For the purpose of our analysis it is convenient to use the
dimensionless scaled variables,

r̂
.= r

rs
, p̂

.= p

ps
, T̂

.= kBT

psVc
, Û .= Umc

psVc
, (9)

for radius, pressure, temperature, and potential, respectively,
with reference values

rDs = NVcD
AD

, ps = ADG

2D
m2

c

V 2
c

r2
s . (10)

In the analysis at T > 0 we express the EOS (7) and the
EOM (8) with Eqs. (4) and (5) using these scaled variables,

p̂(r̂) = −T̂ ln[1 − ρ(r̂)], (11)

dp̂

dr̂
= −ρ(r̂)

dÛ
dr̂

= −2Dρ(r̂)
∫ r̂

0
dr̂ ′ρ(r̂ ′)

(
r̂ ′

r̂

)D−1

, (12)

and infer the relation

Û (r̂) = T̂ ln

[
1 − ρ(r̂)

1 − ρ(0)

ρ(0)

ρ(r̂)

]
, (13)

between potential and density with the (convenient) reference
value Û (0) = 0 imposed. Elimination of p̂(r̂) yields

T̂ ρ ′(r̂)

ρ(r̂)[1 − ρ(r̂)]
= −2D

∫ r̂

0
dr̂ ′

(
r̂ ′

r̂

)D−1

ρ(r̂ ′), (14)

from which we conclude that the density must be a monotoni-
cally decreasing function of r̂ with zero initial slope, ρ ′(0) = 0.
Equation (11) then implies that p̂′(0) = 0.

It is useful to convert Eq. (14) into the second-order
nonlinear ODE for the density profile,

ρ ′′

ρ
+ D − 1

r̂

ρ ′

ρ
− 1 − 2ρ

1 − ρ

(
ρ ′

ρ

)2

+ 2D
T̂

ρ(1 − ρ) = 0.

(15)

Equivalent ODEs for pressure and potential,

p̂′′ + D − 1

r̂
p̂′ − 1 − ρ

T̂ ρ
p̂′2 + 2Dρ2 = 0, (16)

Û ′′ + D − 1

r̂
Û ′ − 2Dρ = 0, (17)

imply the use of Eqs. (11) and (13) if T̂ > 0 [35]. These last
two ODEs are most often used in the limit T̂ → 0, where the
functional relations Eqs. (11) and (13) break down.

The ODEs (15)–(17) also hold in open systems. Here
Eq. (13) is best rendered in the form

ρ(r̂) = 1

1 + e(Û−μ̂)/T̂
, (18)

where the (scaled) chemical potential,

μ̂
.= μ

psVc
= −T̂ ln

[
1 − ρ(0)

ρ(0)

]
, (19)

controls the average number of particles.

D. Boundary conditions

The physically relevant boundary conditions of Eq. (15)
or (16) for a closed system (fixed N ) confined to a region of
maximum radius R̂

.= R/rs > 1 involve one local relation,

ρ ′(0) = 0, p̂′(0) = 0, (20)

and one nonlocal relation for ρ(0) = ρ0, p̂(0) = p̂0, namely,

D
∫ R̂

0
dr̂ r̂D−1ρ(r̂) = 1, (21)

p̂(0) = 1 + p̂(R̂) : D = 1, (22a)

2D(D − 1)
∫ R̂

0
dr̂ r̂2D−3p̂(r̂)

= 1 + DR̂2(D−1)p̂(R̂) : D > 1, (22b)

respectively. On some occasions, the integral conditions have
multiple solutions for a given ρ0 or p̂0. In one such case
(Sec. III D), three solutions are identified as representing a
stable, a metastable, and an unstable density profile.

The local conditions Eq. (20) follow from Eqs. (11) and
(12) as discussed earlier. The nonlocal condition Eq. (21)
reflects particle conservation and Eq. (22) is derived from
integration of Eq. (12). In the absence of wall confinement
we set p̂(R̂) = 0 for R̂ → ∞. In D = 1, where the interaction
force Eq. (3) is independent of distance, the pressure at the
center of an unconfined cluster is invariant: p̂(0) = 1. Both
boundary conditions of Eq. (17) are local,

Û(0) = Û ′(0) = 0, (23)

and follow from Eqs. (12) and (13).
Using the center of a symmetric cluster as the reference

point for the potential differs from common practice in
Newtonian mechanics (D = 3) but is more convenient for
comparisons with results in D = 1,2. We then have U (r̂) � 0
at any radius.

In open systems, conditions Eq. (20) still hold, whereas
Eq. (21) needs to be replaced by ρ(0) = 1/(1 + e−μ̂/T̂ ), and
Eq. (22) by the value for p̂(0) inferred from ρ(0) via Eq. (11).

E. ICG limit

If we use the EOS of the ICG, p̂(r̂) = T̂ ρ(r̂), instead of the
EOS (11) of the ILG in the transformations of Sec. II C we end
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up with the ODE,

ρ ′′

ρ
+ D − 1

r̂

ρ ′

ρ
−

(
ρ ′

ρ

)2

+ 2D
T̂

ρ = 0, (24)

which is a low-density approximation of Eq. (15). The effects
of hardcore repulsion are no longer present. This ODE for
D = 3 is well known in astrophysics as a Lane-Emden type
equation [36]. The solutions of Eq. (24) are relevant for the
ILG in regimes where ρ(r̂) � 1 holds. This can be the case
locally at large r̂ or globally at high T̂ .

It is worthwhile to discuss the ICG density profiles in
some detail. They exhibit attributes of universality which their
ILG counterparts do not. These features of universality are
best brought into focus if we introduce further sets of scaled
variables.

(i) For a closed ICG system (of finite mass) confined to a
space of maximum radius R̂, we set

r̄
.= r̂

R̂
, ρ̄

.= R̂Dρ, T̄
.= R̂D−2T̂ , (25)

which leaves the structure of Eq. (24) invariant,

ρ̄ ′′

ρ̄
+ D − 1

r̄

ρ̄ ′

ρ̄
−

(
ρ̄ ′

ρ̄

)2

+ 2D
T̄

ρ̄ = 0, (26)

and removes the R̂-dependence from the condition Eq. (21):

D
∫ 1

0
dr̄ r̄D−1ρ̄(r̄) = 1. (27)

(ii) For an open cluster (of finite or infinite mass) stabilized
by gravity alone we set [with ρ0 = ρ(0)]

r̃
.=

√
2Dρ0

T̂
r̂, ρ̃

.= ρ

ρ0
. (28)

This choice produces the ODE,

ρ̃ ′′

ρ̃
+ D − 1

r̃

ρ̃ ′

ρ̃
−

(
ρ̃ ′

ρ̃

)2

+ ρ̃ = 0, (29)

with (local) boundary conditions,

ρ̃(0) = 1, ρ̃ ′(0) = 0. (30)

Both rescaling operations (i) and (ii) provide useful low-
density benchmarks for the ILG.

F. Free energy

In situations where Eq. (15) admits multiple solutions for
physically relevant boundary conditions, the equilibrium state
will be represented by the solution with the lowest free energy.
For a closed system with a finite number N of particles
stabilized by gravity alone or assisted by a rigid wall at radius
R̂, the relevant thermodynamic potential is the (dimensionless)
Helmholtz free energy,

F̂(T̂ ) = ÛS − T̂ Ŝ. (31)

ÛS
.= US/NpsVc is the gravitational self-energy relative to a

reference state of choice. Ŝ is the ILG entropy density, e.g.,
from Ref. [33], integrated over the space available to the

particles:

Ŝ .= S
NkB

= D
∫ R̂

0
dr̂ r̂D−1S̄[ρ], (32a)

S̄[ρ] = −ρ ln ρ − (1 − ρ) ln(1 − ρ), (32b)

with R̂ → ∞ in the absence of wall confinement.
The construction of ÛS in D dimensions requires cir-

cumspection. The commonly used expression of gravitational
self-energy U

(F)
S for a symmetric cluster in D = 3 is the

quantity 1
2ρm(r)UF(r) integrated over the (finite or infinite)

space occupied by the cluster. Here ρm(r) is the mass density
and UF(r) = −Gminr

−1 the gravitational potential generated
by the (symmetric) cluster. With the convention UF(∞) = 0,
the (negative) self-energy U

(F)
S thus obtained can be interpreted

as the change in potential energy during the assembly of a
cluster of particles that originate from places out at infinity,
where their interaction potential Eq. (2) vanishes. The trouble
is that in D � 2 there are no such locations.

The only reference point for the gravitational potential that
is practical in all D is at the center of the cluster: U (0) = 0.
A practical reference value for the self-energy then also
depends on a convenient reference configuration of particles.
For a finite ILG cluster (closed system) the obvious reference
configuration is the ground state, a symmetric cluster of unit
density for 0 � r � rs as described below in Sec. III A. The
gravitational self-energy US of any other macrostate relative to
the ground state is then positive.

In Appendix A we derive an integral expression for US that
works in any dimension D � 1. We also prove the equality,
�US = �U

(F)
S , in D = 3 between macrostates with arbitrary

density profiles. The scaled self-energy expression reads

ÛS =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2D
D − 2

∫ ∞

0
dr̂2 ρ(r̂2)

[
r̂2

1 r̂D−1
2 − r̂D1 r̂2

]
,

4
∫ ∞

0
dr̂2 ρ(r̂2)r̂2

1 r̂2 ln
r̂2

r̂1
,

(33)

for D �= 2 and D = 2, respectively, where r̂1 depends on the
integration variable r̂2 via

r̂D1 = D
∫ r̂2

0
dr̂ r̂D−1ρ(r̂). (34)

III. CLOSED SYSTEMS

Here we present density profiles (and some pressure pro-
files) for self-gravitating ILG clusters that are closed in the
thermodynamic sense. The accessible space is infinite in some
cases and finite in others. The total mass is finite and fixed in
all cases.

A. T̂ = 0

At zero temperature the ILG forms a solid cluster of radius
rs containing N particles. The density has a step discontinuity,

ρ(r̂) = θ (1 − r̂). (35)

The pressure profile inferred from Eq. (12) is quadratic,

p̂(r̂) = (1 − r̂2)θ (1 − r̂), (36)
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FIG. 2. Scaled density, pressure, and potential versus scaled
radius of a self-gravitating ILG in D = 1,2,3 at T̂ = 0.

with reference pressure ps realized at r = 0. The ODE (15)
reduces to ρ(1 − ρ) = 0, which is consistent with Eq. (35),
and the ODE (16) to p̂′′ + (D − 1)p̂′/r̂ + 2D = 0 for r̂ � 1,
which is consistent with Eq. (36).

For the potential we solve Eq. (17) with Eq. (23) and use
ρ(r̂) from Eq. (35). The resulting expression in scaled units
Eq. (9) is

Û (r̂) = r̂2 : 0 � r̂ � 1, (37a)

Û (r̂) =

⎧⎪⎨
⎪⎩

2r̂ − 1 : D = 1,

2 ln r̂ + 1 : D = 2,

3 − 2/r̂ : D = 3,

r̂ � 1. (37b)

At large distances, Û (r̂) rises to infinity linearly in D = 1
and logarithmically in D = 2, but levels off to a finite value
in D = 3. In Fig. 2 we show the T̂ = 0 profiles Eqs. (35),
(36), and (37) in a comparative plot. It is well-known that any
finite cluster is unstable against evaporation in D > 2 due to
the non-confining nature of the gravitational attraction.

B. D = 1

The solution of the ODE (15) in D = 1 with R̂ = ∞
produces the curves depicted in Fig. 3. Increasing T̂ from
zero converts the sharp solid surface at r̂ = 1 into an interface
of increasing width between a high-density core at r̂ < 1
sandwiched between low-density wings at r̂ > 1. The density
profile softens and broadens but the cluster stays intact at
any finite T̂ . Near the center of the cluster ρ decreases as
the gas spreads out [Fig. 3(b)]. The pressure is invariant at
the center of the cluster, p̂(0) = 1 as explained in Sec. II D,
everywhere else it increases as T̂ rises. The pressure profile
remains monotonically decreasing but becomes increasingly
flat [Fig. 3(a)].

The exact asymptotic behavior of the ILG density profile is
an exponential decay with T̂ -dependent exponent,

ρ(r̂)as ∼ e−2r̂/T̂ : r̂ � 1, (38)

FIG. 3. Profiles in D = 1 of (a) pressure and (b) density for
the self-gravitating ILG cluster at T̂ = 0 (dashed curve) and T̂ > 0
(solid curves). (c) ILG density profile at higher T̂ (solid curves) in
comparison with the asymptotic ICG profiles Eq. (39) (dashed curves)
in a log plot. (d) ICG density profiles Eq. (39) at low T̂ .

as proven in Appendix C. It is consistent with the analytic
solution,

ρ(r̂)ICG = 1

T̂
sech2

(
r̂

T̂

)
, (39)

of the ODE (24) representing the ICG.
In Fig. 3(c) we compare the numerical ILG solutions with

the analytic ICG solution Eq. (39). At all three values of T̂ the
rate of exponential tailing off agrees. With increasing T̂ the
agreement improves overall. The ICG result Eq. (39) was found
previously and used in a variety of physics contexts [37–39].

The asymptotic decay Eq. (38) also emerges from the
low-T̂ solid-gas approximation invoked in several studies (see
Appendix B). Moreover, the density profile Eq. (39) accurately
describes self-gravitating quantum gases (fermions or bosons)
at sufficiently low density [12,40].

We note that for the ICG the density profile Eq. (39) is
valid at all T̂ . Point particles experience no hardcore repulsion,
which permits the density at r̂ = 0 to grow without limit as
T̂ → 0 [Fig. 3(d)]. However, unlike in higher D, no gravita-
tional collapse at T̂ > 0 takes place. InD = 1 the gravitational
force Eq. (3) does not diverge for rij → 0. Confinement by an
outer wall at R̂ < ∞ leaves the ICG density profile Eq. (39)
largely intact. The solution of Eqs. (25)–(27) yields

ρ̄(r̄)ICG = b sech2(br̄)

tanh b
, bT̄ tanh b = 1. (40)

C. D = 2

The numerical analysis of the ODE (15) in D = 2 for a
finite-mass system with R̂ = ∞ yields the pressure and density
profiles shown in Figs. 4(a) and 4(b). Starting from T̂ = 0
(dashed lines) we observe that the pressure at the center of
the cluster drops rapidly with rising T̂ , unlike in D = 1. The
density near r̂ = 0 drops more rapidly than it does in D = 1.

The power-law decay with T̂ -dependent exponent of the
density is illustrated in Fig. 4(c). This numerical evidence is
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FIG. 4. Profiles in D = 2 of (a) pressure and (b) density for the
self-gravitating ILG cluster at T̂ = 0 (dashed curve) and 0 < T̂ < T̂c

(solid curves). (c) ILG density profiles at 0 < T̂ < T̂c (solid curves)
in comparison with the power-law asymptotics ∼r̂−2/T̂ (dotted lines)
in a log-log plot. (d) ICG density profile Eq. (43) at T̂ > T̂c.

confirmed by the exact leading term,

ρ(r̂)as ∼ r̂−2/T̂ : r̂ � 1, (41)

of the asymptotic behavior as proven in Appendix C. The
solid-gas approximation of Appendix B predicts the decay law
Eq. (41) to hold throughout the gas albeit with no hint of the
impending qualitative changes at higher T̂ or smaller r̂ .

Unlike in D = 1, a cluster of finite mass only survives
at sufficiently low T̂ . The numerical analysis of Eq. (15)
indicates that the density maximum ρ(0) decreases gradually
with increasing T̂ , reaching zero at a finite T̂c, thus suggesting
that the gas evaporates in a continuous transition. The transition
temperature can be pinned down in the ICG limit, which
remains accurate for the ILG because evaporation takes place
at low density.

We again find an analytic solution of the ODE (24) for the
ICG but inD = 2 this plays out differently. Under confinement
(R̂ < ∞) and for temperatures exceeding the threshold value,

T̂c = 1
2 , (42)

the ODE (24) produces the exact solution,

ρ(r̂)ICG = 2T̂

R̂2(2T̂ − 1)

[
1 + 1

2T̂ − 1

(
r̂

R̂

)2
]−2

. (43)

For comparison with the D = 1 ICG density profile Eq. (39)
plotted in Fig. 3(d) we show in Fig. 4(d) the D = 2 profile
Eq. (43) for various T̂ > T̂c. This profile is unstable against
gravitational collapse as T̂ is lowered past the value T̂c = 1

2 .
With scaled variables Eq. (25) only the parameter T̂ = T̄

remains:

ρ̄(r̄)ICG = 2T̄ (2T̄ − 1)

[r̄2 + 2T̄ − 1]2
: 0 � r̄ � 1, (44)

This scaled ICG density profile shares with its D = 1 coun-
terpart Eq. (40) the property of gradually turning into a δ-
function at r̄ = 0. In D = 1 this happens at T̄ = 0, in D = 2

FIG. 5. Density profiles in D = 2 for the self-gravitating ILG
confined to a disk-shaped space of radii R̂ = 20,30,50,100 at tem-
peratures (a) T̂ = 0.45 (dashed line), and T̂ = T̂c = 0.5 (solid lines),
and (b) T̂ = 0.55.

at T̄ = T̄c = 1
2 . The pressure against the outer wall at r̄ = 1

then vanishes in both cases. The pressure at the center of the
ICG cluster stays finite as T̄ → 0 inD = 1, whereas it diverges
as T̄ → T̄c in D = 2.

Returning to scaled variables Eq. (9), we find that at T̂ > T̂c,
confinement is necessary to prevent the ICG from evaporating.
If we take the limit R̂ → ∞ at T̂ > T̂c, the profile Eq. (43)
flattens and approaches zero. However, if we take the combined
limit,

T̂ → T̂c, R̂ → ∞,
T̂ 2

2R̂2(2T̂ − 1)
= c > 0, (45)

the nontrivial ICG density profile,

ρ(r̂)ICG = 4c

T̂

[
1 + 2c

(
r̂

T̂

)2
]−2

, (46)

emerges. It has an extremely fragile status between collapse
and evaporation. Indeed, Abdalla and Rahimi Tabar [41] had
shown previously that the self-gravitating ICG in D = 2 un-
dergoes a transition from a homogeneous phase to a collapsed
phase at T̂c = 1

2 and that the (precarious) ICG state at T̂c has
the density profile Eq. (46). This nontrivial ICG density profile
was also identified and used in other studies [38,42–44].

The ICG profile Eq. (46) is relevant in the ILG context
for 0 < c � 1, where it can be identified as the solution
of Eq. (15) for the case where T̂ → T̂c from below. This
asymptotic solution also predicts the correct exponent value,
−2/T̂ → −4, in the power law Eq. (41). Interestingly, the
structure of Eq. (46) is a special case of an expression that
emerges as quasi-equilibrium state from a kinetic model of
self-gravitating systems in D = 2,3 [45,46].

In Fig. 5 we look at the stable and unstable self-gravitating
ILG cluster from a different perspective. We observe how,
at constant T̂ , the density profile changes as we increase the
radius R̂ of the disk area to which the gas is being confined. At
T̂ = 0.45, close below T̂c, the cluster stays intact. The profile
change is imperceptibly small on the scale of the graph as the
wall is moved from R̂ = 20 to R̂ = 100. The power-law decay
Eq. (41) is firmly established with near constant amplitude.

Performing the same isothermal expansion at T̂ = T̂c pro-
duces profiles that approach the shape of Eq. (46) with a
gradually decreasing value of parameter c and a power-law
decay, ∼r̂−4, over a growing range of r̂ . The evolution of the
density profile under isothermal expansion is yet different at
T̂ = 0.55 close above T̂c. The asymptote Eq. (41) is no longer

042131-6



DENSITY PROFILES OF A SELF-GRAVITATING … PHYSICAL REVIEW E 97, 042131 (2018)

FIG. 6. Density profiles within the stated temperature range of
the ILG confined to a spherical region of radius (a) R̂ = 3 and
(b) R̂ = 4. Case (a) has a unique solution for all five values of
T̂ whereas case (b) has three solutions for the three intermediate
values of T̂ = 0.195,0.20,0.205. As T̂ is being raised, ρ(0) decreases
(increases) for the solid (dashed) curves.

applicable. The profile flattens out across a central area of
increasing width and then curves downward near the confining
wall.

The data in Fig. 5 suggest that the ILG at fixed 1 � R̂ <

∞ and rising temperature undergoes a crossover centered at
T̂c = 1

2 from a stable cluster with power-law profile Eq. (41) in
the wings to a dilute gas with increasingly flat profile. Only for
R̂ → ∞ does the crossover turn into the transition described
previously.

Our ILG study shows that the hardcore repulsion does not
affect the transition temperature. The fact that close below T̂c

the gas is already very dilute everywhere is consistent with
that observation. However, in strong contrast to the ICG, which
suffers a gravitational collapse, the ILG exhibits a fluid phase at
T̂ < T̂c with nontrivial density profile and T̂ -dependent power-
law decay all the way down to T̂ → 0.

The self-gravitating FD gas, which shares with the ILG two
key attributes, namely a strong short-range repulsion of sorts,
relevant at high densities, and the ICG limit at low densities,
exhibits similar phase behavior [10,12] (see Appendix E).

D. D = 3

Stable self-gravitating clusters at T̂ > 0 of finite mass in
D = 3 require confinement: 1 < R̂ < ∞. The ILG and ICG
both undergo transitions. They are of a different nature than in
D = 2. We begin by examining the ILG. The results will alert
us to the correct interpretation of the ICG data to be analyzed
next.

The numerical analysis of Eq. (15) reveals that there are two
parameter regimes. In regime (i) for small R̂, no precipitous
events happen as T̂ is lowered, but in regime (ii) for large R̂

we find multiple solutions of Eq. (15) with identical conditions
Eqs. (20) and (21).

One case belonging to each regime is illustrated in Fig. 6.
When the ILG is confined to a sphere of (scaled) radius R̂ = 3,
we find a unique density profile as shown in Fig. 6(a). We
only show such profiles across a narrow range of T̂ . Here their
shape changes most rapidly with T̂ while all changes remain
gradual. At the lower end of the interval, a cluster of near
unit density with the hardcore repulsion visibly in action is
present in outline. This structure has all but disappeared at the
upper end of the interval. The maximum density (at r̂ = 0) has

FIG. 7. (a) Guggenheim plot of densities ρs(0), ρg(0) for co-
existing profiles at T̂t(R̂). The insets highlight the approaches to
the expected cusp singularities as R̂ → ∞. (b) Line of transition
temperatures T̂t(R̂) versus inverse radius R̂−1 of confinement ending
in a critical point (R̂−1

c ,T̂c).

dropped by a factor of five and the minimum density (at r̂ = R̂)
has increased by a similar factor.

In Fig. 6(b) we show how the density profile changes across
a narrow interval of T̂ for the same ILG confined to a somewhat
larger sphere (R̂ = 4). A unique density profile exists only
outside this interval, namely at T̂ � 0.19 or T̂ � 0.21. In the
high-T̂ regime, the unique solution represents a relatively flat
low-density gas profile ρg(r̂). That solution persists through
the interval down to T̂ 	 0.195 and then disappears. Likewise,
in the low-T̂ regime, a density profile ρs(r̂) describing a well
formed cluster of close to unit density exists and continues
to exist through the interval up to T̂ 	 0.205. Both kinds of
profiles are depicted as solid lines in Fig. 6(b).

For temperatures 0.195 � T̂ � 0.205 the two aforemen-
tioned solutions coexist with a third solution of intermediate
profile ρi(r̂) as shown dashed. Of the three coexisting solutions
at given T̂ , the equilibrium state is represented by the one with
the lowest free energy.

We find that the lowest value of the free energy F(T̂ ) from
Eq. (31) is assumed by either ρs(r̂) or ρg(r̂). As we lower T̂

across the interval of coexisting solutions, ρg(r̂) first has the
lowest free energy. Near the middle of that interval, the free
energy of ρs(r̂) intersects that of ρg(r̂) and becomes the lowest.
At this temperature T̂t , a first-order phase transition takes place.
The free energy of ρi(r̂) has a higher value throughout the
interval of coexisting profiles.

The coexisting solutions with increasing F(T̂ ) are stable,
metastable, and unstable macrostates. The T̂ -interval of co-
existing solutions is bounded by spinodal points. Here the
metastable and unstable solutions coalesce and disappear.
Chavanis [13] (in his Fig. 7) showed three density profiles
calculated in the framework of the microcanonical ensemble
that correspond to three solutions such as shown in our Fig. 6(b)
for the canonical ensemble. The solution of intermediate
central density in Ref. [13] is identified as being unstable, just
as in our Fig. 6.

The transition temperature T̂t increases with increasing R̂−1

as shown in Fig. 7(b). The line of transition points terminates
in a critical point T̂c � 0.23, pertaining to R̂c � 3.1. When we
plot the values of ρg(0) and ρs(0) versus T̂t for T̂t � T̂c, a sort
of Guggenheim plot emerges as shown in Fig. 7(a).

The line of data points in Fig. 7(b) is expected to bend down
and reach T̂t = 0 as 1/R̂ → 0. In that limit, the coexisting
phases would be a solid of unit density and a fully sublimated
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FIG. 8. Scaled density profile versus scaled radius of the confined
ICG at T̄C (thick line), and four higher temperatures (thin lines).

gas of zero density. The numerical analysis with sufficient
precision becomes increasingly difficult as R̂ gets larger. Our
data show the mere hint of the expected downward trend.

Now we turn to the ICG limit, which undergoes a gravi-
tational collapse, just as its D = 2 counterpart does, but one
of a different kind. This phenomenon is well documented in
previous work [3,4,47,48]. A solution of Eq. (26) that is nor-
malizable via Eq. (27) is found to exist only for temperatures
T̄

.= R̂T̂ above the threshold value,

T̄C = 0.794422 . . . , (47)

implying, unlike in D = 2, that T̂C → 0 as R̂ → ∞.
The threshold ICG density profile is shown in Fig. 8 along

with profiles at selected T̄ above T̄C. As we lower T̄ toward
T̄C in steps of equal size a cluster appears to build up at an
accelerated rate. However, in contrast to D = 2, that process
does not come to its completion by gradually transforming the
profile into a δ function. The collapse, which happens at T̄C,
is discontinuous, precipitated from a thermodynamic state that
still pushes against the confining wall.

As in the ILG case discussed earlier, the existence limit
at temperature Eq. (47) of a normalizable density profile out
of Eq. (26) marks a sort of spinodal point for the gas phase
rather than a transition point. This conclusion is indeed in line
with the results of de Vega and Sanchez [4] based on different
methodology. They predict two singular points,

ηC
.= Gm2

cN

V 1/3kBTC
= 1.561764, (48a)

ηT
.= Gm2

cN

V 1/3kBTT
= 1.51024. (48b)

The former value, identified in Ref. [4] as the stability limit of
the gas phase in the mean-field framework, matches our thresh-
old temperature Eq. (47) to within 1ppm. The latter value is
identifed as the transition point to a collapsed state as indicated
by singularities (e.g., in the isothermal compressibility) not
captured by mean-field theory.

Unlike in the ILG case, here we lack the tool of comparing
free energies for the purpose of identifying the transition
temperature. According to Eq. (48b) it is located at T̄T =
0.8215 . . . , some 3% above T̄C. While the ILG transition is

of first order, the ICG collapse features a discontinuity in
free energy and might thus be classified as being of zeroth
order [4].

IV. OPEN SYSTEMS

We now examine the ILG and the ICG under conditions
that characterize thermodynamically open systems, including
systems with infinite mass. We set R̂ = ∞ and use the scaled
variables Eq. (28). The ICG in D dimensions is then described
by one universal density profile ρ̃(r̃), namely the solution of
the Lane-Emden type ODE Eq. (29) with boundary conditions
Eq. (30). The ILG generalization,

ρ̃ ′′

ρ̃
+ D − 1

r̃

ρ̃ ′

ρ̃
− 1 − 2ρ0ρ̃

1 − ρ0ρ̃

(
ρ̃ ′

ρ̃

)2

+ ρ̃(1 − ρ0ρ̃) = 0,

(49)

with 0 < ρ0 < 1 and boundary conditions Eq. (30) again,
describes a family of density profiles which includes the
universal ICG profile as the limiting case ρ0 → 0. Each
solution reflects profiles across a range of temperatures. The
same profile may represent a stable, a metastable, or an unstable
state at different temperatures. The free energy F(T̂ ) from
Eq. (31) does not produce a unique value for a given scaled
profile. The parameter ρ0, representing the density at the center
of the cluster, is a substitute for the chemical potential, the
commonly used control parameter for an open system. Their
relationship is explained in Sec. II C.

Our goal here is limited. Describing how the main features
of ρ̃(r̃) including the asymptotic decay depend on ρ0 highlights
the role of the hardcore repulsion in self-gravitating clusters.
Treating D as a continuous variable enables us to explore
how the asymptotic decay crosses over between qualitatively
different decay laws in D = 1,2,3. The stability analysis of
open systems is beyond the scope of this study. It would require
that we unfold the scaled profiles and develop additional tools.

A. D = 1

Open ILG clusters in D = 1 are represented by a one-
parameter family of solutions of Eq. (49). The density decays
exponentially as illustrated in Fig. 9(a). The limiting case
ρ0 → 0 represents the universal ICG profile:

ρ̃(r̃) = sech2(r̃/
√

2), (50)

the analytic solution of Eq. (29). This universal profile covers
dilute clusters of different (average) sizes at different temper-
atures by virtue of the scaling Eq. (28).

With ρ0 growing from zero the decay rate increases mono-
tonically. A solidlike core emerges gradually and grows in size
while the surrounding atmosphere thins out more and more
quickly with distance from the solid core. All solutions of
Eq. (49) for D = 1 describe clusters of finite (average) mass.
In Appendix C we prove that the decay law must be of the form

ρ̃(r̃)as ∼ e−ν1(ρ0)r̃ . (51)
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FIG. 9. One-parameter family of density profiles for an open ILG
gas in (a) D = 1, (b) D = 2, and (c) D = 3. The parameter values
are ρ0 = 0,0.9,0.99,0.999 in each case. The limiting ICG profile,
ρ0 → 0, is the one decaying most slowly in D = 1,2 and the one
reaching asymptotic behavior first in D = 3. The dashed line in (c)
represents Eq. (57).

In Appendix D we derive the analytic solution of Eq. (49). It
is most concisely expressed via the inverse function,

r̃(ρ̃) =
√

ρ0

2

∫ 1

ρ̃

dρ̃ ′

ρ̃ ′(1 − ρ0ρ̃ ′)
√

ln 1−ρ0ρ̃ ′
1−ρ0

: 0 � ρ̃ � 1. (52)

The exponential decay rate extracted from Eq. (52),

ν1(ρ0) =
√

− 2

ρ0
ln(1 − ρ0), (53)

is consistent with Eq. (50) in the limit ρ0 → 0.

B. D = 2

Several profiles for open ILG clusters in D = 2 are shown
in Fig. 9(b), including the limiting ICG case, ρ0 → 0. The
analytic solution of Eq. (29) reads

ρ̃(r̃) = (1 + r̃2/8)−2. (54)

The ILG power-law decay is rigorously established in Ap-
pendix C,

ρ̃(r̃)as ∼ r̃−ν2(ρ0), (55)

but the function ν2(ρ0) is not exactly known.
The data in Fig. 10 connect with the known ICG limit,

ν2(0) = 4, and strongly suggest a monotonic increase with a
weak divergence atρ0 = 1. By an iteration process as described
in Ref. [49] we can prove that

ν2(ρ0)
ρ0→1−→ −2 ln(1 − ρ0), (56)

which is consistent with the data as displayed in the inset,
actually holds rigorously. This power-law decay guarantees
that all clusters thus described have a finite mass.

FIG. 10. Data for the exponent ν2(ρ0) as inferred from Eq. (C6)
for open clusters in D = 2.

C. D = 3

In Sec. III D we have discussed the contrasting behavior of
ILG and ICG clusters under confinement. Here we examine
solutions of Eq. (49) in D = 3 representing ILG clusters of
infinite mass. Profiles with a wide range of parameter values
ρ0 are shown in Fig. 9(c).

The limiting ICG universal curve for ρ0 → 0 is the profile
of the well known Bonnor-Ebert sphere [17] and shows the
characteristic asymptotic power-law decay,

ρ̃(r̃) ∼ 2r̃−2. (57)

This decay law also holds for the ILG with any ρ0 < 1 as
proven in Appendix C.

The effects of the hardcore repulsion in the ILG profiles
are quite intriguing. With increasing ρ0 we see the gradual
emergence of a structure with three layers: a solid-like core
surrounded by a shell of dilute atmosphere with slowly varying
density out to some well-defined radius, where it crosses over
into the halo characteristic of the Bonnor-Ebert asymptotic
profile Eq. (57). Somewhat similar density profiles have pre-
viously been calculated for the FD gas in D = 3 [40].

D. Asymptotics for varying D
When we consider the ODE (29) with boundary conditions

Eq. (30) representing the scaled density profile of an open
ICG cluster we are left with a single parameter D that can
be varied continuously, touching on the three integer values
D = 1,2,3 for which physical realizations exist or, at least,
are conceivable. The asymptotic decay of the scaled density
is qualitatively different for these three landmarks as noted
before:

ρ̃(r̃) ∼
⎧⎨
⎩

e−√
2 r̃ : D = 1,

r̃−4 : D = 2,

r̃−2 : D = 3.

(58)

How does the asymptotic decay law, which, as shown in
Sec. II E, also holds for ILG clusters, vary between and beyond
these integer dimensions? As it turns out, we again find three
qualitatively different answers.
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FIG. 11. Density profiles of an open ICG cluster (a) in D = 3
over a long range of radius and (b) in D = 3,4,5 over a shorter range.
The dashed lines represent the asymptote Eq. (59).

We begin by exploring the rangeD � 3. It is straightforward
to show that the ansatz,

ρ̃(r̃) ∼ ar̃−α, (59)

is an asymptotic solution of Eq. (29) if we set

α = 2, a = 2(D − 2), (60)

implying that the inverse-square decay law remains intact
albeit with a change in meaning. Successive shells of equal
width contain the same amount of dilute gas inD = 3, whereas
that amount increases with r̃ in D > 3. We also observe (in
Fig. 11) that the asymptotic decay Eq. (60) sets in earlier as
the dimensionality increases from D = 3. The mild deviations
from the asymptotic decay, most conspicuous in D = 3, are
reminiscent of damped oscillations.

The asymptotic decay Eq. (59) with Eq. (60) remains valid
also for 2 < D < 3 but here the deviations are of a different
nature. What makes D = 3 a landmark dimensionality is that
the relative importance of the second and third terms in Eq. (29)
switches. We have ρ̃ ′/ρ̃ = 2/r̃ , which is to be compared with
(D − 1)/r̃ .

The interpolation between the two distinct power laws
of Eq. (58) is not realized by a variable exponent but by a
crossover between the faster power-law decay at small and
intermediate radii and the slower power-law decay at larger
radii. This is illustrated in Fig. 12. AsD decreases the crossover
radius grows and reaches infinity for D = 2.

The interpolation between exponential decay and power-
law decay in the range 1 < D < 2 is yet of a different kind.
In this regime our numerical analysis of Eq. (29) points to a
stretched exponential decay,

ρ̃(r̃) ∼ exp[−b(D) r̃β(D)], (61)

with

β(D) = 2 − D, (62a)

lim
D→1

b(D) =
√

2, (62b)

lim
D→2

β(D)b(D) = 4, (62c)

as illustrated in Fig. 13. The results Eqs. (62a) and (62b) are
rigorous. The data in Fig. 13(b) strongly suggest that Eq. (62c)
is accurate. The case D = 2 is the most delicate for this type
of analysis. It also represents the transition from clusters with
finite average mass to infinite mass.

FIG. 12. Crossover between incipient asymptotics, ∼r̃−4, at small
to intermediate r̃ and true asymptotics, ∼r̃−2, at large r̃ of an open
ICG cluster in 2 < D < 3. The dotted line represents the exact result
Eq. (54) in D = 2 and the dashed line the exact asymptote Eq. (57)
in D = 3.

V. SUMMARY AND OUTLOOK

In this work we have been advocating the hitherto neglected
case of the lattice gas as a useful model for the study of density
profiles in self-gravitating material clusters of dimensionality
D = 1,2,3 at thermal and mechanical equilibrium. The ILG
equation of state Eq. (1) has a simple structure, includes the
ICG of classical point particles as a limiting case, and prevents
the (artificial) gravitational collapse of point particles by a
robust hardcore repulsive force.

The dual (necessary) conditions of mechanical and thermal
equilibrium have led to a second-order ODE for the density
profile with several parameters. In closed systems the ODE
has the form of Eq. (15) and in open systems the form of
Eq. (49). One parameter is the dimensionality of the space,
with discrete valuesD = 1,2,3 in most of the work, and treated
as a continuous parameter in Sec. IV D. A second parameter
is the temperature. For open systems, a third parameter is the
chemical potential, expressed via the density at the center of the
cluster. For closed systems with wall confinement, the radius
of the available space is a third parameter.

Sufficient conditions for thermal equilibrium require, in
the framework of our study, an expression of free energy
as a discriminant for multiple solutions of Eq. (15). One

FIG. 13. Stretched exponential asymptotics Eq. (61) of an open
ICG cluster in 1 < D < 2. The dotted line represents the exact result
Eq. (50) in D = 1. The data in panel (b) are extracted from the
asymptotes of curves such as shown in panel (a).
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contribution to that free energy is the gravitational self-energy,
for which we have derived an expression in the form of a
density functional that works for the ILG in all dimensions
and is equivalent to the commonly used expression in D = 3.

We have calculated some exact results for density profiles
of the ILG, supplemented by graphical results of numerical
integrations. In most cases we have been able to derive the
long-distance asymptotic decay of density profiles exactly. We
have also identified a continuous transition in the unconfined
ILG for D = 2 and a discontinuous transition in the confined
ILG for D = 3.

Multiple contacts with the ICG, which emerges from the
ILG in the low-density limit, and with models that employ al-
ternative short-distance regularizations, have been established
in Secs. III, IV, and, especially, in Appendix E, confirming a
host of results from previous studies.

Our focus on density profiles, supplemented by some
profiles of pressure and potential, will be kept in an extension of
this work that examines rotating ILG clusters. The competing
gravitational and centrifugal forces produce a plethora of new
phenomena that have scarcely been investigated, particularly
in low dimensions [50].
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APPENDIX A: GRAVITATIONAL SELF-ENERGY

The gravitational self-energy US relative to its value in
the ground state of a symmetric ILG cluster with finite mass
is the first term in the Helmholtz free energy Eq. (31). We
construct US as the work performed against gravity when
mass of maximum density ρ(0)

m is moved in the shape of thin
layers from position r1 in the ground-state profile to position
r2 in any given mass-density profile ρm(r). This process of
disassembling the reference profile and reassembling a generic
profile is illustrated in Fig. 14. For clarity we do the scaling at
the end.

The increment of self-energy is

dUS = dm[U (r2) − U (r1)], (A1)

FIG. 14. Change in gravitational self-energy dUS calculated as
work performed against gravity when a thin layer of mass dm is
being translocated from radius r1 to radius r2.

where

dm = ADrD−1
1 dr1ρ

(0)
m = ADrD−1

2 dr2ρm(r2). (A2)

The potential at either position depends on the solid mass,

m1 =
∫ r1

0
drADrD−1ρ(0)

m = AD
D rD1 ρ(0)

m , (A3)

at r � r1 only:

U (r2) − U (r1) = Gm1

∫ r2

r1

dr

rD−1

= G

D − 2

(AD
D ρ(0)

m rD1

)(
r2−D

1 − r2−D
2

)
. (A4)

Mass conservation as reflected in Eq. (A2) expresses r1 as a
function of r2:

rD1 = D
∫ r2

0
dr rD−1ρ(r), ρ(r)

.= ρm(r)

ρ
(0)
m

, (A5)

with the latter in the role of integration variable for Eq. (A1):

US = DGm2
t

D − 2
r−2D

s

∫ ∞

0
dr2 ρ(r2)

[
r2

1 rD−1
2 − rD1 r2

]
, (A6)

where mt = (AD/D)rDs ρ(0)
m is the total mass. Equations (A4)

and (A6) are undefined in D = 2, to be replaced by

U (r2) − U (r1) = G
(
πρ(0)

m r2
1

)
ln

r2

r1
: D = 2, (A7)

US = 2Gm2
t

r4
s

∫ ∞

0
dr2 ρ(r2)r2

1 r2 ln
r2

r1
: D = 2. (A8)

Using reference values introduced previously we arrive at
the following expressions for the scaled self-energy, ÛS

.=
US/NpsVc:

ÛS =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2D
D − 2

∫ ∞

0
dr̂2 ρ(r̂2)

[
r̂2

1 r̂D−1
2 − r̂D1 r̂2

]
,

4
∫ ∞

0
dr̂2 ρ(r̂2)r̂2

1 r̂2 ln
r̂2

r̂1
: D = 2.

(A9)

In D = 3 the change �ÛS between any two macrostates
must be identical to the commonly used expression �U

(F)
S

constructed as described earlier. If one of the macrostates is
the ILG ground state, we have

�US = 3Gm2
t

r6
s

∫ ∞

0
dr2 ρ(r2)

[
r2

1 r2
2 − r3

1 r2
]

(A10)

and

�U
(F)
S = 1

2

∫ ∞

0
dr(4πr2)

[
ρm(r)UF(r) − ρ(0)

m (r)U (0)
F (r)

]
,

(A11)
where

UF(r) = −
∫ r

∞
dr ′g(r ′), g(r) = −G

min(r)

r2
, (A12)

min(r) =
∫ r

0
dr ′(4πr ′2)ρm(r ′), (A13)

and analogous expressions for the ground-state mass density,
ρ(0)

m (r) = ρ(0)
m θ (rs − r). For a symmetric cluster in D = 3 with
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mass confined to radius R, the potential U (r) used in Eq. (A1)
and the potential UF(r) used in Eq. (A11) are related by a mere
shift as follows [51]:

UF(r) = U (r) − d

dr
[rU (r)]r=R. (A14)

One formal proof of �US = �U
(F)
S in D = 3 proceeds as

follows. We begin by bringing Eq. (A10) into a form that is a
better target for Eq. (A11):

�US = α

3

∫ ∞

0
drρ(r)

[
r2

1 (r)r2 − r3
1 (r)r

]
= α

15
r5

s − α

∫ ∞

0
dr rρ(r)

∫ r

0
dr ′ r ′2ρ(r ′), (A15)

where we have defined α
.= (4πρ(0)

m )2G, used Eq. (A5) in the
second term of the square bracket, and used the derivative of
Eq. (A5), dr1/dr = ρ(r)r2/r2

1 , in the first term.
Next we split up the two terms of Eq. (A11) as �U

(F)
S =

�U
(F)
1 − �U

(F)
0 with

�U
(F)
1 = α

2

∫ ∞

0
dr r2ρ(r)

∫ r

∞

dr ′

r ′2

∫ r ′

0
dr ′′ r ′′2ρ(r ′′) (A16)

and the same expression for �U
(F)
0 but with ρ(r) and ρ(r̄)

replaced by θ (rs − r) and θ (rs − r ′′), respectively. Integrating
Eq. (A16) by parts yields the expression

�U
(F)
1 =α

2

∫ ∞

0
dr r2ρ(r)

×
[∫ r

∞
dr ′r ′ρ(r ′) − 1

r

∫ r

0
dr ′r ′2ρ(r ′)

]
, (A17)

of which the second term is equal to half the integral term
in Eq. (A15). The other half comes from the first term in
Eq. (A17), as becomes evident after interchanging the sequence
of integration in the sector of r,r ′. That leaves the (elementary)
double integral of �U

(F)
0 , which matches the first term in

Eq. (A15).

APPENDIX B: SOLID-GAS APPROXIMATION

At very low temperatures, the numerical solution of Eq. (15)
yields density profiles that include a narrow interface between
a solidlike core surrounded by a dilute gas. Replacing that
interface by a solid-gas phase boundary greatly simplifies the
analysis and predicts density profiles that connect with the
results derived from Eq. (15) at very low T̂ [52,53].

Technically, we substitute, in Eq. (4), min from Eq. (5) with
mt (total mass), assuming that the gas contributes negligibly.
We also replace the ILG EOS (7) by its ICG limit. With
these ingredients, Eq. (8) can then be solved by separation
of variables ∫ p

pi

dp′

p′ = −Gmtmc

kBT

∫ r

ri

dr ′ r ′1−D, (B1)

where pi and ρi = piVc/kBT are the pressure and the density
of the gas, respectively, at the interface located at radius ri.

In D = 1 this solid-gas approximation confirms the ex-
ponential decay profile (38) throughout the gas phase. The

solution of Eq. (B1) in D = 2 also confirms the power-
law asymptotics Eq. (41) but supplies no hint of a critical
temperature. InD = 3 the leveling-off asymptotics, ρ ∼ e2/r̂T̂ ,
predicted by Eq. (B1), is consistent with the need of a wall-
confinement to stabilize clusters of finite mass.

APPENDIX C: DECAY LAWS

The asymptotic decay of the density profile at large dis-
tances from the center of a finite or infinite cluster is amenable
to exact analysis. Stable clusters of finite mass at T̂ > 0
only exist in dimensions D � 2, the condition being that
limr̂→∞ Û (r̂) = ∞. To determine the decay law of ρ(r̂) at
r̂ → ∞, we then convert Eq. (14) into

r̂D−1ρ ′(r̂)

ρ(r̂)[1 − ρ(r̂)]
= − 2

T̂

[
1 − D

∫ ∞

r̂

dr̂ ′r̂ ′D−1ρ(r̂ ′)
]
, (C1)

where we have used Eq. (21). If the decay rate is of the type
ρ ∼ r̂−(D+ε) with ε > 0 or faster we can infer from Eq. (C1)
the relation

lim
r̂→∞

r̂D−1 ρ ′(r̂)

ρ(r̂)
= − 2

T̂
. (C2)

In D = 1, where a stable cluster exists at all finite T̂ , the
solution of Eq. (C2) yields the exponential decay law,

ρ(r̂)as ∼ e−2r̂/T̂ : D = 1, (C3)

which confirms all evidence compiled in Sec. III B.
In D = 2, stable ILG clusters exist at T̂ < T̂c = 1

2 as shown
in Sec. III C. The exact decay law inferred from Eq. (C2) is the
power law,

ρ(r̂)as ∼ r̂−2/T̂ : D = 2, (C4)

as anticipated from numerical data and analytic results for
limiting cases.

Open ILG clusters in unrestricted space exist in D =
1,2,3. In Sec. IV we consider finite clusters in D = 1,2 and
infinite clusters in D = 3. For finite clusters we examine the
asymptotic decay of the density profile starting again from
Eq. (14), which we convert, using the scaled variables Eq. (28),
into

r̃D−1ρ̃ ′(r̃)

ρ̃(r̃)[1 − ρ0ρ̃(r̃)]
= −νD(ρ0) +

∫ ∞

r̃

dr̃ ′r̃ ′D−1ρ̃(r̃ ′), (C5)

where

νD(ρ0) =
∫ ∞

0
dr̃ ′r̃ ′D−1ρ̃(r̃ ′). (C6)

For decay rates that are as rapid as suggested by the data in
Figs. 9(a) and 9(b) we infer that

lim
r̃→∞

r̃D−1 ρ̃ ′(r̃)

ρ̃(r̃)
= −νD(ρ0) (C7)

holds for D = 1,2. We proceed as earlier and obtain the decay
laws

ρ̃(r̃)as ∼
{
e−ν1(ρ0)r̃ : D = 1,

r̃−ν2(ρ0) : D = 2.
(C8)
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The quantities νD(ρ0) that govern the exponents in Eq. (C8)
are known in the ICG limit:

lim
ρ0→0

ν1(ρ0) =
√

2, lim
ρ0→0

ν2(ρ0) = 4. (C9)

Their dependence on ρ0 must be determined empirically from
solutions of Eq. (49) via Eq. (C6). The results Eq. (C8) are,
of course, transcribed versions of Eqs. (C3) and (C4) for
convenient use in Sec. IV.

The asymptotic decay Eq. (57) for an infinite cluster in
D = 3 is more readily determined by substituting a simple
power-law ansatz into Eq. (49) [47]. The leading term,

ρ̃(r̃)as ∼ 2 r̃−2 : D = 3, (C10)

is independent of ρ0.

APPENDIX D: EXACT PROFILE IN D = 1

The ODE Eq. (49) for an open ILG cluster in D = 1 is
amenable to exact analysis. We write

ρ ′′

ρ
− 1 − 2ρ

1 − ρ

(
ρ ′

ρ

)2

+ 1

ρ0
ρ(1 − ρ) = 0 (D1)

with ρ(r̃) = ρ0ρ̃(r̃) and the scaled radius r̃ from Eq. (28). The
boundary conditions are ρ(0) = ρ0 and ρ ′(0) = 0.

In Eq. (D1) the variable r̃ does not appear explicitly and
we know from Eq. (14) that ρ(r̃) must be a monotonically
decreasing function. Hence, there exists a unique inverse
function r̃(ρ), which solves the ODE,

r̃ ′′ + 1 − 2ρ

ρ(1 − ρ)
r̃ ′ − 1

ρ0
ρ2(1 − ρ)r̃ ′3 = 0, (D2)

with boundary conditions r̃(ρ0) = 0 and r̃ ′(ρ0) = −∞. The
solution of this first-order ODE for r̃ ′(ρ),

r̃ ′(ρ) = −
√

ρ0

2

1

ρ(1 − ρ)

1√
ln 1−ρ

1−ρ0

, (D3)

features an integrable divergence at ρ → ρ0 (third factor) and
a nonintegrable divergence at ρ → 0 (second factor). In the
inverted profile,

r̃(ρ) =
√

ρ0

2

∫ ρ0

ρ

dρ1

ρ1(1 − ρ1)
√

ln 1−ρ1

1−ρ0

: 0 � ρ � ρ0, (D4)

these divergences in r̃ ′(ρ) account for the cusp at ρ → ρ0 and
the divergence at ρ → 0, respectively, in r̃(ρ).

The exact result Eq. (D4) can be rendered as a lengthy
expression involving multilogarithmic functions. It is readily
transcribed into the solution r̂(ρ) of Eq. (15) by substituting
T̂ /2 for ρ0 in the factor before the integral.

The explicit ICG result Eq. (50) is recovered by considering
the scaled variable ρ̃ = ρ/ρ0 in Eq. (D4) and taking the limit

lim
ρ0→0

r̃(ρ) =
√

1

2

∫ 1

ρ̃

dρ̃1

ρ̃1
√

1 − ρ̃1
=

√
2artanh

√
1 − ρ̃. (D5)

The exact exponent ν1(ρ0) of the exponential decay law
Eq. (C8) rigorously established in Appendix C can now be
determined from Eq. (D4) via integration. We convert the

integral Eq. (C6) into

ν1(ρ0) = 1

ρ0

∫ ρ0

0
dρ2r̃(ρ2). (D6)

Interchanging the sequence in the double integration leads to
the analytic result,

ν1(ρ0) =
√

− 2

ρ0
ln(1 − ρ0), (D7)

which includes the ICG limit Eq. (C9) and perfectly matches
the asymptotics of the data such as used in Fig. 9.

By the same method, we can determine the exact density
profile of the hard-rod system investigated by Champion and
Alastuey [8], i.e., the solution of Eq. (E4) inD = 1. The result,

r̂(ρ) =
√

T̂ (1 − ρ0)

4ρ0

∫ ρ0

ρ

dρ

ρ(1 − ρ)2
√

1 − (1−ρ0)ρ
(1−ρ)ρ0

=
√

T̂ ρ0

1 − ρ0

√
1 − (1 − ρ0)ρ

(1 − ρ)ρ0

+
√

T̂ (1 − ρ0)

ρ0
artanh

(√
1 − (1 − ρ0)ρ

(1 − ρ)ρ0

)
, (D8)

is equivalent to Eq. (78) in Ref. [8].

APPENDIX E: SHORT-DISTANCE REGULARIZATIONS

Antidotes against collapse in self-gravitating systems of
massive particles come in two types. One type softens the
law of gravity at short distances and thus remove forces of
divergent strength [3,7,9,11]. The other type keeps the particles
away from the divergences by a short-distance repulsive force
of some kind [5,6,8,9]. In the following, we compare conse-
quences of short-distance regularization for three realizations
of the latter type.

The first realization is, of course, the ILG with EOS
(11), which produces ODE (15) for the density profile, both
reproduced here for easy reference:

p̂(r̂) = −T̂ ln[1 − ρ(r̂)], (E1)

ρ ′′

ρ
+ D − 1

r̂

ρ ′

ρ
− 1 − 2ρ

1 − ρ

(
ρ ′

ρ

)2

+ 2D
T̂

ρ(1 − ρ) = 0.

(E2)

The second realization uses the EOS,

p̂(r̂) = T̂ ρ(r̂)

1 − ρ(r̂)
, (E3)

which is more strongly divergent than Eq. (E1) as the limit
of maximum density is approached. The EOS (E3) is exact
in D = 1 for hard rods in a continuum as shown by Cham-
pion and Alastuey [8] (see also Ref. [34]) and is commonly
used in D = 3 as a phenomenological EOS for hard-sphere
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models [5,6]. When we carry out the analysis of Sec. II C with
this EOS we arrive at the ODE,

ρ ′′

ρ
+ D − 1

r̂

ρ ′

ρ
− 1 − 3ρ

1 − ρ

(
ρ ′

ρ

)2

+ 2D
T̂

ρ(1 − ρ)2 = 0,

(E4)

which differs from Eq. (E2) in the last two terms. The scaling
for this case is explained in Ref. [34].

The third realization is the FD gas, where an effective short-
distance repulsion is produced by the Pauli exclusion principle.
The EOS in parametric form reads

p = gskBT

λD
T

fD/2+1(z), ρ = gsfD/2(z), (E5)

where gs is the spin degeneracy, z the fugacity, λT
.=

(h2/2πmckBT )1/2 the thermal wavelength, and

fn(z)
.= 1

�(n)

∫ ∞

0
dx

xn−1

z−1ex + 1
, (E6)

the Fermi-Dirac function. In this case, the analysis leads to the
ODE [54]

z′′

z
+ D − 1

r̂

z′

z
−

(
z′

z

)2

+ 2D
T̂

fD/2(z) = 0, (E7)

for the fugacity profile z(r̂), from which the density profile
follows via ρ(r̂) = gsfD/2[z(r̂)]. The scaling for this case
replaces Vc by λD

T in Eqs. (9) and (10).
In the low-density regime, ρ � 1, all three ODEs reduce

to the ODE Eq. (24) for the ICG, which is not surprising but
instructive nevertheless. One conclusion is that the asymptotic

decay laws Eq. (58) inD = 1,2,3 hold for all three realizations
and are, in all likelihood, universal, i.e., independent of how
the short-distance regularization is implemented.

A second conclusion is that the continuous phase transition
in D = 2 described for the ILG in Sec. III C is also exact for all
three cases and is very likely to be universal in the same sense
too. That transition invariably takes place in the low-density
limit, where the density profile is governed by the ICG ODE
(24). The scaled temperature is invariant, only the reference
temperatures are model-dependent.

The discontinuous phase transition in D = 3 described for
the ILG in Sec. III D, by contrast, takes place, in general, away
from the ICG limit. It is, therefore, expected to exhibit fea-
tures that depend on the specific short-distance regularization.
The differences noted between ILG and ICG regarding this
transition illustrate this point.

Also in D = 3, the ODEs for all three realizations of short-
distance regularization reproduce the outermost layer, the halo,
of the (iconic) Bonnor-Ebert sphere with its characteristic
∼r̂−2 decay in the density profile. However, every realization
produces its distinctive structure closer to the center of the
(infinite) cluster. Qualitative similarities between the ILG and
the FD gas have been noted in Sec. IV C.

Finally, for D = 1, we have calculated the exact density
profiles Eq. (D4) for the ILG realization and Eq. (D8) for the
hard-rod realization analyzed in Ref. [8], namely the solutions
of Eqs. (E2) and (E4), respectively. These profiles differ in
shape at T > 0 on account of the differences in Eqs. (E2) and
(E4). However, both exhibit exponential decay on account of
their common ICG limit. The corresponding profile of the FD-
gas realization, i.e. the function ρ(r̂) inferred from the solution
of Eq. (E7), is known to have a nontrivial shape even at T = 0,
yet its exponential asymptotics at T > 0 is the same again.
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