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Statistics of zero crossings in rough interfaces with fractional elasticity
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We study numerically the distribution of zero crossings in one-dimensional elastic interfaces described by an
overdamped Langevin dynamics with periodic boundary conditions. We model the elastic forces with a Riesz-
Feller fractional Laplacian of order z = 1 + 2ζ , such that the interfaces spontaneously relax, with a dynamical
exponent z, to a self-affine geometry with roughness exponent ζ . By continuously increasing from ζ = −1/2
(macroscopically flat interface described by independent Ornstein–Uhlenbeck processes [Phys. Rev. 36, 823
(1930)]) to ζ = 3/2 (super-rough Mullins-Herring interface), three different regimes are identified: (I) −1/2 <

ζ < 0, (II) 0 < ζ < 1, and (III) 1 < ζ < 3/2. Starting from a flat initial condition, the mean number of zeros of
the discretized interface (I) decays exponentially in time and reaches an extensive value in the system size, or
decays as a power-law towards (II) a subextensive or (III) an intensive value. In the steady state, the distribution
of intervals between zeros changes from an exponential decay in (I) to a power-law decay P (�) ∼ �−γ in (II) and
(III). While in (II) γ = 1 − θ with θ = 1 − ζ the steady-state persistence exponent, in (III) we obtain γ = 3 − 2ζ ,
different from the exponent γ = 1 expected from the prediction θ = 0 for infinite super-rough interfaces with
ζ > 1. The effect on P (�) of short-scale smoothening is also analyzed numerically and analytically. A tight
relation between the mean interval, the mean width of the interface, and the density of zeros is also reported.
The results drawn from our analysis of rough interfaces subject to particular boundary conditions or constraints,
along with discretization effects, are relevant for the practical analysis of zeros in interface imaging experiments
or in numerical analysis.
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I. INTRODUCTION

Persistence and first-passage properties in stochastic sys-
tems are widely studied in physics, chemistry, biology, finance,
and engineering [1]. The question is to predict for how long or
how far a certain property remains unchanged and to determine
the probability that such property changes at a certain time t

or at a certain position x.
In particular, stochastic interfaces are an interesting case

displaying both nontrivial temporal and spatial persistence
properties [2]. They model, at a coarse grained level, a large
variety of extended nonequilibrium systems, from surface
growth by molecular beam epitaxy [3], driven domain walls
in ferromagnetic [4,5] or ferroelectrical materials [6], cracks
[7,8], growing droplets of turbulent phase in nematic liquid
crystals [9,10], to biological nonequilibrium processes, such
as bacterial colonies [11] or tumor growth [12,13]. Both the
stationary and the aging dynamics of these interfaces are
experimentally relevant. Understanding the universal persis-
tence properties in mathematically tractable models of rough
interfaces allows a general and quantitative statistical charac-
terization which goes beyond the standard dynamic scaling
analysis.

In this paper, we study the transient and steady-state spatial
persistence properties of fluctuating one-dimensional elastic
interfaces described by a univalued scalar displacement field
ux(t) at position x and time t . We focus on Gaussian interfaces
controlled by the linear Langevin equation

∂tux(t) = −(−∂2
x

)z/2
ux(t) + η(x,t), (1)

where η(x,t) is the standard nonconserving Gaussian noise
with zero mean and variance 〈η(x,t)η(x ′,t ′)〉 = 2T δ(x −
x ′)δ(t − t ′), with T the temperature. A generalized harmonic
elasticity is conveniently implemented by using a Riesz-Feller
fractional Laplacian of order z [14]. The order of the Laplacian
is the dynamical exponent z = d + ζ of the interface, where d

is the spatial dimension and ζ the roughness exponent associ-
ated. At zero temperature, Eq. (1) reduces to the well-known
fractional diffusion equation, ∂tux(t) = −(−∂2

x )z/2ux(t) [15].
In presence of noise and for general ζ , Eq. (1) is a con-
venient linear but spatially nonlocal stochastic model that
can describe the critical relaxation of an interface towards a
self-affine geometry. This simple model allows us to study in
an approximate way the geometry of (not necessarily linear
nor Gaussian) interfaces in different experimentally relevant
universality classes. For one-dimensional interfaces and z = 2,
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Eq. (1) reduces to the well-known Edwards-Wilkinson (EW)
equation describing an elastic string with short-range elasticity
[16]. The fractional Laplacian with z = 1, models the long-
range elasticity of contact lines in a liquid meniscus [17],
cracks fronts [18], or the elastic interactions of magnetic
domain walls involved in the Barkhausen effect [19]. The
case z = 4 corresponds effectively to restoring elastic forces
that depend on the interface curvature [20], useful to model
surface growth by molecular beam epitaxy in the presence of
surface diffusion [3,21,22]. The extreme case z = 0 represents
independent Ornstein–Uhlenbeck processes at each position
x. Our study comprises the continuous range of values from
z = 0 to z = 4, covering macroscopically flat to super-rough
interfaces. We consider both the steady-state and the transient
regimes of Eq. (1), starting from a flat initial condition.

A central quantity to characterize the spatial persistence of
interfaces generated by Eq. (1) is the probability Q(x0,x0 + x)
that the displacement field ux does not return to its value ux0

over the spatial interval [x0,x + x0] along a given direction,
at a fixed time t . This property, that has its full analog in
the temporal persistence of the interface at a fixed point x,
is particularly interesting in the long-time limit where the
stochastic interface develops long-range correlations. It is then
expected that Q(x0,x0 + x) ∼ |x|−θ at large enough x, with
a nontrivial, and probably universal, persistence exponent θ .
Two independent spatial persistence exponents can be found:
θ = θFIC if x0 is initially sampled from the subset of points
where ∂m

x ux is finite for all m ∈ N, and θ = θSS if x0 is sampled
uniformly as studied in Ref. [2]. Majumdar and Bray [23]
showed that θSS = 1 − ζ is exact for 0 < ζ < 1. Moreover,
they showed that the stationary spatial persistence properties
of Eq. (1) can be mapped to the temporal persistence properties
of the generalized random-walk process dnx/dtn = η(t) by
choosing n = (z − d + 1)/2, with d the dimension of the elas-
tic manifold. Exploiting this mapping, the authors found that
θFIC = θ (n), with θ (n) the temporal persistence exponent of the
random-walk process. Thus, the normal Brownian motion for
n = 1 corresponds to the one-dimensional Edwards-Wilkinson
equation, while the so-called random-acceleration process
for n = 2 corresponds to the Mullins-Herring equation [20].
These two cases are special because they are Markovian, and
their exponents, θ (1) = 1/2 and θ (2) = 1/4, can be exactly
computed. For other values of n the equation of motion has
memory and to estimate θ (n) we need to rely on approximated
methods, such as the independent interval approximation
(IIA) [24].

Although exact results are known for infinite continuous
interfaces, as described above, it is far from trivial to apply
them to finite discrete interfaces. While the former is relevant
for theoretical purposes, the latter can be useful for applications
to interface imaging experiments. In such finite interfaces, the
boundary conditions play a fundamental role as it will be soon
evident. In systems with long-range elastic interactions, the
boundary conditions have to be properly defined, particularly
regarding the fractional Laplacian operator in Eq. (1) [14].
Even in the simplest case of periodic boundary conditions
(where the steady-states are translational invariant and the
Laplacian operator reduces to −|q|z in Fourier space), finite-
size effects are important [25,26]. One of the main issues
in the computation of persistence properties in finite-size

periodic fluctuating interfaces is that the intervals between
successive zero crossings are not statistically independent.
For infinite interfaces or temporal signals it is known that
the zero crossings of a fractional Brownian motion cannot be
accurately described by a renewal process, except for ζ = 1/2,
which maps to normal Markovian Brownian motion [27]. For
the ζ = 1/2 Edwards-Wilkinson finite interface, however, the
intervals generated by the crossing zeros of the interface with
its center of mass are no longer independent [28]. Analytical
calculations for the survival probability of the EW interface
have indeed shown the importance of the zero-area constraint
in finite interfaces [29]. More recently, we have shown that
the same model displays subtle correlations effects between
intervals and long-range correlations between increments [28].
Thus, finite-size effects are expected to become even more
important for fractional dynamics, especially for large values of
ζ , where excursions get even more constrained by the zero-area
condition. Moreover, discreteness effects due to resolution-
limited sampling need to be considered, since some continuous
approaches may fail [2]. Such effects have been investigated
for stationary Gaussian Markov processes [29,30] and also
for some non-Markovian smooth processes [31]. A practical
analysis of persistence with discrete sampling is discussed for
instance in Ref. [32].

In this paper, we address some finite-size and discretization
effects by analyzing interfaces described by a discretized
version of Eq. (1). We analyze the statistics of crossings of
an interface relative to its center of mass in interfaces of
size L subject to periodic boundary conditions. Such crossing
points will be called zeros of the interface, for short. We
will be interested in the density of zeros, and in the intervals
� that separate two consecutive zeros, both in the steady-
state and in the nonstationary relaxation from a flat initial
condition. Such an initial condition and the use of periodic
boundary conditions ensure translational invariant profiles.
The distribution of intervals can thus be written as P (�; t,L),
in general. Such distribution can be related to the persistence
distribution Q(�) (here defined as the probability that two
crossings are separated by a distance larger than �) by P (�) =
Q(�) − Q(� + 1). Hence, P (�) corresponds to the first-passage
distribution. Varying ζ in Eq. (1) from ζ = −1/2 to ζ = 3/2
allows us to describe macroscopically flat to super-rough
interfaces and observe the relative relevance of discretization
and finite-size effects. Within the range of values taken by ζ ,
three regimes can be identified. In the following, we denote
these regimes as I, II, and III corresponding to the intervals
−1/2 < ζ < 0, 0 < ζ < 1, and 1 < ζ < 3/2, respectively.
Such regimes are characterized in terms of the persistence
properties, and by their relation to other observables such as
the width of the interface. Hence, this work generalizes the
study of Ref. [28]. In particular, we find that for ζ < 1 many
of the exact results obtained for generalized random walks can
be applied to partially describe our findings, while it is not the
case for ζ > 1 where the finite size of the system governs
the scaling laws. Further, temporal dependencies of all the
analyzed quantities are well captured by the dynamical length
Ldyn ∼ t1/z. Therefore, a proper understanding and precise
characterization of the self-affine steady-state is fundamental.

The paper is organized as follows. In Sec. II, we present
the discrete dynamical model and define the observables of
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interest. Section III is devoted to the study of rough interfaces in
the stationary state. We investigate the distribution of intervals
between zeros and their first two cumulants as a function of
the roughness exponent ζ and the size of the interface L. We
compare the mean value of the interval length with the width
of the interface, which can be analytically computed, for the
three regimes identified. We also study the distribution and
first moments of the total number of zeros in the interface as a
function of ζ and L and relate them with the results obtained for
individual intervals. In Sec. IV, we discuss the nonstationary
dynamics by analyzing the scaling of the density of zeros as
a function of time and system size L for the three regimes of
roughness. Additionally, we explore the nonstationary behav-
ior of the interface width. In Sec. V, we summarize our results
and discuss their relevance for experiments. In the Appendices,
we discuss some effective models and detail the calculations.

II. MODEL AND METHODS

To solve the fractional dynamics described by Eq. (1) we
consider one-dimensional interfaces of size L described by the
continuous height field ux(t). The interface is discretized along
the spatial direction, such that x = 0,1, . . . ,L − 1. Periodic
boundary conditions imposing uL(t) ≡ u0(t) are considered.
Each ux(t) can be thought as the displacement of a particle
coupled to other particles ux ′ (t) through the fractional Lapla-
cian. The height of the interface is measured relatively to the
center of mass of this particle system so that

∑L−1
x=0 ux(t) = 0,

which fixes to zero the total area under the interface.
In Fourier space, the discretized dynamics of Eq. (1) is

∂tuq(t) = −|q|zuq(t) + η̂q(t), (2)

where uq(t) = ∫
dxe−iqxux(t)/

√
L, and q = 2πk/L with

k = 1, . . . ,L − 1. The Fourier-transformed noise η̂q(t) is
Gaussian with 〈η̂q(t)〉 = 0 and 〈η̂q(t)η̂q ′(t ′)〉 = 2T δqq ′δ(t −
t ′). The zero-area constraint implies that uq=0(t) = 0 for all
times.

From Eq. (2) we can compute analytically some noise
averaged quantities. Starting from a flat configuration (uq(t =
0) = 0 for all q), the averaged stationary state of the structure
factor is

Sq(t) = 〈|uq(t)|2〉 = T q−z(1 − e−2|q|zt ). (3)

Equation (3) shows that the system relaxes to equilibrium in a
typical timeLz, with dynamical exponent z, toward a self-affine
geometry with Sq = T q−(1+2ζ ). In this model, the roughness
exponent is thus related to the dynamical exponent by

ζ = (z − 1)/2. (4)

For general self-affine interfaces, such relation does not hold.
However, if a generic dynamic scaling is satisfied, we expect a
more general form Sq(t) = 〈|uq(t)|2〉 ∼ q−(1+2ζ )(1 − e−2|q|zt )
for small enough q and long enough times. From such ex-
pression, we can define the dynamical length Ldyn(t) ∼ t1/z

such that length-scales smaller that Ldyn(t) get equilibrated
at time t , while larger length-scales still keep memory of the
initial condition. Likewise, the structure factor Sq(t) appears
in the expression of the width w2(t) ≡ L−1 ∑

x〈u2
x(t)〉 =

L−1 ∑
q 	=0 Sq(t) of the interface. A precise expression for w2(t)

can be obtained from

w2(t) ≈ T

π

∫ π

2π/L

dq |q|−z[1 − exp(−2|q|zt)]. (5)

From this expression, it is easy to show that w2(t) ∼ 2T t

for very short times. At larger times and ζ > 0, we get w2(t) ∼
Ldyn(t)2ζ for intermediate times, and w2

s = w2(t → ∞) ∼ L2ζ

in the steady state limit. See Appendix D for details.
Unfortunately, none of the above quantities give us access

to the statistical properties of the zeros of ux(t). Indeed, by
writing uq(t) = |uq(t)|e−iφq (t), we notice that the zeros are
particularly sensitive to the relative phases φq(t) of the modes
(see Appendix B for an illustrative example). Therefore, the
statistical properties of zeros, even for the simple linear model
of Eq. (1), are highly nontrivial.

To study the zeros of ux(t) as a function of time we will first
solve iteratively the dynamics in Fourier space with a time-
discrete version of Eq. (2),

uq(t + �t) =
(
1 − �t

2 Lq

)
uq(t) + √

T L�tηq(t)

1 + �t
2 Lq

, (6)

with uq(t) = ∑
x e−iqxux(t)/

√
L and q = 2πk/L. Lq is the

exact Laplacian in Fourier space given by Lq = [2(1 −
cos q)]z/2. We denote by �t the time step. In this paper, we
only consider the flat initial condition uq(t = 0) = 0. The
choice of the Stratonovich discretization [33] in Eq. (6) is the
most appropriate representation, as discussed in a previous
work [28]. In this paper, a general condition on the time-
discretization �t was derived, as a generalization to the well-
known Von Neumann stability criterion [34]. The discrete
noise is generated by sampling a time sequence of L uncorre-
lated Gaussian random numbers. From uq(t), we can get ux(t)
to obtain the zeros of the interface, and perform a statistical
analysis by sampling many noise histories. The whole scheme
just described can be implemented very efficiently for large
interfaces using graphics processing units. To do so we exploit
the parallelism of the dynamical evolution in Fourier space
and use a parallel random number generator to generate ηq(t).
To get ux(t), we use parallel fast Fourier (anti)transforms. The
detection of zeros in ux(t) can also be implemented efficiently
using parallel search algorithms.

To study the stationary state we optimize the scheme
described above by directly sampling independent configura-
tions from the equilibrium Boltzmann distribution P[uq] ∝
exp[− 1

T

∑L
k=0 |q|z|uq |2]. This is achieved by generating the

complex modes amplitudes

Re(uq)
d=�(uq) =

√
T

2qz
ηq, (7)

where
d= indicates “equal in distribution,” which verifies Sq =

〈|uq |2〉 = T q−z as desired in the steady-state. Consequently,
the steady state can be then compared with the long-time limit
of the nonstationary relaxation.

The position of a zero of the discretized interface is given
by the immediate integer to the left of the crossing point at
which the interface height changes its sign. This definition was
shown [28] to describe correctly the first-passage distribution
of the interface in the case ζ = 1/2. In the steady state, we
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will be interested in the distribution P (�) of the length � of
the intervals between consecutive zeros, and also in the total
number of zeros n and its distribution P (n). We will compare
the first moments of these distributions with the mean steady-
state width

ws ≡ lim
t→∞ w(t), (8)

where

w(t) =
√∑

x

〈ux(t)2/L〉. (9)

In the nonstationary state we will focus in the mean density of
zeros

〈ρ(t)〉 = 〈n(t)〉/L, (10)

as a function of time and compare it with the nonstationary
width of the interface w(t).

III. STATIONARY STATE

We devote this section to the study of the steady-state limit.
In Fig. 1 we show typical configurations sampled according
to Eq. (7) for some values of ζ in regime I (ζ < 0), regime II
(0 < ζ < 1), and regime III (ζ > 1). The center of mass of the
interfaces is fixed to zero in all cases. We can observe that large
values of ζ produce large excursions as the amplitude of the
Fourier modes decays as ∼1/q1+2ζ ∼ L1+2ζ . For negative ζ ,
all the modes have nondivergent amplitudes in the thermody-
namic limit and consequently excursions are typically small.
As we already mentioned, boundary conditions and finite-size
effects may play an important role constraining long excursions
through the zero-area condition.

A. Interval distributions

We first analyze the intervals �i separating the n consecutive
zeros of a configuration, as shown in Fig. 1. In general, we
observe that for ζ < 0 the number n of zeros is large and
intervals are small compared with the interface size L. On
the contrary, for large positive ζ the number of zeros is small
as excursions are large. In this regime several intervals are of
order L. Interestingly, even for large ζ we can still observe
small intervals coexisting with very large ones.

To quantify interval fluctuations we compute the probability
distribution as

P (�) =
〈

n∑
i=1

δ�,�i

〉
. (11)

The random variable � is thus “local” and contributes n

times to P (�) in a single configuration, as opposed to the
random variablesn, |uq |2, or

∑
u2

x/L, which are global random
variables of each configuration. In Ref. [28], we studied in
detail the one-dimensional case with ζ = 1/2 corresponding to
the one-dimensional Edwards-Wilkinson equation. We showed
that a truncated form of the Sparre-Andersen theorem [35],
which remains valid for describing the interval distribution, is
found to be P (�) ∼ �−3/2 below a size-dependent cutoff. In
spite of the cutoff, the power-law exponent can be related to
the persistence exponent θ = 1/2 of (infinite-size) Brownian
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5 6
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1
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6000
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ζ = 1
ζ = 1.25
ζ = 1.5

0 1000

(f)

FIG. 1. Steady-state configurations with different roughness ex-
ponent ζ ∈ [−1/2,3/2] in a lattice of size L = 1024 with periodic
boundary conditions (PBCs). Figures on the left show the whole
configurations on a circle, illustrating the PBCs with the radius of
the circle chosen arbitrarily for presentation purposes. The quadrant
of the circle in black corresponds to the segment of the interface
depicted in the figures on the right. The interfaces on the right have
their center of mass around zero which allows us to appreciate their
relative amplitude. (a, b) Typical interfaces with roughness exponent
ζ � 0 and the same initial noise. (c, d) Typical configurations in the
interval ζ ∈ (0,1). (e, f) Rare interfaces with ζ � 1 for which small
intervals are observed. For ζ = 3/2 we show the intervals � and the
zeros of the configuration. Both the PBCs and the fact that the interface
vibrates around its center of mass determine the distribution of the
intervals. The amplitude of each mode in the Fourier series decay as√

T L

2qz with q = 2πk/L [see Eq. (7)]. Therefore, the larger the value

of ζ , the more relevant the low-frequency modes are.

motion as 3/2 = 1 + θ . In this paper we will extend such study
to the range ζ ∈ [−1/2,3/2].

The simplest extreme case is ζ = −1/2, when Eq. (2)
reduces, for the discrete interface, to L independent Ornstein–
Uhlenbeck processes [36]. In real space, the zero-area con-
dition

∑
x ux = 0 implies that particles have a mean-field
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FIG. 2. First-passage distribution P (�) for L = 131072 with ζ ∈
[−1/2,0.1] corresponding to regime I and the transition toward
regime II . For ζ = −1/2, the distribution of the intervals is a
pure exponential P (�) = (1/2)� = exp[−� log(2)]. As ζ increases,
correlations among intervals develop and the distribution of the
intervals is exponential P (�) ∼ exp[−�/�c(ζ )] only for intervals � >

�c(ζ ). The value �c(ζ ) is fitted from the corresponding exponential
regime for each ζ . For ζ > 0 but close to zero, a power lawP (�) ∼ �−γ

followed by an exponential cutoff is observed. The solid line shows
the power-law behavior in the P (�) with γ = 2 − ζ = 1.9. The inset
shows P (�) as a function of �/�c(ζ ). The solid line corresponds to
the function f (x) = e−x that describes exactly the distribution P (�)
expected for the Ornstein–Uhlenbeck process. We observe that for all
ζ < 0, an exponential regime is observed for � > �c(ζ ).

effective interaction fixing the center of mass. However, for
a large system they can still be considered as L independent
Ornstein–Uhlenbeck processes as the center of mass vanishes
as 1/

√
L when z = 0. Therefore, the steady-state probability

for ux to be above or below zero at any point in space is
1/2, independently of the height of the interface at any other
position. Consequently, the probability of having an interval
of length � is

P (�) = (1/2)� = exp[−� log(2)], (12)

where we define a characteristic length �c(ζ = −1/2) =
1/ log 2. Figure 2 confirms this exact exponential decay. In
the figure we also show that for all −1/2 � ζ < 0 we still find
an exponential decay at large enough �, with �c(ζ ) increasing
with increasing ζ . The exponential decay can be associated
with the existence of a finite correlation length and the growth
of �c(ζ ) can be attributed to the increase of correlations with
increasing ζ .

Interestingly, as ζ = 0 is approached, a power-law behavior
emerges in the small � regime before the crossover to the
exponential decay. Further, as we increase ζ , one observes that
�c(ζ ≈ 0) ∼ O(L) and the cutoff of the distribution localizes
at ∼L/2. Such cutoff is indeed expected in the limit of very
large ζ where the first modes dominate the fluctuations of
the interface (see Appendix B for an illustrative example). As
shown in Fig. 3, for positive values of ζ below the finite-size
cutoff, the distribution P (�) is well described by P (�) ∼ �−γ .
In this regime, the exponent γ is expected to be related to the
spatial persistence exponent θ as γ = θ + 1. For 0 < ζ < 1
we find γ ≈ 2 − ζ , in good agreement with the prediction
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P
(

)

2

0
0 1.5

ζ = 0.8
ζ = 0.9
ζ = 1
ζ = 1.1

ζ = 1.2

ζ = 1.3

ζ = 1.5
ζ = 1.4

L1

L3

L2

ζ

γ

1

10−1

L

10−210−310−410−5

FIG. 3. First-passage distribution P (�) for ζ > 0 as a function
of �/L for L = 131072. The vertical line corresponds to the value
�/L = 1/2. The distributions behaves as a power law P (�) ∼ �−γ

for � � 1 but much smaller than the system size. For regime II,
corresponding to ζ ∈ (0,1), the exponent is γ = 2 − ζ . For regime
III, corresponding to ζ ∈ (1,3/2), the exponent is well described
by γ = 3 − 2ζ , which was found heuristically (dashed lines). The
inset shows the comparison between the power-law exponent γ as a
function of ζ given in the previous expressions, and the numerical
values measured from the distributions P (�) for L1 = 16 384, L2 =
65 536 and L3 = 131 072.

θ = 1 − ζ [23], made for infinite interfaces. For ζ > 1, we
find instead a crossover towards an unexpected dependence
γ ≈ 3 − 2ζ (see the inset of Fig. 3), which does not match the
prediction θ = 0 for ζ > 1. We argue that this discrepancy is
ultimately due to the zero-area constraint that becomes partic-
ularly relevant for finite super-rough interfaces. In particular,
as we show in Sec. III B, the number of zeros is extensive for
ζ < 0, subextensive for 0 < ζ < 1, and intensive for ζ > 1.
It is worth stressing, however, that the relation γ ≈ 3 − 2ζ is
system-size independent whenever the system is finite, i.e., no
matter how large the system is, the zero-area constraint will
introduce strong correlations between the intensive number of
intervals in the super-rough regime [37]. This observation does
not contradict the prediction θ = 0 [23], which is obtained for
strictly infinite interfaces.

It is also worth mentioning that for all ζ > 0, we observe
correlations between intervals (see Appendix C). These corre-
lations were also present in the particular case ζ = 1/2 studied
in Ref. [28], where successive increments were also shown to
be long-range correlated in spite of the local character of the
regular Laplacian. These correlations are due to the periodic
boundary conditions, since the sum of all the increments that
generate the interface add to zero. This constraint is reflected in
the correlator of the noise whose off-diagonal elements are all
equal and positive in the case ζ = 1/2 [28]. Yet the correlator of
the increments can be computed for any roughness coefficient
ζ , it is beyond the goal of the present article to discuss its exact
shape. Regarding the correlation of intervals, we believe that
they are strongly related to the zero-area constraint imposed
by both the boundary conditions and the fixed center of mass
along which intervals are produced (see Appendix C).
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Surprisingly, for the extreme case ζ = 3/2 we observe that
the distribution of intervals is flat up to a cutoff (see Fig. 3).
By looking at the steady-state configurations, one realizes
that although a typical configuration has no more than a few
zeros, small intervals are rare but still present and the shape
of P (�) shows that they are equally likely. In Appendix B, we
investigate this behavior in detail by gradually increasing the
number of Fourier harmonics in a random Gaussian signal. In
particular, for ζ = 3/2 we find that the suppression of short
wavelength modes induces a linear behavior P (�) ∼ � for
intervals smaller than the minimum cutoff wavelength. Next, a
saturation to a flat distribution P (�) ∼ �0/L for larger intervals
is observed, before reaching a “hump” centered around � =
L/2 which contains the most probable intervals. In Fig. 3, we
see that in general such a hump smoothly develops for ζ > 0
and becomes more pronounced as we increase ζ . The presence
of the hump is a sign of the importance of large intervals
of length � ∼ O(L). This fact is understood by comparing
the relative typical amplitude of the Fourier modes. If we
compare the typical amplitude of the n1 and n2 > n1 harmonic
we have indeed Sq1=2πn1/L/Sq2=2πn2/L = (n2/n1)1+2ζ , which
becomes large for large ζ . In particular, for the fundamental
mode n1 = 1 and the first harmonic we obtain for ζ = 3/2 that
Sq1/Sq2 = 16. While the fundamental mode has trivially two
zeros and P (�) ∼ δ(� − L/2), for a Gaussian random signal
that combines the first two modes we observe that the hump is
broadened but remains peaked around L/2 (see discussion in
Appendix B). While we find that the hump is already visible for
ζ � 1/3, the hump dominates the interval statistics for ζ > 1,
as explained below.

In Fig. 4, we show the first two cumulants 〈�〉 and σ� =√
〈�2〉 − 〈�〉2 of the distribution P (�) in the whole interval of

ζ analyzed. The study of the cumulants as a function of ζ

allows us to clearly identify three regimes: For the values of ζ ∈
[−1/2,0), the mean value 〈�〉 and the standard deviation σ� =√

〈�2〉 − 〈�〉2 do not depend on L. This regime is identified in
the following as regime I . For 〈�〉 we expect to have 〈�〉 ≈
�c(ζ ), which is related to the decay rate in the exponential
distribution shown in Fig. 2. For ζ ∈ (0,1), P (�) presents the
scale-invariant regime P (�) ∼ �−γ = �−(2−ζ ), consistent with
the persistence exponent θ = 1 − ζ of the infinite interface.
As shown in the top inset of Fig. 4(a), in this regime we find
〈�〉 ∼ Lζ . This intermediate regime will be identified as regime
II . Finally, for the regime corresponding to ζ ∈ (1,3/2], small
intervals become rare and the mean value is dominated by
the large intervals of length of order ∼L/2. As shown in the
bottom inset of Fig. 4(a) we find 〈�〉 ∼ L (with only a weak
dependence on ζ near the crossover at ζ = 1) and σ 2

� ∼ L2.
This regime will be referred to as regime III, or super-rough
regime. The behavior of the moments observed numerically
can be obtained by focusing on the decay behavior of P (�)
simply by introducing an infrared and an ultraviolet cutoffs,
�0 ∼ L and �0 ∼ 1, respectively. While for regime I, 〈�〉 is L

independent, for regimes II and III, we obtain

〈�〉 ≈
∫ L0

l0
�−γ+1d�∫ L0

l0
�−γ d�

=
(

1 − γ

2 − γ

)
L

2−γ

0 − l
2−γ

0

L
1−γ

0 − l
1−γ

0

. (13)
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FIG. 4. (a) Mean value of the interval 〈�〉 as a function of ζ . In
general, we identify three regimes for ζ that scale differently with the
size of the system L. Each regime is depicted by roman numerals. For
regime I, the mean value 〈�〉 is independent of the size of the system.
The insets show the collapse of all the values 〈�〉 for the different
system sizes for ζ > 0: regime II, ζ ∈ (0,1), where 〈�〉 ∼ Lζ . The
values depicted in the ordinates correspond to the proportionality
factor. regime III, ζ > 1, where 〈�〉 reaches the size of the system
and scales as ∼L (the placing of the roman numerals coincide with
the regime they represent in the main figure). The scaling in regime III
is understood by the peak displayed by the distribution P (�) around
L/2, where larger intervals become more probable. (b) Standard
deviation σ� =

√
〈�2〉 − 〈�〉2 computed directly from the numerical

distributions P (�) as a function of the roughness exponent ζ . The
inset with the numeral II shows a rescaling of all the values for
the standard deviation in the interval ζ ∈ [0,1], illustrating that a
naive scaling σ� ∼ Lζ does not hold except for ζ = 1. The inset with
the numeral III corresponds to the regime for ζ > 1 where the scaling
is σ� ∼ L. For ζ < 0 both moments are independent of the system
size L.

Thus, in the large size limit we find 〈�〉 ∼ O(Lζ ) for 0 < ζ <

1, and 〈�〉 ∼ O(L) for ζ > 1. In consequence, the crossover
from regime II to III at ζ = 1 represents a transition from a
ζ -dependent 〈�〉 to a ζ -independent behavior. Similar obser-
vations can be performed for σ� as shown in Fig. 4(b) in regimes
I and III, while the scaling of σ� is nontrivial in regime II due
to behavior of 〈�2〉.
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FIG. 5. Stationary width ws = w(t → ∞) as a function of the
roughness coefficient ζ for L1 = 16 384, L2 = 65 536 and L3 =
131 072. The solid lines represent the long-time behavior of the
width given by the Eq. (14). For ζ < 0, i.e., regime I, the width
ws is independent of the system size L and is dominated by the
high-frequency modes. The definition of the roughness exponent ζ

comes from the dependence of the width on the system size at the
saturation timews ∼ Lζ for ζ > 0. The width in this case is dominated
by the low-frequency modes. The inset shows the collapse of all the
curves for different system sizes L for regimes II and III . In these
regimes, the width scales as 〈ws〉 ∼ Lζ , as shown in Eq. (17). The

solid line corresponds to the prefactor ws

Lζ ≈
√

T

(2π )1+2ζ ζ
of Eq. (17).

It is interesting to compare the behavior of 〈�〉 with the
stationary width of the interface ws defined in Eq. (8). From
Eq. (5) we get, for ζ 	= 0,

w2
s ≈ T

2πζ

[(
L

2π

)2ζ

− π−2ζ

]
, (14)

where we used z = 1 + 2ζ . This analytical expression is in
perfect agreement with the numerical results, as shown in
Fig. 5. The case ζ = 0 is marginal,

w2
s ≈ T

π
log(L/2). (15)

From Eq. (14), we can obtain large-L expressions for each
regime of ζ as follows. For regime I, ζ < 0, the stationary
width w2

s is dominated exclusively by the ultraviolet cutoff:

w2
s ≈ T

2π1+2ζ |ζ | . (16)

This independence inL for ζ < 0 (regime I ) can be appreciated
in Fig. 5 when comparing three different sizes. If ζ = −1/2,
one has w2

s = T as expected for an Ornstein–Uhlenbeck
process, or by the energy equipartition theorem.

For regimes II and III, the stationary width is dominated by
the infrared cutoff

w2
s ≈ T

(2π )1+2ζ ζ
L2ζ , (17)

as seen from the numerical results in the inset of Fig. 5, which
also shows the analytical prefactor. Let us now compare 〈�〉
and 〈ws〉, shown in Figs. 4 and 5. We see that 〈�〉 and ws

follow the same scaling with L in regimes I and II . More

0.1

1

10

-0.5 0 0.5 1 1.5

/
w

s

ζ

L = 16384
L = 65536
L = 131072

FIG. 6. Comparison between 〈l〉 and ws as a function of the
roughness exponent ζ and the system size L.

remarkably, the scaling prefactor, which depends on ζ is also
very close. The average interval, measuring fluctuations in the
longitudinal direction, is thus controlled by the width of the
interface for−1/2 < ζ < 1 (regimes I and II ), which measures
fluctuations in the transverse direction. However, in regime
III this relation is broken as 〈�〉 is constrained by the size
of the system while ws continues to grow as Lζ . In Fig. 6
we show that they can be indeed approximately considered
to be proportional for all the values ζ < 1, as 〈�〉 ≈ 10 ws ,
neglecting a small ζ dependent correction of order O(1). This
connection between a quantity that measures fluctuations in
the transverse direction and one that measures fluctuations on
the longitudinal direction is interesting, particularly because
ws can be computed analytically as discussed in Appendix D.

B. Fluctuations in the total number of zeros

The periodic boundary conditions and the zero-area con-
dition fixing the center of mass position impose a nontrivial
constraint on the Fourier modes complex amplitudes of Eq. (7).
General considerations can be made about the number of
zeros in truncated Fourier series. In particular, the number of
zeros is always even and there is a maximum of 2N zeros
(if qcut = 2πN/L is the shortest wavelength in the series),
and a minimum of two zeros if the zero-area constraint is
enforced (see Appendix B). An illustrative example is the
case of a random signal composed by only two modes, the
fundamental and the first harmonic, discussed in details in
Appendix B. While the fundamental mode alone has exactly
two zeros, mixing it with the first harmonic can produce
interfaces with four zeros. Under certain conditions, we can
compute the probability to observe either two or four zeros, as
shown in Appendix B. The task of estimating the probabilities
of the allowed number of zeros by mixing more modes
however becomes analytically intractable. This fact motivates
the numerical study of the distribution of the number of zeros
in the steady state.

Figure 7 shows the distribution P (n) of the number of zeros
for different roughness exponents ζ . In regime I, corresponding
to ζ < 0, we observe a narrow distribution with a well defined
mean value. As we gradually increase ζ , we observe that the
center of the distribution shifts towards the left, while the
distributions develops a left tail which behaves approximately

042129-7



ZAMORATEGUI, LECOMTE, AND KOLTON PHYSICAL REVIEW E 97, 042129 (2018)

P
(n

)

2 102 104
10−6

10−4

10−2

1

n

ζ = −0.3
ζ = 0
ζ = 0.1
ζ = 0.2
ζ = 0.3
ζ = 0.4
ζ = 0.5
ζ = 0.6
ζ = 0.7
ζ = 0.8
ζ = 0.9
ζ = 1
ζ = 1.3

10 103

FIG. 7. Distributions of the number of zeros P (n) for interfaces
of size L = 16 384 for different values of the roughness exponent
ζ . As ζ increases above ζ = 0 a power-law regime is observed, as
shown by the solid lines. We observe that for large ζ the distribution
is concentrated around n = 2.

as P (n) ∼ n2(1−ζ )/ζ for values of ζ around 1/2, as shown by
the straight lines in Fig. 7. Further, for larger ζ the left tail
reaches the minimal value n = 2, whose probability becomes
larger, indicating the dominance of the fundamental mode in
the super-rough phase.

To shed light on the behavior of the average number of
zeros 〈ρ〉, we now compare its value to the average size 〈�〉 of
the intervals. In Fig. 8(a) we show that 〈ρ〉 displays the same
properties as 〈�〉−1 in the three regimes, not only the scaling
with L, but also in the ζ -dependent scaling prefactor, as can
be appreciated by comparing with the insets of Fig. 4(a). If
a generic scaling 〈�〉 ≈ 〈ρ〉−1 ≡ L/〈n〉 is reasonable, there is
no reason a priori for it to hold exactly. Indeed, for instance,
the number n of zeros is a single random variable for each
configuration, while there are precisely n intervals for that
configuration contributing to 〈�〉 [see definition of P (�) in
Eq. (11)]. Remarkably, we find, however, that the behavior of
〈ρ〉 = 〈n〉/L and of 〈�〉−1 are equal for all ζ . In Fig. 9 we show,
rather strikingly, that actually 〈ρ〉 ≈ 〈�〉−1, so that even their
prefactors are numerically indistinguishable. We understand
this relation from the fact that the distribution P (n) is sharply
peaked (for large L) around its most probable value n�.

As we observe in the configurations sketched in Fig. 1, for
ζ < 0 the interfaces stay close to their center of mass since the
amplitude of the different modes that describe the interface
differ slightly from each other. In regime I, we find that n is
an extensive observable, i.e., the number of zeros behaves with
the system size as 〈n〉 ∼ O(L). This can be appreciated in the
size independence displayed by 〈ρ〉 = 〈n〉/L in Fig. 8(a). As ζ

increases beyond ζ = 0 in regime II, larger intervals appear and
configurations with fewer number of zeros are more likely to
occur. We find in this regime a subextensive number of zeros
〈n〉 ∼ O(Lζ ), as can be appreciated in the scaling collapse
〈ρ〉Lζ shown in the left inset of Fig. 8(a). The number n of zeros
becomes independent of the system size L at ζ = 1, which
means that the density of zeros goes to zero in the limit L →
∞, or that the mean number of zeros becomes an intensive
quantity 〈n〉 ∼ O(1) in regime III .
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FIG. 8. First two cumulants for the density of zerosρ = n/L, with
n the number of zeros, in systems of size L1 = 8 192, L2 = 16 384 and
L3 = 32 768. (a) Stationary mean density 〈ρ〉 = 〈n〉/L as a function
of ζ for ζ ∈ [−1/2,3/2]. For ζ < 0, the number of zeros 〈n〉 depends
linearly on L. Hence, the mean density 〈ρ〉 is independent of L. For
ζ ∈ (0,1), the mean density 〈ρ〉 depends on the roughness coefficient
as 〈ρ〉 ∼ L−ζ . For ζ > 1, the mean number of zeros 〈n〉 becomes
independent of L since typical configurations, dominated by the first
two nontrivial modes, have two or four zeros, independently of the
system size. Thus, the density behaves as 〈ρ〉 ∼ L−1. (b) Standard
deviation σρ =

√
〈ρ2〉 − 〈ρ〉2 for the density of zeros. In regimes

II and III, the scaling for the standard deviation σρ corresponds to
the one observed for 〈ρ〉, i.e., σρ ∼ L−ζ and σρ ∼ L−1, respectively.
The standard deviation σρ presents a maximum at around ζ = 0.1.
Interestingly, in regime I a scaling σρ ∼ Lζ is found, which means
that in the infinite-size limit the distribution P (ρ) resembles a Dirac
δ centered in 〈ρ〉.

Figure 8(b) shows the standard deviation σρ =√
〈ρ2〉 − 〈ρ〉2, which displays a nonmonotone behavior

as a function of ζ . As for the standard deviation of the
intervals, σρ is controlled by the second moment 〈ρ2〉, whose
scaling with the system size L is nontrivial. Nonetheless, for
the scaling L−ζ σρ we observe a perfect collapse for different
system sizes.

IV. NONSTATIONARY STATE

In this section we consider the nonstationary relaxation of
interfaces with different ζ starting from a flat initial condition.
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FIG. 9. Comparison between 〈�〉 (large empty markers) and 〈ρ〉−1

(small solid markers) as a function of roughness exponent ζ and
system size L.

This case is experimentally relevant since the equilibration
time for an interface described by the critical dynamics of
Eq. (1) grows as Lz, with z the dynamic exponent (which
coincides with the Riesz-Feller order of the fractional Lapla-
cian in our model). Aging properties are indeed experimentally
observable in many systems and nonstationary persistence
properties can be analyzed.

We are interested in particular in the nonstationary density
of zeros 〈ρ(t,L)〉, and in its comparison with the nonstationary
width w(t,L). This comparison is directly motivated by the
relation found in the steady state, where (the inverse of) 〈ρ〉
and ws display the same scaling for regimes I and II, relating
a “longitudinal” to a “transversal” property of the interface
(see Fig. 6). As the initial condition is a flat interface and the
very short time dynamics is diffusive, one has w2(t) ≈ 2T t

(see Appendix D) and, at initial times, we expect a large
and extensive number of zeros, i.e., n ∼ L. We focus in the
temporal decay of such excess of initial zeros by monitoring
its density 〈ρ(t,L)〉.

In Fig. 10 we show one example of the density of zeros
〈ρ(t,L)〉 as a function of t for different system sizes L in each
regime considered (from the bottom to the top figures they
correspond to regimes I, II, and III, respectively). In all cases,
we observe an initial excess of zeros that relaxes toward its
stationary value.

For ζ < 0, i.e., in regime I, the steady-state equilibration
time is very short and the stationary state is approached
via a size-independent exponential convergence, shown in
Fig. 10. In this regime the equilibration time does not scale
with the system size L as expected from dynamic scaling of
rough interfaces. This is consistent with the existence of a
finite correlation length in the steady state of order �c(ζ ), as
shown in Fig. 2. Thus, the equilibration takes place when the
dynamical growing length becomes of the order of �c(ζ ). In
the extreme case for ζ = −1/2, we have a characteristic time
τc(ζ = −1/2) ≈ 1 corresponding to the Ornstein–Uhlenbeck
process and a monotonic increase in τc(ζ ) with increasing ζ .
Such increase in the characteristic time is consistent with the
growth of the correlation length �c(ζ ) and it is ultimately due
to the increase of the coupling between neighboring elements
of the interface.

1

10−1

10−2

ρ
(t

)

L
ζ
ρ
(t̂

L
z
)

t̂ = t/Lz

L
ρ
(t̂

L
z
)

t̂ = t/Lz

ρ
(t

)

t
1 106

10−6 102

10−13 10−3

0.4

0.5

10−1

10

I

II

1

10−1

10−2

ρ
(t

)

1

10−1

10−2

ρ
(t

)

1

103

III

t
11 06104102

L1

L2

L3

L4

FIG. 10. Density of zeros 〈ρ(t,L)〉 as a function of time t for
L1 = 512, L2 = 1024, L3 = 2048, and L4 = 4096. The values of ζ

shown for each regime are ζ = −0.3,0.3 and 1.3 for regimes I, II, and
III, respectively. In regime I, we do not observe a power-law decay
toward the stationary density. Such a decay seems to be system-size
independent. For the stationary density given by the plateau, there is
a weak dependence on the system size L. The stationary case in this
regime is approached via an exponential decay. For regime II, there is a
power-law decay of the density of zeros toward the stationary density.
The power law is given by the solid line ∼t−ζ/z, with z = 1 + 2ζ . The
inset shows the scaled function 〈ρ̂(t̂)〉 ∼ Lζ 〈ρ(t/Lz)〉. For regime
III, the saturation time becomes very large ts ∼ L1+2ζ (ts ≈ 109 for
L1 = 512), but a scaling function of the form 〈ρ̂(t̂)〉 ∼ L〈ρ(t/Lz)〉 is
still expected.

For 0 < ζ < 1 in regime II, the number of zeros decays as
a power law at short times and equilibrates to a size-dependent
value. In the inset of Fig. 10 we show that it can be fairly
described by 〈ρ(t,L)〉 ∼ L−ζ 〈ρ̂(t/Lz)〉, so that the equilibra-
tion time scales as Lz, as expected from a simple dynamical
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scaling. Such scaling is consistent with the steady-state scaling
〈ρ〉 ≈ 〈�〉−1 ≈ w−1

s ∼ L−ζ . If we replaceL → Ldyn(t) = t1/z,
valid for intermediate times before equilibration, Ldyn < L,
we find 〈ρ(t,L)〉 ∼ L

−ζ
dyn = t−ζ/z. This behavior is in good

agreement with this nonstationary prediction as shown by the
solid line in Fig. 10.

In the super-rough regime III corresponding to 1 < ζ <

3/2, the number of zeros also follows a power law at short
times and equilibrates to a size-dependent value, as in regime
II . Nevertheless, as shown in the inset of Fig. 10, the power
law follows a different scaling law 〈ρ(t,L)〉 ∼ L−1〈ρ̂(t/Lz)〉.
This scaling reflects the fact that in the steady state, as we
go from regime II to regime III, the (inverse of) the density
〈ρ〉−1 goes from a ζ -dependent behavior Lζ to a saturation
value L. However, the time dependence is still controlled by
the ζ -dependent dynamical length Ldyn(t) ∼ t1/z, as can be
appreciated in the inset where 〈ρ(t,L)〉 ∼ t−1/z.

It is interesting to compare the decay of the number of zeros
with the temporal increase of the interface width w(t,L), which
can be computed analytically (see Appendix D):

w2(t) ≈ t2ζ/z[F (πt1/z,z) − F (2πL−1t1/z,z)], (18)

where

F (y,z) ≡ (e−2yz − 1)y1−z − 2
z−1
z �[z−1,2yz]

z − 1
, (19)

and �[a,x] is the “upper” incomplete γ function. In Fig. 11
we show the nonstationary evolution of this property for
the three different regimes. In regime I, we observe a size-
independent exponentially fast equilibration in the same time
scale described by ρ(t,L). Accordingly, in regime II we
observe that w(t,L) ∼ Lζ ŵ(t/Lz), showing a tight connection
between w(t,L) and 〈ρ(t,L)〉−1. In contrast, in regime III
we see that w(t,L) ∼ Lζ ŵ(t/Lz) compared to the scaling
〈ρ(t,L)〉 ∼ L−1〈ρ̂(t/Lz)〉 found in the same regime. This is
due to the fact that while the width of the interface is not
constrained, the number of zeros cannot be smaller than two
due to the periodic boundary conditions.

In summary, we find that the nonsteady relaxation of the
mean number of zeros in the three roughness regimes can
be inferred from the corresponding steady-state density of
zeros by replacing L by Ldyn(t) ∼ t1/z whenever Ldyn(t) < L.
In such regime we conjecture that a similar rule holds for
other quantities, such as the nonstationary interval distribution,
P (�; t,L) ∼ P (�; t = ∞,Ldyn(t) < L).

V. DISCUSSION

We have obtained scaling relations for several properties of
rough interfaces with periodic boundary conditions both in the
stationary and nonstationary state. In the former, properties
such as the interval length �, the density ρ of crossing
zeros or the width ws of the interface allowed us to identify
three regimes. By looking at the first two cumulants of such
properties, along with the stationary width, we extracted
scaling functions with the system size L. Analogously, in the
nonstationary state, we identified dynamical scaling functions
for both the density of zeros 〈ρ(t,L)〉 and the width w(t,L),
which can be computed analytically. The main scaling results
are included in Table I.
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FIG. 11. Nonstationary width w(t,L) as a function of time t for
L1 = 512, L2 = 1024, L3 = 2048, and L4 = 4096. The values of ζ

shown for each regime are ζ = −0.3,0.3, and 1.3 for regimes I, II, and
III, respectively. The initial condition is a flat interface. For regime I,
no scaling is proposed. For regime II, a power-law behavior w(t,L) ∼
tβ with β = ζ/z describes the evolution of the width for large times,
smaller than a saturation time t < ts . We show such power law by the
solid lines in black. After a saturation time ts ∼ Lz we recover the
stationary width ws(L) ∼ Lζ . The inset shows the scaling function
for the width is ws(t,L) ∼ Lζ ŵ(t/Lz), where ŵ(t̂) corresponds to the
scaled function independent of L and adimensional time t̂ = t/Lz.
Such scaling is also valid for regime III.

In addition, we computed numerically the distribution of
intervals P (�) and the distribution of the number of zeros P (n).
For the distribution of intervals we found for regime I that
P (�) ≈ e−�/�c(ζ )GI(ζ ) with GI(ζ = −1/2) = 1 and �c(ζ =
−1/2) = 1/ log 2 as expected for an Ornstein–Uhlenbeck
process. For regime II, the distribution of intervals was found
to be P (�) ≈ �−2+ζ GII(�/L) with a power-law behavior for
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TABLE I. Scaling functions of the observables considered both
in the stationary and nonstationary cases, in the three scaling regimes.

I : ζ ∈ [−1/2,0) II : ζ ∈ (0,1) III : ζ ∈ (1,3/2]

〈l〉∼ �c(ζ ) Lζ L

〈ρ〉∼ �−1
c (ζ ) L−ζ L−1

〈ρ(t,L)〉= 〈ρ(ζ )〉(1 − e−t/τc(ζ )) L−ζ 〈ρ̂(t/Lz)〉 L−1〈ρ̂(t/Lz)〉
ws∼ wc(ζ ) w(ζ )Lζ w(ζ )Lζ

w(t,L)= wc(ζ )(1 − e−t/τc(ζ )) Lζ ŵ(t/Lz) Lζ ŵ(t/Lz)

intermediate intervals and GII(�/L) controlling the behavior
for large intervals � ∼ L. This result is consistent with the
prediction θ = 1 − ζ [23], implying γ = θ + 1 = 2 − ζ . For
regime III, we find that P (�) ≈ �−3+2ζ GIII(�/L) where the
power-law behavior is found to be described by a different
first-passage exponent than regime II for intermediate values
of �, and GIII(�/L) describes the behavior for large intervals
proportional to the size of the system. This result has not
been predicted before and is different from the prediction
γ = θ + 1 (valid for infinite interfaces). A possible reason for
this discrepancy is the relevance of the zero-area constraint,
not considered in Ref. [2], for super-rough interfaces. This
prompts the question of why the same constraint does not
equally affect the γ exponent in the rough interface for regime
II . At this respect we also note that even for ζ = 1/2 the
zero-area constraint is responsible for the breakdown of the
independent interval approximation (a modified version of the
Sparre-Andersen theorem is needed for a correct description
of P (�) as studied in Ref. [28]).

Regarding the distribution P (n) of the number of zeros,
it is less straightforward to draw more accurate predictions.
However, for regime II it was possible to measure heuristically
the behavior of the distribution as follows. For ζ around 1/2
and n < 〈n〉, we obtained that P (n) ∼ n2(1−ζ )/ζ . An analytical
argument is still missing to validate such an exponent.

We consider that the results presented in this paper are both
relevant theoretically and experimentally. On one hand, we
find that some properties of finite systems can be recovered
from the results from nonconstrained infinite-size systems.
Understanding theoretically the role of constraints, such as the
zero-area constraint, on the properties of rough interfaces and
their associated persistence properties is a challenging task, in
particular, for super-rough interfaces. It is worth stressing that
these effects are not typical finite-size effects in the sense that
they do not vanish in the large-size limit, since fluctuations
themselves can scale even more rapidly with size (for instance
ws ∼ L2ζ ). On the other hand, the effects due to the periodic
boundary conditions, along with discretization effects are
relevant for the practical analysis of zeros in interface imaging
experiments or numerical simulations, as discussed below.

We believe many of our results should apply beyond the
linear model we use. Indeed, in many nonlinear cases, the
geometry is rather well described by Gaussian statistics. One
such case is the depinning transition of elastic interfaces in
presence of quenched disorder, where the interface width can
be accurately described by a Gaussian interface with a given
roughness exponent [38], in spite of the drastic modification of
transport properties with respect to the linear model. Another

case is the Kardar-Parisi-Zhang equation where a well-defined
dynamical scaling is experimentally observed [9,10]. More-
over, periodic boundary conditions make sense in practical
situations where the interfaces are the perimeter of a static
or growing droplet. One example is the case of magnetic
bubbles in ferromagnets, which can be nucleated and driven
by magnetic fields [4]. Another example are bubbles of the
turbulent phase in nematic liquid crystals [9,10]. Interestingly,
both the steady-state and nonstationary results are relevant for
growing droplets, as the dynamical length can grow faster or
slower than the perimeter, depending on the drive and on the
universal dynamical exponent z.

Regarding nonstationary stochastic systems where aging
properties are experimentally observed, we believe that non-
stationary persistence properties similar to the ones studied
in the present paper can be analyzed. Such situation typically
occurs when the relaxation is controlled by a growing dynam-
ical length (below which the interface is locally stationary),
smaller than the interface size. The nonstationary persistence
properties we find may be also applied to nonlinear interfaces
too, provided their nonstationary dynamics is described by
a Family–Vicsek scaling, with a dynamical exponent z not
necessarily related to ζ in the same way as in our model.
Such is the case of the relaxation of an initially flat interface at
the depinning transition [5], where an approximate Gaussian
statistics is good enough to describe geometrical features as in
Ref. [38]. Although the growing dynamical length controlling
the relaxation does not follow a power law but a slower
growth with time, as in transient creep motion or relaxation
to equilibrium [39], we expect that our results can be applied.

There are many other interesting open questions to address.
In this paper we have only addressed the periodic bound-
ary condition case, which is very convenient for numerical
simulations and can be also realized experimentally. What
differences can we expect from different boundary conditions?
And in particular, what can we expect from the analysis of a
finite segment of a large interface from an experiment? Such
analysis has been already done for the width of Gaussian
signals [40]. Thus, it would be interesting to perform a
similar analysis regarding the intervals between zeros. Another
interesting question is the effects of nonlinearities in the zeros
statistics of self-affine interfaces. It is clear that nonlinearities
can drastically affect the dynamics of interfaces and change
their universality class. More interestingly, they can produce
geometrical crossovers (with different scales described by
different roughness exponents). Understanding the effects of
such crossovers in the statistics of zeros is also relevant. Finally,
it would be interesting to validate the results obtained in this
paper using analytical approaches, such as the perturbative
method for non-Markovian Gaussian signals [41,42].

VI. CONCLUSIONS

In summary, we report a numerical study of the distribu-
tion of zero crossings in one-dimensional elastic interfaces
described by an overdamped Langevin dynamics with periodic
boundary conditions and fractional elasticity. By continuously
increasing from ζ = −1/2 (macroscopically flat interface de-
scribed by independent Ornstein–Uhlenbeck processes) to ζ =
3/2 (super-rough Mullins-Herring interface), three different
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regimes are identified. The results drawn from our analysis of
rough interfaces subject to particular boundary conditions or
constraints, along with discretization effects, are relevant for
the practical analysis of zeros in interface imaging experiments
or numerical simulations of self-affine interface models.
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APPENDIX

1. General considerations on the zeros
of truncated Fourier series

In our study of zeros of interfaces with periodic boundary
conditions we have used truncated Fourier series,

ux = 1√
L

qcut∑
2π/L

uqe
iqx, (A1)

where qcut is an “ultraviolet” cutoff. For a discrete interface
with L elements the smallest cutoff is qcut = π . However,
we shall consider the general case, qcut = 2πN/L, which can
arise simply from a smoothening of the discretized interface,
yielding smaller values of qcut. We take uq=0 = 0 to describe
displacements around the mean position of the interface.
Here we will make general considerations, regardless of the
statistical properties of the amplitudes uq>0. One might want to
determine the minimum and the maximum number of zeros that
can be generated by the truncated series in Eq. (A1). Since the
interface displacement is real, uq = u∗

2π−q , we can thus write

ut =
N∑

j=1

[aj cos(j t) + bj sin(j t)], (A2)

where aj and bj are real, and we have defined N = Lqcut/2π

and t = 2πx/L. This trigonometric polynomial has exactly
2N complex roots [43]. It can be also proved that since aj and
bj are real, the number of real roots is always even, if we count
roots according to their multiplicity. The maximum number of
real roots is 2N , which can be generated by setting aj = bj = 0
except for j = N . A smaller number of real roots is possible,
but since each of them have multiplicity two, it should be an
even number too. It is also clear that the fundamental mode
alone, j = 1 or q = 2π/L, will generate the minimum of two
real roots if the zero-area constraint, a0 = 0, is imposed. There-

fore, the maximum number of zeros 2N is set by the shortest
wavelength qcut = 2πN/L and the minimum should be 2.

The above observations have two important consequences
for the statistics of zeros: the zero-area constraint enforces
P (n) to have a hard cutoff at n = 2, and P (�) to have a soft
cutoff at � ∼ L/2. For ζ < 0 (regime I), a typical configuration
has n ≈ L/2 zeros, or equivalently intervals with average
length 〈�〉 ≈ 2. As ζ becomes positive, the amplitude of the
modes with shorter wavelengths begin to be relevant and large
intervals of the order of the system size are more likely to
appear. This effect becomes more and more important as ζ

increases, particularly in the super-rough regime III for ζ > 1,
where short-wavelength modes dominate the shape of typical
configurations.

Moreover, the effect of smoothening by truncating the
Fourier series imposes a hard cutoff in P (n) at n = 2N having
interesting consequences for the statistics of intervals between
zeros, as discussed in the following section.

In addition, if we define y ≡ eit , with t ≡ 2πx/L, we can
write an “associated polynomial” for ut ≡ ux=tL/2π as

h(y) =
2N∑
k=0

hky
k = yNux(y), (A3)

where

hk = aN−k + ibN−k, k = 0,1, . . . ,N − 1,

hk = 2a0, k = N,

hk = ak−N + ibk−N, j = N + 1,N + 2, . . . ,2N. (A4)

Therefore, the zeros of ut are those of h(y). In our case, we
should take a0 = 0 to ensure the zero-area constraint. This
correspondence allows us to write the Fourier companion
matrix

Bjk = δj,k−1, j = 1,2, . . . ,(2N − 1), (A5)

Bjk = −1
hk−1

aN − ibN

, j = 2N. (A6)

Interestingly, the roots of ut can thus be computed from the
eigenvalues λk of B as [43]:

tk,m = arg(λk) + 2πm − i log |λk|, k = 1,2, . . . ,2N ; (A7)

with m an integer. If we restrict the zeros to t ∈ [0,1] or x ∈
{0,1, . . . ,L − 1} we can take m = 0. Therefore, the real roots
of the trigonometric polynomial are the complex eigenvalues
of B or the zeros of h(y) in the complex-plane unit circle.
Thus, we recover the fact that 2N roots exist. Consequently,
the connection with the associated polynomial provides us with
a recipe to build a trigonometric polynomial with any desired
even number of zeros, n = 2,4,6, . . . ,2N .

2. Low-frequency modes analysis

In this section, we discuss the role that low-frequency
modes have in the first-passage properties of the interfaces and
smoothening effects. To do so we consider stationary interfaces
described by a low number of Fourier modes, introducing a
cutoff wavevector qcut. Thus, the interface described by the
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first qcut modes is defined as

ux = 1√
L

qcut∑
2π/L

uqe
iqx, (A8)

with uq=0 = 0 (to describe displacements around the mean
position of the interface) and uq>0 defined with zero mean and
second moment σ 2

q = 〈u2
q〉 = T/q1+2ζ , to describe statistical

self-affine interfaces with roughness ζ .
Although our analysis can be implemented on interfaces

with roughness exponent ζ ∈ (−1/2,3/2), in this section we
focus on the particular case ζ = 3/2.

An interface described by two modes with the lowest
frequencies has the form

ux(t → ∞) = ux = sin(q1x) + uq2

uq1

sin(2q1x + φ2). (A9)

We investigate here the ratio of the random amplitudes A =
uq2/uq1 and random phase φ2 ∈ (0,2π ) that maximizes the
number of intervals. Without loss of generality, we fix the phase
of the first mode to φ1 = 0. As a matter of fact, the maximum
number of intervals we can have for an interface described by
Eq. (A9) is four, when the second mode dominates. The best
scenario to generate a new zero x1 close to x0 = 0 is to fix the
phase of the second mode to φ2 = π . By fixing the phases, we
can focus only on the ratio A to understand how a new zero is
created.

The ratio A of two Gaussian variables with zero mean, is a
random variable with a Cauchy distribution f (A) = 1

π

r(ζ )
A2+r(ζ )2 ,

depending on a single parameter r(ζ ) defined as the ratio of
the mean squared values of the two modes: r(ζ ) = σq2/σq1 =
2−(1+2ζ )/2. The condition to have a new zero x1 is that the slope
at x0 becomes negative, i.e., that ∂xux |x0 < 0, which is the case
for A > 1/2. The same argument can be done to find a zero
around x = L/2, for the value at which ∂xux |x=L/2 > 0, which
is the case for A < −1/2.

Let us consider, for instance, an interface with ζ = 3/2
(for which r(ζ ) reaches its minimum value) described by only
two modes with relative phase π . In this case, the probabil-
ity of observing four zeros is F (|A| > 1/2) = 1 − F (|A| �
1/2) ≈ 0.3. In this expression, F (A � b) = ∫ b

−∞ f (A′)dA′
is the cumulative distribution function, equal to F (A) =
1
π

arctan(A/r(ζ )) + 1
2 .

Then, the new zero x1 around x0, is the solution of
sin(2πx1/L) = A sin(4πx1/L), where A > 1/2, thus

x1 = L

2π
arctan(

√
−1 + 4A2). (A10)

We note that the value of x1 gets close very quickly to L/4 as
soon as A > 2. In conclusion, this leaves us with two intervals
of length �1 = x1 and two intervals of length �2 = L

2 − �1 =
L
2 (1 − arctan(

√−1+4A2

π
).

From Eq. (A10), we can also express A as a function of
the position of the zeros. Then, from the Cauchy probability
f [A(x)] we obtain the distribution of x as

P (x) = f [A(x)]
dA

dx
= 4r sin(2πx/L)

L[1+2r(ζ )2+2r(ζ )2 cos(4πx/L)]
,

(A11)
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FIG. 12. Distributions of intervals P (�) for ζ = 1/2 and L =
16 384 obtained for different values of qcut = 2πk/L with k =
2, 256, 8192 [see Eq. (A8)]. The solid lines correspond, respectively,
to the power-law regime �−3/2 (black line) and the linear behavior
(gray line) discussed in this section. The vertical line pinpoints the
value L/2.

where r(ζ ) = 2−(1+2ζ )/2. Since the first zero of the interface
was fixed to x0 = 0, the first interval has a length � = x. Hence,
its distribution is

P (�) ≈ 8πr�

L2(1 + 4r(ζ )2)
+ O(�3), (A12)

which is obtained from Eq. (A11) for small � < L/4. In
Figs. 12 and 13 we computed numerically P (�) for a system
of size L = 16 384 and ζ = 1/2 and ζ = 3/2, respectively,
for different values of qcut = 2πk/L, with k the number of
nontrivial modes taken into account. In particular, the curves
corresponding to qcut = 4π/L (thus k = 2) in Figs. 12 and 13,
validate the linear behavior derived in Eq. (A12).

The linear behavior in Eq. (A12) is observed for any
roughness exponent, with only a prefactor that depends on
ζ and the cutoff qcut. Here we derived the exact expression
of this prefactor for the case qcut = 4π/L, corresponding to
having two Fourier modes.

Further, the linear regime Eq. (A12) is ubiquitous for any
qcut and any roughness exponent ζ provided that the length
of the intervals satisfies � < 1/qcut. For intervals where � �
1/qcut the distribution of intervals observed is close to the
complete distribution P (�) when all the modes are considered.
It is still an open question to understand how the power-law
regime of P (�) develops, in general, and how the plateau
appears for ζ = 3/2, in particular.

The exact determination of the length of the intervals for an
interface reduced to two Fourier modes gives some insight in
the way the zeros of the interface are generated. In general, the
presence of a large interval is accompanied by a small interval.
This is the case when the relative phases are close to π and
four zeros are produced. In this case, either we observe either
four intervals with lengths close to L/4, or two large intervals
with length � � L/2 with two very small intervals in between.
This fact is captured by the correlation of intervals, as shown in
Appendix C. Although the analysis of such correlations goes
beyond the goal of this article, we provide the results of their
numerical evaluation for completeness.
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FIG. 13. Distributions of intervals P (�) for ζ = 3/2 and L =
16 384 obtained for different values of qcut = 2πk/L with k =
2, 8, 16, 128, 256, 2048, 8192 [see Eq. (A8)]. The diagonal line
shows the limiting behavior P (�) ∼ � for small intervals of size
� < L/2k. For � > L/2k, P (�) remains unchanged for k > 2. As
shown in the inset on the left, this dependence on qcut validates the
behavior found analytically for the regime of � < L/2k where the
scaling P (�) = 1

L
P̂ (�qcut) collapses the linear behavior for k � 8.

Such a linear behavior is exactly predicted for k = 2 as obtained from
Eq. (A11) and depicted by the solid line. The scaling behavior of P (�)
for different qcut indicates the transition at � ∼ 1/qcut from the linear
behavior for small � to the regime given by the plateau whose height
is of order ∼1/L. The inset on the right validates the scaling of the
interval distribution P (�) described by the two first low-frequency
modes given by the expression LP (�) ∼ 2π�

L
, for different system

sizes L: L1 = 16 384, L2 = 32 768 and L3 = 65 536 [see Eq. (A11)
and the discussion that follows].

3. Correlation of intervals

The interfaces we study are strongly correlated due to
the periodic boundary conditions. The zero-area constraint
is equivalent to having the sum of the individual increments
along the interface equal to zero. Thus, both the intervals and
the increments are correlated at all distances. In Ref. [28] we
showed that for the EW model (ζ = 1/2), not only consecutive
increments but at any distance are correlated.

Regarding the correlations of the intervals, we define the
correlation function Cj = 〈�i�i+j 〉 − 〈�〉2, where 〈·〉 refers to
the average taken over all intervals. In Fig. 14 we show such
correlation for ζ < 1/2 and ζ > 1/2, respectively. Above ζ =
1/2, the correlation function both for even and odd neighbors
is, in general, anticorrelated, except for small regions. This
might be explained by the analysis done in Appendix B, where
we get the exact length of the intervals generated by the first
two nontrivial modes: large intervals are followed by small
intervals. If we take into account all the modes, then the
probability of having small intervals increases.

4. Exact results for the interface width

We derive here exact predictions for stationary and nonsta-
tionary interfaces with mean-squared width defined as

w2(t) = L−1
∑

x

〈
u2

x

〉
. (A13)
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FIG. 14. Correlations Cj/C0 of intervals for different ζ with the
correlation function defined as Cj = 〈�i�i+j 〉i as a function of the
j th interval normalized by the average number of intervals 〈n〉ζ .
We compare Cj for j even and odd. For ζ < 1 we observe that
for even j (for odd j ) Cj goes from correlated (anticorrelated) to
anticorrelated (correlated) intervals. Then such process is reversed
and gets peaked around 〈n〉 which corresponds to the mean value of
the number of zeros (thus of the number of intervals). Such mean
value coincides with the maximum value of the distribution P (n)
in Fig. 7. The intervals � are completely decorrelated for ζ = −1/2
since this process corresponds to a random coin toss process that takes
positive or negative values, independently at each site. Hence, for such
a process an interval of length appears with probability P (�) = (1/2)�,
as discussed in the text.

Our starting point is the discrete space x = 0, . . . ,L − 1,
continuous time spatially fractional equation:

∂tux = −(−∂2
x

)z/2
ux + ηx(t), (A14)

〈ηx(t)ηx ′(t ′)〉 = 2T δx,x ′δ(t − t ′), (A15)

where z ≡ 1 + 2ζ . We use periodic boundary conditions so
u(x) is a spatially periodic function with period L. Let us fix
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the forward and backward transform conventions:

uq =
∑

x

e−iqxux(t)/
√

L, (A16)

ux =
∑

q

eiqxuq(t)/
√

L, (A17)

with q = 2πk/L, and k = 0,1, . . . ,L − 1. Then, in Fourier
space, due to the translational symmetry of the dynamics, all
modes are uncoupled

∂tuq = −|q|zuq + ηq(t), (A18)

〈ηq(t)ηq ′(t ′)〉 = 2T δq,−q ′δ(t − t ′). (A19)

If we start with a flat initial condition at the origin, uq(t =
0) = 0, the nonstationary solution is, for q 	= 0,

uq(t) =
∫ t

0
dt ′ exp[−|q|z(t − t ′)]η(t ′). (A20)

Since we will be interested in displacements with respect to the
center of mass of the interface we will consider uq=0(t) = 0
∀ t .

The structure factor, defined as Sq(t) ≡ 〈uq(t)u−q(t)〉 =
〈|uq(t)|2〉, is

Sq(t) =
∫ t

0

∫ t

0
dt1dt2 e−|q|z(2t−t1−t2)〈η(t1)η(t2)〉. (A21)

Then, for q 	= 0,

Sq(t) = T |q|−z[1 − exp(−2|q|zt)]. (A22)

The mean-squared width growth of the interface or rough-
ness is then

w2(t) = L−1
∑

x

〈
u2

x

〉
= L−2

∑
x

∑
q

∑
q ′

〈uquq ′ 〉 exp[i(q + q ′)x]

= L−1
∑

q

〈|uq(t)|2〉 = L−1
∑

q

Sq(t)

≈ 2T L−1
∫ π

2π/L

dq

2π/L
|q|−z[1 − exp(−2|q|zt)]

= T

π

∫ π

2π/L

dq |q|−z[1 − exp(−2|q|zt)]. (A23)

We now analytically evaluate the last expression in different
limits.

a. Large time limit (t → ∞). If z 	= 1 (ζ 	= 0), we have

w2(t → ∞) ≈ T

π

∫ π

2π/L

dq |q|−z

= T

π (1 − z)

[
π1−z −

(
L

2π

)z−1
]
. (A24)

We thus observe the following:
(1) In the large size limit, if ζ < 0 (z < 1), w2(t → ∞) is

dominated by the ultraviolet cutoff,

w2(t → ∞) ≈ T

1 − z
π−z. (A25)

If z = 0, w2(t → ∞) = T as expected from the energy
equipartition theorem, since z = 0 corresponds to L uncou-
pled overdamped Langevin oscillators (with a Hooke spring
constant equal to the unity).

(2) For ζ > 0 it is dominated by the infrared size dependent
cutoff,

w2(t → ∞) ≈ 2T

2π (z − 1)

(
L

2π

)z−1

= 2T

(2π )z(z − 1)
L2ζ . (A26)

(3) In the marginal case z = 1, ζ = 0, we have

w2(t → ∞) ≈ T

π

∫ π

2π/L

dq |q|−1 = T

π
log(L/2). (A27)

b. Small times.

w2(t) ≈ T

π

∫ π

2π/L

dq |q|−z[1 − exp(−2|q|zt)]

≈ T

π

∫ π

2π/L

dq2t = 2T t(1 − 2L−1) ≈ 2T t, (A28)

and it holds for any z. Small times have thus always diffusive
displacements, independent of z.

c. Finite times. If z = 0 we can be readily solve for all times
t � 0

w2(t) ≈ T

π

∫ π

2π/L

dq |q|−z[1 − exp(−2|q|zt)]

= T

π
[1 − exp(−2t)]π (1 − 2L−1)

≈ T [1 − exp(−2t)], (A29)
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FIG. 15. Time evolution of the mean-squared interface width
w2(t,ζ,L) for different values of ζ (or z = 1 + 2ζ ). The initial
condition is a flat interface with w2(t = 0) = 0 and the zero-area
constraint is imposed at all times. The dashed line indicates the
diffusive behavior w2(t) ∼ t at short times for all ζ . At larger times,
the dotted line indicates the critical behavior w2(t) ∼ t2ζ/z expected
for ζ > 0 (here we show the case ζ = 1.3), before saturating to
w2(t → ∞) ∼ L2ζ at even larger times t ∼ Lz. For ζ < 0 (z < 1) the
diffusive regime crossovers directly to an L-independent saturation
but at ζ = 0 (z = 1), w2(t → ∞) ∼ log L.
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where in the last term we took the large size limit, L → ∞. It
is worth noting, however, that relaxation is not critical and it
has a finite size-independent characteristic time.

In the more general z 	= 0, z 	= 1 we can also analytically
solve and obtain

w2(t) ≈ t2ζ/z[F (πt1/z,z) − F (2πL−1t1/z,z)], (A30)

where

F (y,z) ≡ (e−2yz − 1)y1−z − 2
z−1
z �[z−1,2yz]

z − 1
, (A31)

where �[a,x] is the “upper” incomplete γ function. With the
above expression we find that the mean-squared width w2(t)
displays two marked different behaviors.

(1) If z < 1, w2(t) initially increases linearly with time
as predicted in Eq. (A28) and in an L-independent finite
time crossovers, exponentially fast, toward a z-dependent
stationary value described by Eq. (A25) in the large L

limit. This regime is thus size independent in such a
limit.

(2) For z > 1 on the other hand, w2(t) also initially in-
creases linearly with time as predicted in Eq. (A28) and in a
finite L-independent time crossovers, exponentially fast, to a
different power law growth, w2(t) ∼ t2ζ/z. This growth regime
in turn crossovers exponentially fast, after a time that scales as
Lz, to the L- and z-dependent stationary value of Eq. (A26).
This regime is thus controlled by infrared divergences.

In Fig. 15 we show this behavior for different values of z,
by plotting Eq. (A30).
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