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Self-avoiding walk on a square lattice with correlated vacancies
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The self-avoiding walk on the square site-diluted correlated percolation lattice is considered. The Ising model is
employed to realize the spatial correlations of the metric space. As a well-accepted result, the (generalized) Flory’s
mean-field relation is tested to measure the effect of correlation. After exploring a perturbative Fokker-Planck-like
equation, we apply an enriched Rosenbluth Monte Carlo method to study the problem. To be more precise, the
winding angle analysis is also performed from which the diffusivity parameter of Schramm-Loewner evolution
theory (κ) is extracted. We find that at the critical Ising (host) system, the exponents are in agreement with Flory’s
approximation. For the off-critical Ising system, we find also a behavior for the fractal dimension of the walker
trace in terms of the correlation length of the Ising system ξ (T ), i.e., DSAW

F (T ) − DSAW
F (Tc) ∼ 1√

ξ (T )
.
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I. INTRODUCTION

The effect of environmental disorder on critical behaviors
is a long-standing problem in condensed-matter systems. The
self-avoiding walk (SAW) as a realization of many physical
systems (such as polymers) in such media has attracted much
attention in the literature. The problem is more interesting
when the disorder is itself critical or generally self-affine, since
two diverging lengths (one for the SAW and another for the
host media) compete, which may lead to nontrivial effects [1].
Since only the end parts of the SAW can lie on dead ends,
the asymptotic behavior of its gyration radius is expected to be
dominated by a backbone structure, rather than by that of a full
fractal lattice. In percolation clusters, the fact that the backbone
fractal dimension is different from the spectral dimension of the
system reveals that random walks and SAWs probe different
properties of the fractal lattice [2].

The problem of a SAW in dilute systems was first studied by
Chakraberti et al. [3]. They showed, based on renormalization-
group ideas, that disorder does not change the properties of
the model. This was challenged by Kremer [4] for a dilute
diamond lattice, and by Aharony et al. for other fractal
lattices [5], depending on their backbone fractal dimension.
Kremer’s findings [4] apparently violated the Harris criterion,
according to which for α > 0 (α ≡ the exponent of the heat
capacity) systems (such as SAW), disorder should be relevant.
The results showed that for p > pc (pc ≡ the percolation
threshold), the ν exponent (≡ the exponent of the end-to-end
distance; see the following sections) is identical to the pure
SAW on a regular lattice, and for p = pc it is in accordance
with the Aharony generalization of Flory’s mean-field formula
[6,7] ν = 3/(2 + d̄) (≈ 2

3 for the diamond lattice), in which
d̄ = d − β/νperc, d is the spatial dimension of the system,

*jafarcheraghalizadeh@gmail.com
†morteza.nattagh@gmail.com
‡h.mohammadzadeh@gmail.com
§ahad.saber@gmail.com

and β and νperc are the exponents of the percolation problem.
The β exponent is defined for the percolation probability
in the vicinity of the critical point [P (p) ∝ |p − pc|β], whereas
the νperc exponent is defined for the correlation length ξ (p) ∝
|p − pc|−νperc . The two-dimensional result νperc = 4/3 and β =
5/36 is exact, whereas for the three-dimensional case νperc =
0.88 and β = 0.41, which have been obtained by numerical
simulations [8]. It was also suggested that a more appropriate
generalization of Flory’s result is ν = 1

d̄
( 3d̃

2+d̃
), where d̃ is

the spectral dimension of the fractal space. The dependence
of ν on many other fractal parameters has been investigated
[2,9–11]. The exponent has also been derived within many
other approximations [12–16]. For a good review, see [1].
Nakayashi et al. argued that the large change of ν for p = pc

should be the result of large errors, and the exponent does not
change even at p = pc [17–20], the result which was argued
by other authors [1].

The most conclusive field-theoretical results were found
by Meir and Harris [21] and then extended [22]. By starting
from a Landau-Ginsberg-Wilson Hamiltonian, it was found
that for noncritical disorder p > pc the RG flow is toward
the pure SAW fixed point, and for the critical disorder (p =
pc), νp = 1

2 (1 + ε/8 + 15ε2/256), in which ε ≡ 4 − d. In this
respect, one expects that for p > pc and the large spatial scales
r � ζp (in which ζp is the percolation correlation length), the
properties of the pure SAW are retrieved, whereas for r � ζp

the behaviors of the model at p = pc are seen [23]. Despite a
huge literature, the effect of spatial correlation in metric space
in not yet known. In addition, the conformal invariance of the
SAW on critical fractal lattices is another important question
that has not been addressed in the literature. In the present
paper, we dilute the host system by removing some sites and
letting the random walker pass only through the remaining
(active) area. The pattern of this diluteness is considered to
be correlated, which is realized by means of the Ising model.
We call the resulting lattice the site-diluted Ising-correlated
lattice. The importance of these correlations is also argued in
detail in terms of a Fokker-Planck-like equation. The Monte
Carlo method as well as the winding angle method are used
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to extract the various exponents of the self-avoiding random
walkers, or equivalently the polymers.

The paper is organized as follows: In the following section
we discuss the motivation for this study, and we introduce and
describe the model. The numerical methods and details are
explored in Sec. III. The results are presented in Sec. IV, which
has two subsections: Sec. IV A contains the critical results, and
Sec. IV B presents the power-law behaviors in the off-critical
temperatures. The final section contains our conclusions.

II. THE CONSTRUCTION OF THE PROBLEM

The notion of critical phenomena on fractal lattices origi-
nated mainly in the work of Gefen et al. [24]. The concept can
be generalized to dilute systems that become fractal in some
limits. Examples include magnetic material in porous media
[25–32], fluid dynamics in porous media [33,34], and self-
organized criticality on percolation lattices [35,36]. Among
the statistical models, there is a great deal of interest in
simple random walks (RWs) and self-avoiding walks (SAWs)
in dilute systems. One example is the self-non-intersecting
chains of monomers in disordered systems, which have strong
connections to experiments [1]. In addition, a correlated SAW
serves as an important realization for protein folding in lattices
[37], in which the correlations are mostly realized by Ising
interactions between monomers [38].

In the above-mentioned literature on the SAW in disordered
systems, the site-diluteness of the host media is commonly
realized by the percolation theory, in which no correlation
between active sites (through which the random walker can
pass) is considered, and there has been little attention given
to the correlation effects in the host system. Recently, it was
shown that involving (Ising-type) correlations in the diluteness
pattern of the media dramatically changes the properties of
the sandpile model with respect to that on the uncorrelated
percolation lattice [36]. More interesting effects are for the
critical host system in which two diverging lengths (one for the
dynamical model and another for the host system) compete.
This motivates one to consider the SAW on the correlated
site-diluted lattices, which is the aim of the present paper. The
motivations of the present work are twofold:

(i) What is the effect of correlation in the diluteness pattern
of the lattice (which is Ising-type in this paper)? More precisely,
does Flory’s generalized relation work for the SAW on the
correlated dilute system?

(ii) What are the behaviors of the SAW in the off-critical
host system? More importantly, how does the fractal dimension
of the SAW traces change in the vicinity of the critical point?

To incorporate the correlations in the diluteness pattern
of the host media, we have used the Ising model. Let us
explain the construction of the lattice in more detail. Consider
a two-dimensional square L0 × L0 lattice comprised of some
random active and inactive sites. The random walkers are
restricted to taking their steps only on the active sites. The
active area is defined as the area that is formed from the set
of active sites. We represent the status of sites by the field s,
which is 1 (0) for an active (inactive) site. Therefore, the overall
status of the system is known if the configuration of this field
is given, i.e., {si}Li=1. We use the Ising model to model the
pattern of si’s, which is defined on the regular square L0 × L0

lattice with spins σ = 2(s − 1/2) = ±1. Therefore, the pattern
of the active area of the original system is obtained by the
Ising model for which the spins play the role of the field of
activity-inactivity of the media, and the correlations are simply
controlled by the artificial temperature T (which has nothing
to do with the real temperature). By “temperature,” we mean
the control parameter that tunes the correlations of the host
system. It is notable that the activity configuration of the media
is quenched, i.e., when an Ising configuration is obtained, SAW
samples are generated in the resulting dilute lattice.

The Ising Hamiltonian (H ) is

H = −J
∑
〈i,j〉

σiσj − h
∑

i

σi, σi = ±1 (1)

in which J is the coupling constant, h is the magnetic field
(which is supposed to be zero in this paper), and σi and σj

are the spins at sites i and j , respectively, having the values
∓1 (as introduced above). 〈i,j 〉 shows that sites i and j

are nearest neighbors. J > 0 corresponds to a ferromagnetic
system (positively correlated host lattice), whereas J < 0 is
for an antiferromagnetic system (negatively correlated host
lattice). We emphasize that in this paper we use the Ising model
as the metric space. Our model is not a magnetic one, instead
the spins show the activity state of the sites. The artificial
temperature T controls the correlations and the population
of the active sites to the total number of sites, and it also
controls the heterogeneity. The population of the active site
can be directly controlled by h, which determines the preferred
direction of the spins in the Ising model. For h = 0, the model is
well known to exhibit nonzero magnetization per site M = 〈σi〉
at temperatures below the critical temperature Tc. Although we
set h = 0 throughout this paper, we would like to mention some
points concerning this parameter here. In the Ising model, the
magnetization has a discontinuity at h = 0 along the T < Tc

line, i.e., for h = 0+ and T < Tc we have M > 0, whereas for
the case h = 0− and T < Tc we have M < 0. We can have a
percolation description of the Ising model that is controlled by
T and h as follows: In each T and h the system is composed
of some spin clusters. Let us consider only up-spin clusters,
bearing in mind that the system has the symmetry h → −h and
σi → −σi . We define hth(T ) as the magnetic-field threshold
below which there is no spanning cluster of parallel spins and
above which some spanning clusters appear. Apparently for
T = 0 all spins align in the same direction and Hth(T = 0) =
0+. Also for T = ∞ the spins are uncorrelated and take the
up direction with the probability 1

2eh/ cosh h. There are two
transitions in the Ising model: the magnetic (paramagnetic
to ferromagnetic) transition and the percolation transition (in
which the connected geometrical spin clusters percolate). For
the two-dimensional (2D) regular Ising model at h = 0 these
two transitions occur simultaneously [39], although it is not the
case for all versions of the Ising model, e.g., for the site-diluted
Ising model [32].

Fokker-Planck-like approximation

We define the Ising model on the L0 × L0 square lattice.
Then by solving Eq. (1) for h = 0, an Ising sample at a
temperature T � Tc is made, and some self-avoiding random
walkers start the motion (from the boundary or bulk, depending
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on the statistical observables) on the largest spanning cluster
of the sample. This is defined as the connected spin cluster,
which contains the same spin sites and also connects opposite
boundaries of the system. Note that the walks are only possible
on the active (σ = +1) sites in the spanning cluster. Let us call
this host area the active space. The active-space coordination
number is defined as zj ≡ ∑

i∈δj
δσi ,1, where δj is the set of

neighbors of the ith site, and δ is the Kronecker delta function.
Let us denote the trace of a SAW up to time t by γt , the tip of
the trace by �rt , and the number of accessible neighbors at t by
Zt . Therefore, when a random walker reaches the site �r at time
t , it has ways Zt to move in the next time, which is

Zt (�rt = �r) ≡ z�r −
∑
t ′�t

∑
�r ′∈δ�r

δ(�rt ′ ,�r ′)s�r ′θ (�r,�r ′)

=
∑
t ′�t

∑
�r ′∈δ�r

[δt,t ′ − δ(�rt ′ ,�r)]s�r ′θ (�r,�r ′). (2)

In this relation, δ�r is the set of active neighbors of �r and
δ(�rt ,�r) = 1 if the random walker is in site �r at time t ,
and zero otherwise, s�r = 1 if the site �r is active and zero
otherwise, and θ (�r ′,�r) ≡ 1 − δ(�r ′,�r), which is apparently unity
in this expression, but it becomes important in the following
perturbation expansions. Note that s�r = 1

2 [σ (�r) + 1]. When∑
t ′�t

∑
�r ′∈δ�r δ(�rt ′,�r ′)s�r ′ = z�r , there will no longer be a way

to move further, and a new process should start. Otherwise
each of the Zt (�rt ) sites is chosen with the same probability,
i.e., 1/Zt (�rt ).

On the other hand, by defining the probability of a site being
occupied at t , p(�r,t) ≡ 〈δ(�rt ,�r)〉 (in which 〈 〉 is the ensemble
average for a fixed disorder configuration; for the averaging
over both random walks and disorder, we use the notation
〈〈 〉〉), one can easily show that

p(�r,t) = s�r

〈

(�r,t − τ )

∑
�r ′∈δ�r

δ(�rt−τ ,�r ′)
Zt−1(�rt−τ = �r ′)

s�r ′

〉

=
∞∑

n=0

∑
�r ′∈δ�r

s�r s�r ′

〈

(�r,t − τ )δ(�rt−τ ,�r ′)

z�r ′
ε(t,�r ′)n

〉
, (3)

where ε(t,�r ′) ≡
∑

t ′�t−τ

∑
�r′′∈δ�r′ δ(�rt ′ ,�r ′′)θ(�r ′′,�r)s�r′′

z�r′
< 1, and 
(�r,t) ≡

1 − ∑
t ′�t δ(�rt ′,�r) is a nonlocal detector operator that is unity if

the point �r has not been visited up to time t and zero otherwise
[i.e., w(�r,t) ≡ 1 − P (�r,t) ≡ 〈
(�r,t)〉 = 1 − ∑

t ′�t p(�r,t)]. In
obtaining this equation, we have used the fact that for a random
walker to be in site �r at time t , it should have been in its
neighbors at time t − τ . The factor s�r × 
(�r,t − τ ) on the
right-hand side of the first line of Eq. (3) ensures that site �r
is active and has not been visited before. It is notable that this
equation is true for a quenched percolation configuration of the
metric system, i.e., {si}Ni=1, and it has not been averaged over
si’s.

To obtain a differential equation, we separate the n = 0 term
from the others and take this term to the left. By subtracting
p(�r,t − τ ) from both sides, and ignoring the n � 3 terms, we

FIG. 1. Three situations of SAWs reaching the point �r at time t .

obtain the relation

∂tp(�r,t) − Dw(�r,t)∇αp(�r,t)
=

∑
�r ′∈δ�r

∑
�r ′′∈δ�r ′

s�r s�r ′s�r ′′

z(�r ′)2
I1(�r,�r ′,�r ′′,t − τ )

+
∑
�r ′∈δ�r

�r ′′,�r ′′′∈δ�r ′

s�r s�r ′s�r ′′s�r ′′′

z(�r ′)3
I2(�r,�r ′,�r ′′,�r ′′′,t − τ ) + O(ε3), (4)

where ∂tp(�r,t) ≡ 1
τ

[p(�r,t) − p(�r,t − τ )], ∇αp(�r,t) ≡
a−α(

∑
�r ′∈δ�r s�r s�r ′ p(�r ′,t−τ )

z�r′/4
− 4p(�r,t − τ )), D ≡ aα

4τ
, a is the

lattice constant, and α is the order of fractional derivative,
which is not a priori known and should be determined by the
fractal dimension of the host. It is evident that α = 2 for a
regular lattice. It is notable that δ(�rt ,�r)
(�r,t) ≡ δ(�rt ,�r). In the
above equation, we have defined

I1(�r,�r ′,�r ′′,t) ≡ θ (�r ′′,�r)
1

τ

∫ t

0

〈

(�r,t)δ(�r ′,t)δ(�r ′′,t ′)

〉
dt ′,

I2(�r,�r ′,�r ′′,�r ′′′,t) ≡ θ (�r ′′,�r)θ (�r ′′′,�r)

× 1

τ

∫∫ t

0
〈
(�r,t)δ(�r ′,t)δ(�r ′′,t ′)δ(�r ′′′,t ′′)〉

× dt ′dt ′′. (5)

To find I1, we write it as the form

I1 = 1

τ

∫ t−τ

0
〈
(�r,t − τ )δ(�r ′,t − τ )δ(�r ′′,t ′)〉θ (�r ′′,�r)dt ′

×[1 − δ(t ′,t − 2τ ) + δ(t ′,t − 2τ )]

= 1

τ
〈
(�r,t − τ )δ(�r ′,t − τ )δ(�r ′′,t − 2τ )〉θ (�r ′′,�r)

+ 1

τ

∫ t−τ

0
〈
(�r,t − τ )δ(�r ′,t − τ )δ(�r ′′,t ′)〉

×[1 − δ(t ′,t − 2τ )]θ (�r ′′,�r)dt ′. (6)

For the first term we have the situation that has been
schematically shown in Fig. 1(a), and the second term is
equivalent to Fig. 1(b). We have separated these two terms since
their behaviors are expected to be different. The quantities
δ(�r ′,t − τ ) and δ(�r ′′,t − 2τ ) in 〈δ(�r ′,t − τ )δ(�r ′′,t − 2τ )〉 are
maximally correlated, and their multiplication forms a new
field δ(2)(�r,�r ′,�r ′′,t) ≡ 1

τ

(�r,t)δ(�r ′,t − τ )δ(�r ′′,t − 2τ ) and

p(2)(�r ′,�r ′′,t) ≡ 〈δ(2)(�r ′,�r ′′,t)〉. For the second term, however,
the fields are expected to be nearly independent, due to their
temporal distance, i.e.,

∫ t−τ

0 〈
(�r,t)δ(�r ′,t − τ )δ(�r ′′,t ′)〉[1 −
δ(t ′,t − 2τ )]dt ′ ≈ w(�r,t − τ )p(�r ′,t − τ )P (�r ′′,t − 2τ ).
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Therefore,

I1 � θ (�r ′′,�r)

[
p(2)(�r ′,�r ′′,t)

+ 1

τ
w(�r,t − τ )p(�r ′,t − τ )P (�r ′′,t − 2τ )

]
. (7)

Now let us consider the second integral, for which we do the
same procedure. By multiplying the expression (which is equal
to unity)

1 = {[1 − δ(t ′,t − 2τ )][1 − δ(t ′′,t − 2τ )] + δ(t ′,t − 2τ )

+δ(t ′′,t − 2τ ) − δ(t ′,t − 2τ )δ(t ′′,t − 2τ )} (8)

by I2, we can do the same procedure. These quantities deter-
mine the configuration of the SAWs, entering the points �r , �r ′,
and �r ′′ at times t , t ′, and t ′′. The contribution of the first term
of the second line has been shown in Fig. 1(c), and the other
terms only improve the contributions of Figs. 1(b) and 1(a). If
we pick up only the first term, we obtain

τI2(first term)

= θ (�r ′′,�r)θ (�r ′′′,�r)
∫∫ t−τ

0
〈
(�r,t)δ(�r ′,t − τ )

× δ(�r ′′,t ′)δ(�r ′′′,t ′′)δ(�r0,t − 2τ )〉
×[1 − δ(t ′,t − 2τ )][1 − δ(t ′′,t − 2τ )]dt ′dt ′′

≈ τθ (�r ′′,�r)θ (�r ′′′,�r)p(2)(�r ′,�r0,t)P (�r ′′,t − τ )P (�r ′′′,t − τ ). (9)

In this equation, we have inserted a trivial term δ(�r0,t − 2τ )
in the expression in which �r0 has been shown in Fig. 1(c).
This insertion changes nothing, since the random walker has
apparently been in �r0 at time t − 2τ . Finally, we obtain

∂tp(�r,t) − Dw(�r,t)∇αp(�r,t)

=
∑
�r ′∈δ�r

∑
�r ′′∈δ�r ′

s�r s�r ′s�r ′′

z(�r ′)2
θ (�r ′′,�r)

[
p(2)(�r ′,�r ′′,t)

+ 1

τ
w(�r,t − τ )p(�r ′,t − τ )P (�r ′′,t − 2τ )

]

+
∑
�r ′∈δ�r

�r ′′,�r ′′′∈δ�r ′

s�r s�r ′s�r ′′s�r ′′′

z(�r ′)3
θ (�r ′′,�r)θ (�r ′′′,�r)

×p(2)(�r ′,�r0,t)P (�r ′′,t − τ )P (�r ′′′,t − τ ) + O(ε3). (10)

In this equation, P (�r,t) requires the full information about the
status of the walker in the past times, i.e., it is a field that
carries the information on the history of the random walk,
whereas p(2) is a local field. Now let us average over the
disorder, i.e., take a configurational average from Eq. (10)
over the si configuration. The correlation of the noise {si}Ni=1
surely affects the resultant equation. The equation involves the
moments of s (up to the fourth moment in the above equation).
When si’s are uncorrelated, we obtain that 〈s�r1 ,s�r2 , . . . ,s�rn

〉 are
equal to sn, where s = 〈s�r〉. Also, 〈s�r1 ,s�r2 , . . . ,s�rn

G〉 (where
G is some function that depends on the s configuration)
can safely be approximated by sn〈G〉. Apparently this is not
true for correlated noises in which 〈s�r1s�r2〉 �= s2. In the above
equation, �(2)(|�r − �r ′|) ≡ 〈s�r s�r ′ 〉, �(3)(�r1,�r2,�r3) ≡ 〈s�r1s�r2s�r3〉,
and �(4)(�r1,�r2,�r3,�r4) ≡ 〈s�r1s�r2s�r3s�r4〉 have appeared, which are

temperature-dependent and are calculated using the Ising
autocorrelation functions.

This analysis has been presented to highlight the important
effect of correlations in the metric space of the SAW. The
equation governing the SAW on the site-diluted system is
therefore a fractional nonlocal Fokker-Planck equation (as
is evidently true for all SAWs), and also the (n + 1)-point
Ising correlation function appears in the nth term of the
perturbative expansion. The fact that the obtained equation is
perturbative and involves nonlinear-nonlocal functions make
it less efficient, therefore numerical studies are crucial to
understanding its properties.

III. NUMERICAL METHODS, MONTE CARLO
APPROACH, AND SLE THEORY

In this paper, we have used the enriched Rosenbluth method.
To describe the method, let us consider a growing polymer
chain (or a self-avoiding random walker) at the nth step, for
which the (n + 1)th monomer should be added to the chain
in an active neighboring site. In the Rosenbluth-Rosenbluth

(RR) method, we give weight W (N ) ≡ (
∏N

t=1 Zt )
−1

to each
sample configuration, in which Zt has been defined in (2). The
configurational average is then defined by

〈R2〉 ≡
∑

i Wi(N )R2
i∑

i Wi(N )
, (11)

in which i runs over distinct configurations, Wi is its weight,
and Ri is the end-to-end distance, which is the Euclidean
distance between the start point and the end point of the curve.
The end-to-end critical exponent (ν) is defined by

〈R2〉 ∼ N2ν, (12)

which is the inverse of the fractal dimension of the random-
walk trace, i.e., ν = 1

Df
. To obtain the fractal dimension, one

can use the box-counting. In the box-counting scheme, the
fractal dimension is defined by the relation N (L) ∼ LDf , in
which N (L) is the length of the stochastic curve (SAW) inside
a box of linear size L. It is notable that all polymers have the
same length N in this averaging. For the enrichment follow
the Grassberger method [40], which is as follows: If W (N ) is
above a certain threshold, we add a new walker and give the
new and old walker half the original weight. If W (N ) is below
a certain threshold, then we eliminate it with the probability
p = 1/2 and double the weights of the remaining half.

By means of this method, we calculate the ν exponent (of the
end-to-end distance, to be defined later) as well as the fractal
dimension of the SAW using the box-counting method. To be
more precise, we have also used the winding-angle statistics
to extract the diffusivity parameter of Schramm-Loewner
evolution (SLE).

As a well-known fact, the critical 2D models have special
algebraic and geometrical properties. The algebraic properties
of these models are described within conformal field theories.
However, these theories are unable to uncover the geometrical
features of these models since it concerns the local fields
defined in these models. SLE theory aims to describe the
interfaces of 2D critical models via growth processes. Thanks
to this theory, a deep connection between the local properties
and the global (geometrical) features of the 2D critical models
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has been discovered. These nonintersecting interfaces are
assumed to have two essential properties, namely conformal
invariance and the domain Markov property [41].

In the SLE theory, one replaces the critical curve by a
dynamical one. We consider the model on the upper half-plane,
i.e., H = {z ∈ C,Imz � 0}. Let us denote the curve up to time
t as γt and the hull Kt as the set of points that are located
exactly on the γt trace, or are disconnected from infinity by
γt . The complement of Kt is Ht := H\Kt , which is simply
connected. According to the Riemann mapping theorem, there
is always a conformal mapping gt (z) (in two dimensions)
that maps Ht → H . The map gt (z) (commonly referred to
as a uniformizing map, meaning that it uniformizes the γt

trace to the real axis) is the unique conformal map with
gt (z) = z + 2t

z
+ O( 1

z2 ) as z → ∞ known as hydrodynamical
normalization. Loewner showed that this mapping satisfies the
following equation [41–44]:

∂tgt (z) = 2

gt (z) − ξt

, (13)

with the initial condition gt (z) = z and for which the tip of the
curve (up to time t) is mapped to the point ξt on the real axis. For
fixed z, gt (z) is well-defined up to time τz for which gt (z) = ξt .
The more formal definition of the hull is therefore Kt =
{z ∈ H : τz � t}. For more information, see [41,43]. For the
critical models, it has been shown [42] that ξt (referred to as the
driving function) is a real-valued function proportional to
the one-dimensional Brownian motion ξt = √

κBt in which
κ is known as the diffusivity parameter. SLE aims to analyze
these critical curves by classifying them to the one-parameter
classes represented by κ . The relation between the fractal
dimension of the curves Df ≡ 1

ν
and the diffusivity parameter

(κ) is Df = 1 + κ
8 .

The important tests of SLE are left passage probability
[45,46], direct SLE mapping [47,48], and the winding angle
statistics [49]. The latter is defined by the relation

〈θ2〉 = κ log R, (14)

where R is the end-to-end distance and θ is the total winding
angle of the movement up to the end point with respect to a
global direction. Noting that R ∼ Nν , one finds that 〈θ2〉 =
8ν(DF − 1) log N . This slope is exactly 2 for the SAW on the
regular lattice, i.e., T = 0.

Numerical details

At T = Tc, for which the Ising model becomes critical,
some power-law behaviors emerge. The method to simulate
the system in the vicinity of this point is important, due to
the problem of critical slowing down. To avoid this problem,
we have used the Wolff Monte Carlo method to generate Ising
samples. Our ensemble averaging contains both random-walks
averaging as well as Ising-percolation lattice averaging. For
the latter case we have generated 2 × 103 Ising uncorrelated
samples for each temperature on the lattice size L0 = 2048. To
make the Ising samples uncorrelated, between each successive
sampling, we have implied L2/3 random spin flips and let the
sample equilibrate by 500L2 Monte Carlo steps. The main
lattice has been chosen to be square, for which the Ising
critical temperature is Tc ≈ 2.269. Only the samples with
temperatures T � Tc have been generated, since the spanning

FIG. 2. N = 2000 bulk SAW sample in an Ising sample media in
a 512 × 512 lattice at T = Tc (blue lines). The red sites represent the
forbidden (inactive) sites, and the white sites are representative of the
active ones.

clusters (active space) are present only for this case. As stated
in the previous section, the random walkers move only on
the active space, which is defined as the set of connected
sites having the same (majority) spin, which connects two
opposite boundaries. The temperatures considered in this
paper are T = Tc − δt1 × i (i = 1,2, . . . ,5 and δt1 = 0.01)
to obtain the statistics in the close vicinity of the critical
temperature Tc � 2.269 (note that the model shows nontrivial
power-law behaviors in the vicinity of the critical temperature)
and T = Tc − δt2 × i (i = 1,2, . . . ,10 and δt2 = 0.05) for the
more distant temperatures. To equilibrate the Ising sample
and obtain the desired samples, we have started from the
high temperatures (T > Tc). For each temperature, 2 × 106

SAWs were generated for 2 × 103 Ising samples (for each
Ising sample, 103 avalanche samples were generated and each
Ising sample had its own particle dynamics to reach a steady
state). We have used the Hoshen-Kopelman [50] algorithm for
identifying the clusters in the lattice.

Once a spanning Ising percolation cluster is obtained, the
SAW simulations begin. Figure 2 is a 512 × 512 sample at
T = Tc in which the red (white) sites show the inactive (active)
sites and an N = 2000 length SAW (which has started from the
bulk and moves only on the white sites) has been shown in blue.
The geometrical properties of these walks are investigated in
this paper.

IV. RESULTS

Two cases have been considered separately: The critical
fractal (self-affine) host space (T = Tc) and the supercritical
one (T < Tc). In the latter case, the trend of the exponents to the
critical case is obtained. It is expected that the critical behaviors
of the ordinary SAW on the regular lattice are retrieved in the
limit T → 0. For all temperatures in the range T < Tc, power-
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FIG. 3. (a) log10〈R2〉 1
2 in terms of log10 N for T = Tc. Inset: log10 〈N (L)〉 in terms of log10 L. (b) 〈θ2〉 in terms of ln N with the slope

γ = 1.77 ± 0.02 for T = Tc. Upper inset: the distribution function of θ for N = 200. Lower inset: 〈θ〉 in terms of N , which is zero.

law behaviors have been observed. We argue that there are two
fixed points in the problem, namely T = 0 (the IR fixed point)
and T = Tc (the UV fixed point). The critical exponents are
nearly constant for most of the phase space and show deviations
in the vicinity of the critical temperature.

A. Critical temperature

The characterization of the fixed points in any perturbed
statistical model is very important, since it yields information
about its large-scale behaviors. Some critical systems on the
uncorrelated percolation lattice show a fixed point at p = pc

(which is unstable toward the stable p = 1 fixed point) [33,35].
The Ising metric space when seen as a percolation lattice has
a chance to show a similar phenomenon, i.e., it has a fixed
point at T = Tc. In this section, we concentrate on the critical
temperature case T = Tc. The run times in this case are large
due to a critical slowing down.

Figure 3(a) shows log
√

〈R2〉 in terms of log N (the length
of a polymer), which is linear with the well-defined slope
ν = 0.761 ± 0.002 [for a definition of the exponents, see
Eq. (12)]. This corresponds to DF = 1.314 ± 0.003. This is
confirmed by the inset graph in which log N (L) has been
sketched in terms of log L with the exponent D

box counting
F =

1.317 ± 0.002. Therefore, Flory’s relation predicts that the
effective dimension of the critical Ising model is d̄Flory =
1.94. This should be compared with the obtained fractal
dimension of the critical Ising model, which is d̄ = 187

96 �
1.948 [8], for which Flory’s approximation yields ν

Flory
Tc

=
288
379 � 0.760 [51]. It is also notable that the exponents of
the SAW on the critical uncorrelated percolation clusters
are d̄

(2D percolation)
pc

= 91
49 � 1.857, ν

(SAW on 2D percolation)
pc

= 147
189 �

0.77, and D
(SAW on 2D percolation)
F � 1.286. Despite these results,

one can hardly convince oneself that the exponents for the
critical correlated and uncorrelated percolation lattices are
meaningfully different. The excellent agreement between our
Monte Carlo calculations and Flory’s approximation encour-
ages one to extend this theory to all temperatures.

The SLE diffusivity parameter is consistent with Flory’s
approximation. To study this, the winding angle test has been
calculated [Fig. 3(b)]. It is seen that 〈θ2〉 behaves logarith-
mically with respect to N , which confirms the prediction of
the SLE theory. The lower inset reveals that 〈θ〉 = 0 and the
upper inset shows the Gaussian form of p(θ ). The slope of
the semilog plot is 1.76 ± 0.04, which is equivalent to the
diffusivity parameter κ = 2.26 ± 0.07 [see Eq. (14) for the
definition]. Therefore, the universality class of SAWT =Tc

is
distinct from the one for the SAW on the regular lattice for
which κ = 8

3 � 2.67, i.e., δκ ≡ κSAW
T =0 − κSAW

T =Tc
= 0.41 ± 0.07.

The other exponents corresponding to a winding angle test are
ν(κ) = 0.778 ± 0.005, Dκ

F = 1.284 ± 0.008, which are more
or less in agreement with the above results. The results have
been gathered in Table I.

B. Off-critical temperatures

The behavior of the SAW for all temperatures shows its
overall structure. For all temperatures in range, the SAWs
show power-law behaviors with some well-defined exponents.
Note that T = 0 is the regular system. Our observations show
that the exponents are rapidly saturated and become nearly
constant with small fluctuations for low temperatures toward
the T = 0 results. For example, Fig. 4(a) shows this behavior
(see the upper inset) for the fractal dimension (possibly a
finite-size effective exponent) obtained by the box-counting

TABLE I. The exponents of SAWT =Tc
obtained by two methods.

In the first row we have reported the results calculating ν and DF by
using the end-to-end distance (ETED) analysis, whereas the second
row has been obtained by calculating κ using the winding angle
(WA) distribution. The central charge has been calculated using the
relation c = 1 − (6−κ)(3κ−8)

2κ
, and the t parameter has been defined by

the relation c = 1 − 6
t(t+1) .

κ ν DF d̄Flory cκ t

ETED 2.51(3) 0.761(2) 1.314(3) 1.94(1) −0.32(1) 1.68(1)
WA 2.27(6) 0.778(5) 1.284(8) 1.85(2) −0.96(4) 1.32
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FIG. 4. (a) ln 〈N (L)〉 in terms of ln L for various rates of temperature. Upper inset: DF in terms of T ; lower inset: power-law behavior of
the fractal dimension. (b) ln〈R2〉 1

2 in terms of ln N for various rates of temperature. Upper inset: the ν exponent in terms of T ; lower inset:
power-law behavior of ν. (c) The distribution of the winding angle θ for N = 200 and T = 1.768. (d) 〈θ2〉 in terms of ln N with the slope γ

which is T -dependent. Upper inset: γ in terms of T ; lower inset: power-law behavior of γ .

method [DF (T )]. Interestingly, we have observed that in the
vicinity of the critical temperature, some power-law behaviors
arise in terms of |T − Tc|. The lower inset of this figure reveals
that

log10 |DF (T ) − DF (Tc)| = α log10 ε + const, (15)

in which ε ≡ |T −Tc |
Tc

and α is a new exponent whose value has
been obtained using the least-squares estimator (LSE) method.
The same feature is seen for the ν(T ) exponent from the analy-
sis of

√
〈R2〉 [Fig. 4(b)], in which the corresponding exponent

β is the same as α = 0.51 ± 0.02, which is understood by the
relation DF (T ) = 1

ν(T ) .
Now let us consider the winding angle statistics. This quan-

tity shows a Gaussian distribution with variance proportional
to the logarithm of the length of chain. As an example, we

have shown 〈θ2〉 1
2 p(θ ) in terms of θ/〈θ2〉 1

2 for N = 200 in
Fig. 4(c), which is apparently Gaussian. We have calculated
the slope of 〈θ2〉 in terms of ln N [the γ exponent in Fig. 4(d)],
which is 2 for low temperatures. In the vicinity of Tc one can

easily show that

γ (T ) − γ (Tc) = Aεα + Bε2α. (16)

For temperatures very close to Tc, the first term on the
right-hand side is dominant, which leads to a power-law
behavior [lower inset of Fig. 4(d)]. Therefore, the exponent
for temperatures close to Tc should be more or less equal to α,
as is seen. Note that the discrepancy comes from the nonlinear
behavior for lower temperatures.

The main finding of this section is therefore an exponent α

whose closest fractional value is 1
2 . Noting that the correlation

length of the 2D Ising model ξ scales with temperature as
ξ ∼ |T − Tc|−1, one finds the following scaling relation:

DSAW
F (T ) − DSAW

F (Tc) ∼ 1√
ξ
. (17)

V. DISCUSSION AND CONCLUSION

Many features of random walks on random fractal lattices
are known. Since these host systems have commonly been
considered uncorrelated, introducing correlation in the host
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system is important and interesting, which leads to some
nontrivial effects on the statistics of self-avoiding random
walkers. In this paper, we have considered the SAW on the
Ising-correlated site-diluted percolation lattice whose corre-
lations are controlled by the temperature T . The importance
of the correlations has been argued in terms of a stochastic
differential equation. The enriched Rosenbluth method as well
as winding angle statistics have been employed to obtain the
critical exponents of the system in both the T = Tc and T < Tc

cases. We found that the exponents at T = Tc are in agreement
with Flory’s approximation. The winding angle analysis more

or less showed the same features. This suggests that the ν

exponent depends only on the effective fractal dimension
of the host system. For temperatures in the range T < Tc,
some other interesting power-law behaviors have arisen. The
calculated exponents reveal that DF (T ) − DF (Tc) ∼ 1√

ξ (T )
, in

which ξ (T ) is the correlation length of the off-critical Ising
system. The winding angle statistics also confirms this result.
If the findings of Kremer (that the disorder is irrelevant) are
applicable to all disordered systems, then one finds that this
relation for the fractal dimension is a finite-size effect, which
should be investigated further in the literature.
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