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Bak-Sneppen model: Local equilibrium and critical value
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The Bak-Sneppen (BS) model is a very simple model that exhibits all the richness of self-organized criticality
theory. At the thermodynamic limit, the BS model converges to a situation where all particles have a fitness
that is uniformly distributed between a critical value pc and 1. The pc value is unknown, as are the variables
that influence and determine this value. Here we study the BS model in the case in which the lowest fitness
particle interacts with an arbitrary even number of m nearest neighbors. We show that pc verifies a simple local
equilibrium relation. Based on this relation, we can determine bounds for pc of the BS model and exact results
for some BS-like models. Finally, we show how transformations of the original BS model can be done without
altering the model’s complex dynamics.
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I. INTRODUCTION

In the early 1990s, Per Bak and Kim Sneppen introduced
one of the most elegant dynamical models of evolution. The
model has attracted the attention of numerous physicists, math-
ematicians, and biologists. The Bak-Sneppen (BS) evolution
model is defined in the following way: There exist N particles,
sites, or species in a one-dimensional ring, and each site k is
characterized by a quantity Xk , called fitness, which evolves
by

Xk(t + 1) =
{
Xk(t) if d(k,k̃t ) > a

Uk,t if d(k,k̃t ) � a
, (1)

where k̃t = {k : Xk(t) � Xj (t) ∀j ∈ {1,2, . . . ,N}} is the
particle with the lowest X value at time t . The distance between
two particles i and j is d(i,j ) = min(|i − j |,|i + j − N |),
just in order to have a ring configuration (periodic boundaries
conditions); Uk,t are independent and identically distributed
random variables with uniform distribution (0,1); and, finally,
a ∈ N is the number of neighbors on each side that are inter-
acting with any given particle. The initial condition is uniform,
i.e., Xk(0) = Uk,0 for all particles. In Ref. [1] Bak and Sneppen
introduced the model for the case a = 1 and showed that this
extremely simple model, which can be elegantly applied to the
evolution of species, exhibits self-organized criticality. Once
the system has reached the stationary regime, an unexpected
behavior appears in the model. At the thermodynamic limit,
all particles appear with a fitness value that is distributed
uniformly between a critical value pc and 1, and there are
avalanches of particle extinction. More formally, let X̃(t) :=
Xk̃(t)(t) be the lowest fitness value at time t which occurs at site
k̃(t). An avalanche is a succession of events where the lowest
fitness value is less than pc. It starts at time t + 1 if X̃(t) � pc

and X̃(t + 1) < pc and has a duration τ if X̃(t + 1) < pc,
X̃(t + 2) < pc, . . . ,X̃(t + τ ) < pc, and X̃(t + τ + 1) � pc.
This sequence of minimum fitness X̃(t + 1),X̃(t + 2), . . . ,
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is a dependence sequence which makes calculating the τ

distribution [P (τ = s)] very difficult. Only the first values of
the distribution can be easily computed. Nevertheless, it is well
known that the mean avalanche duration is infinity, 〈τ 〉 = ∞,
due to the power-law tail distribution (fingerprint of criticality)
[1–10].

The critical value pc only depends on the unique parameter
of the model, a, described in Eq. (1) which determines the
number of interacting neighbor sites, m := 2a, that are updated
at each temporal step. Although there have been large efforts
to calculate the value pc, at least for m = 2, there is no precise
result 25 years after the model’s introduction. Simulation
results show that pc(m = 2) is approximately 0.667 [3,4]. In
this paper, we study the value pc for different values of m by
presenting a novel local equilibrium property. This property
relates pc with the neighbors of the lowest fitness particle,
which allows one to obtain nontrivial bounds for pc. These last
results are presented in the Sec. II. In Sec. III we study the BS
model under different modifications on the interaction criteria
(two nearest neighbors) and on the update procedure (uniform).
In all cases we advance the description of the corresponding
critical value and the average fitness.

II. BAK-SNEPPEN MODEL

In this section we study the BS model introducing a local
equilibrium equation and bounds for pc.

A. Local equilibrium

The strategy adopted here for studying pc is to focus on
the generator of the avalanche, the lowest fitness site, and also
its neighbors. Figure 1(a) shows the fitness of each particle
in the stationary regime. A system of 3000 particles with 4
neighbors (m = 4) was simulated and a snapshot is shown. The
lowest fitness particle (red circle) is responsible for producing
avalanches of very large duration that diffuse very slowly. This
behavior was named by Bak and Sneppen punctuated equilib-
rium. The avalanches can be interpreted as the “punctuations”
that maintain equilibrium. Clearly, to maintain equilibrium, the
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FIG. 1. (a) Fitness of the N = 3000 particles evolved by the Bak-
Sneppen model with m = 4. (b) Zoom-in of the particles near the
lowest fitness particle (2694) at time t . The number of neighbors
of the lowest particle with fitness below pc is St = 2. (c) The same
particles shown in panel (b) at time t + 1. In this case, the lowest
particle is the number 2695 and St+1 = 1. The lowest fitness particle
at time t is shown with a blue circle, and the m neighbors of the lowest
site are shown with red cross circles.

number of particles with a fitness value smaller than pc during
the avalanche (known as “active particles”) must be stable. Dur-
ing the avalanche, there must be an equilibrium where the net
flux of particles crossing (up or down) pc is zero. If this is not
true, then the avalanche will grow indefinitely (and no critical
behavior will be observed) or disappear very quickly, increas-
ing the fictitious value pc. With this idea in mind, next we write
a conserved mass equation with a permeable wall at X = pc.

The lowest fitness particle affects the fitness of its m nearest
interacting neighbors [m/2 each side, see Figs. 1(b) and 1(c)].
Previous to the fitness update, some of these m neighbors
are below pc and some are above. The lowest fitness particle
can also have a fitness value larger or smaller than pc. The
latter is the most likely, as it occurs with probability q =

〈τ 〉
〈τ 〉+(1−(1−pc)m+1)−1 , while the former occurs with probability
1 − q. This probability q is calculated as usual for a two
state (active or avalanche state and inactive or “freezed” state)
model, q is the fraction of time spent in the avalanche state.
That is, q = 〈τA〉

〈τA〉+〈τI 〉 , where τA = τ and τI represent the time
durations in the avalanche and inactive states, respectively.

Once the system arrive to the inactive state in order to get out of
this state at least one of the m + 1 updated particles must have
a fitness below pc, and this occurs with probability p̃ := 1 −
(1 − pc)m+1 independent of the previous update. Therefore, τI

verifies to be a geometric random variable with parameter p̃,
and that is why 〈τI 〉 = p̃−1. In order for the system to maintain
equilibrium, the proportion of particles below pc must be
preserved (i.e., the proportion before the update must be equal
to the proportion after the update). Since updates are uniform,
this last proportion is just pc, and the proportion before the
update can be easily written using the law of total probability.
This preservation gives rise to the following equation:

pc = q
1 + 〈S〉
1 + m

+ (1 − q)
0

1 + m
, (2)

where 〈S〉 is the mean number of interacting neighbors that
have a fitness value below pc when the lowest fitness particle
is below pc. The first right numerator 1 + 〈S〉 corresponds to
the number of particles that have a fitness below pc from a
total of 1 + m particles, knowing that the X̃ is below pc. The
second numerator term is zero because it corresponds to the
case where X̃ is greater or equal to pc and therefore none of
the neighbors can have a fitness value below pc. Finally, since
at the thermodynamic limit 〈τ 〉 = ∞ (q = 1), we obtain

pc = 1 + 〈S〉
1 + m

. (3)

Another way to think of Eq. (3) is the following: Let
us suppose we have a permeable wall at X = pc. At the
thermodynamic limit and at the steady state, the lowest fitness
particle, k̃, will be (with probability 1) below pc. Some of the m

neighbors of k̃ can be below pc and some above it. The number
of neighbors that are below are equal to 1 + 〈S〉, and some of
these will cross up the barrier. On average, (1 + 〈S〉)(1 − pc)
will cross up the pc barrier. On the other hand, above pc there
are (m − 〈S〉) particles and on average, (m − 〈S〉)pc will cross
down the barrier. If we equal both the number of up cross
and down cross particles, imposing that the system maintain
equilibrium, we obtain Eq. (3).

It is important to mention that the local equilibrium equation
[Eq. (2)] is valid for any connected graph, not just for the ring
configuration. In the general case, each site has some particular
connectivity pattern and this linking structure determines 〈S〉.
If one is able to calculate 〈S〉, then the pc value is obtained.
In the next section we will use this equation to obtain bounds
for pc from Bak-Sneppen-like models that only differ in the
connectivity between sites.

B. Bounds for pc

Now, based on Eq. (2), we show that the critical value of the
Bak-Sneppen model can be bounded by the critical value of two
different models. These models present a slight modification
of the original BS model (Fig. 2). The modification is the fol-
lowing: Once the m + 1 particles of the BS model are updated,
we proceed to change the position of the updated particles.

1. Lower bound

In one case, the m updated neighbors are exchanged with
other m random particles. This modification makes the model

042123-2



BAK-SNEPPEN MODEL: LOCAL EQUILIBRIUM AND … PHYSICAL REVIEW E 97, 042123 (2018)

FIG. 2. Scheme of the three models studied: random neighbors
(left), Bak-Sneppen (middle), and compact neighbors (right). Crosses
represent active particles and points represent inactive ones.

more tractable. This model also presents a critical value, called
here pinf , that can be calculated exactly and has been previously
studied under the names of modified or random BS model in
Refs. [11,12]. In Ref. [11] the authors calculated the value pinf ,
obtaining Eq. (4), by using mean-field theory,

pinf = 1

1 + m
. (4)

Here we show that the critical value for this model can be
obtained in a simpler way by using Eq. (3). This model gives
rise to avalanches that are named here “diluted” (left panel,
Fig. 2) also with infinite mean duration, 〈τ 〉 = ∞ (q = 1). At
the thermodynamic limit, the neighbors selected by the lowest
fitness particles previous to the update are always above pinf

(since the mean number of active particles at any time is finite)
obtaining in this case 〈S〉 = 0. Therefore replacing q by 1 and
〈S〉 by 0 in Eq. (3) we obtain Eq. (4).

Note that for this model we can also use a branching process
argument to obtain the same result. Let Z(t) equal the number
of active sites at time t , i.e., Z(t) = #{i : Xi(t) < pinf}. If we
start from a unique “active particle,” Z(1) = 1, then at the next
discrete time point there may be 0,1,2, . . . , or m + 1 active
particles (born from the first particle that died). This process
continues, and each offspring can in turn have anywhere
between zero and m + 1 offspring. Since we are studying the
system in the stationary regime and at the thermodynamic limit,
the probability of selecting the same offspring twice before
producing more offspring is zero [13], then we have a true
branching process. It is well known that a branching process
is critical if the expected number of offspring is equal to 1.
Therefore, in terms of the Bak-Sneppen model, we obtain the
following equation: (m + 1)pinf = 1, which is equivalent to
Eq. (4).

2. Upper bound

Now we introduce the model that gives rise to an upper
bound for pc. In this case, nonconsecutive active (below the
critical value, now called psup) particles are rearranged so that
there are no inactive particles among active ones. In this case,
“trapped” inactive particles are moved to the border between
active and inactive particles. That is why we say that the model
generates “compact” avalanches (right panel, Fig. 2). As far as
we know this model has never before been investigated.

In the thermodynamic limit and at the steady state, particles
have a fitness value that is uniformly distributed between psup

and 1 (U [psup,1]). Unlike the two previous models, the dura-
tion of the avalanches (τ ) follows an exponential distribution.
In this case 〈S〉 cannot be easily calculated. Nevertheless, we
found a superior bound for psup.

We show how to calculate an upper bound for psup for
the case m = 2. Let Zt be the number of active particles
(below psup) at time t with Z0 = 1, and let Z = limt→∞Zt

be the stationary version of the process with a mean value
〈Z〉. In the stationary condition, any of the Z = k particles
that are below pc can have the lowest fitness, i.e., all have
probability 1/k of being the lowest fitness particle (k̃). Now,
since these k particles are all together (compact), then the
number of neighbors of lowest particle, S, can be 1 or 2
(or 0 if k = 1). The value 1 corresponds to k̃ at the edge of
active and inactive particles, while the value 2 corresponds to k̃

somewhere “inside.” Therefore, the mean number of neighbors
of lowest particle values verifies

〈S〉 =
∑
k�2

(
2

k
1 +

(
1 − 2

k

)
2

)
P (Z = k)

= 2 − 2

〈
1

Z

〉
< 2 − 2

1

〈Z〉 . (5)

Note that if the probability law of Z [P (Z = k)] is known, then
no upper bound for 〈S〉 is needed. For m > 2 the calculation
is straightforward and we obtain:

psup = q
1 + 〈S〉
1 + m

<
1 + 〈S〉
1 + m

<
1 + m − m(2 + m)(4〈Z〉)−1

1 + m
.

(6)

Unfortunately, we do not know how to calculate 〈Z〉, but we
believe it can be calculated since one advantage of this last
model is that Zt can be expressed by a simple birth and death
equation.

C. The fitness of the neighbors of k̃

What else can we say about 〈S〉 for the Bak-Sneppen model?
As mentioned above, S is the number of interacting neighbors
that have a fitness value below pc when the minimum fitness
particle is below pc. One can see that since each neighbor is
independent, S has a binomial distribution with parameters m

and p̃, i.e., P (S = k) = (mk )p̃k(1 − p̃)m−k . Then

〈S〉 = mp̃ with p̃ =
∫ pc

0
h(x)dx, (7)

where h(x) is the fitness probability density function (p.d.f.)
of a randomly selected neighbor of the particle with the lowest
fitness when this last value is less than pc.

In order to gain some intuition about h(x), we study the
Bak-Sneppen at the limit opposite the thermodynamic limit
(N → ∞), that is, the limit of few particles. Specifically,
we study the BS model for a closed system of only m + 1
interacting particles. The periodic boundary condition ensures
that the m + 1 particles are always interacting. In this case,
the BS model does not have a critical value pc, but we assume
an arbitrary “fictitious critical value,” p∗, just for studying the
neighbor’s fitness distribution when the lowest fitness value is
smaller than p∗ [14]. We want to understand how the fitness
of neighbors of the minimum fitness particle is distributed
when the lowest fitness particle is below a certain value, p∗.
Let us call hclosed(x) the corresponding probability density.
This probability density can be easily computed from the
order statistics distribution. Considering that the fitness Xi of
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FIG. 3. Probability density of the fitness of neighbors of k̃ when
k̃ < pc(m) and when considering (a) a system of N = m + 1 particles
and (b) a system of N = 4000 (∼ infinity) particles. hclosed(x) is
calculated from Eq. (8). h(x) is estimated by simulations.

particle i (i = 1,2, . . . ,m + 1) is a uniform (0,1) random
variable and that these are independent, if we call X(1) the
lowest value, X(2) the following order statistic, and X(m+1) the
maximum fitness value, then it is straightforward to verify that

hclosed(x) = 1

mP (X(1) < p∗)

∂

∂x

[
m+1∑
i=2

P (X(1) <p∗,X(i) < x)

]
.

(8)

Finally, considering that the joint order statistics p.d.f. for
uniform random variables is

fX(i),X(j ) (u,v) = N !
ui−1

(i − 1)!

(v − u)j−i−1

(j − i − 1)!

(1 − v)N−j

(N − j )!

with 0 � u < v � 1 and N is the number of particles (in the
closed system N = m + 1), it is possible to calculate hclosed(x)
from Eq. (8).

For example, for m = 2 neighbors, we obtain

hclosed(x) =
{

3x(2−x)
2(1−(1−p∗)3) if x < p∗

3p∗(2−p∗)
2(1−(1−p∗)3) if x � p∗. (9)

Figure 3(a) shows hclosed(x) for different values of m =
{2,4,8,20} considering p∗(m) as the true pc(m) observed at
the thermodynamic limit.
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FIG. 4. Critical value of the BS model as a function of m. Upper
and lower bounds are also represented.

On the other hand, for large N (N 
 m), an avalanche
can be considered an open system. More particles can be
incorporated into the avalanche as time evolves. This is not
possible in the closed system where only the m + 1 fixed
particles can be part of the “avalanche.” This difference has an
impact on the number of particles from which the minimum
fitness is selected. Nevertheless, simulations show that h(x) for
large N [Fig. 3(b)] is similar to the one for N = m + 1 [Fig.
3(a)]. The probability density of the fitness of the neighbors,
h(x), is a smooth function that is partitioned into two sides and
can be described as

h(x) =
{
g(x) if x < pc

g(pc) if x � pc
, (10)

with g(0) = 0.
For m = 2 the probability densities corresponding to N =

m + 1 and to N = ∞ present some differences. But for m > 2
densities are similar. Next we focus on the case m > 2. In this
case, h(x) (or g) is a concave function, and therefore a lower
bound for pc can be obtained by proposing a linear g function.
Under this hypothesis, it is straightforward to verify that

2

1 + m
< pc, (11)

just by using Eqs. (3) and (5).
Finally, in Fig. 4, we show the empirical critical value pc as

a function of m together with the empirical upper bound (psup)
and the theoretical lower bounds [Eqs. (4) and (11)].

III. BAK-SNEPPEN-LIKE MODELS

Given the difficulty of obtaining exact results in the BS
model, we study the model under different modifications that
make it more manageable. First, we study the model under a
nonuniform update distribution. This first result is useful for
studying the subsequent models. Second, we study the random
neighbors update case. Finally, we study the binary fitness
model. The particle fitness notation of these BS-like models is
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represented by Y . The fitness of the original BS model is still
represented by X. Throughout this section we relate Y with X

for each BS-like model.

A. Nonuniform fitness

First, we discuss what happens when the uniform updates
assumption is broken. Let us replace Uk in Eq. (1) by Wk,t ,
where Wk,t are now independent and identically distributed
continuous random variables with arbitrary p.d.f. f (w) > 0
for w ∈ R. The initial uniform condition is also replaced by
Wk,0. Let F (w) = ∫ w

0 f (h)dh be the cumulative probability
function. For facilitation purposes, we use Y to denote the
fitness value, and the dynamics remain as before,

Yk(t + 1) =
{
Yk(t) if d(k,k̃t ) > a

Wk,t if d(k,k̃t ) � a
, (12)

where now k̃t is the lowest fitness particle at time t . As
expected, this model also exhibits self-organized criticality,
since no major modifications are applied to the original model.
In fact, it is straightforward to see that the joint probability
of the vector (Y1(t),Y2(t), . . . ,YN (t)) is the same as that
of (�1/2(X1(t)),�1/2(X2(t)), . . . ,�1/2(XN (t))) for all t . The
proof relies on two facts: (i) one way to satisfy that Wk,t ,
and Yk(0) ∀k have p.d.f. f is to write Wk,t = F−1(Uk,t ) and
Yk(0) = F−1[Xk(0)] ∀k, and (ii) the only important thing for
the dynamics is the fitness order of the particles, which is
preserved by applying monotonic function F−1, and then F−1

can be applied directly to all particles of the BS model at the
time t studied. Therefore, at the stationary regime (t → ∞),
it is enough to understand the uniform fitness case [Eq. (1)] to
extrapolate to an arbitrary fitness distribution [Eq. (12)]. In the
first case, once the system reaches the stationary state, particle
fitness X is uniform(pc,1). Hence, at the thermodynamic limit,
particles that evolve with nonuniform updates converge to a
situation where the fitness is greater than a critical value pnu

c

and it satisfies

pnu
c = F−1(pc) = F−1

(
1 + 〈S〉
1 + 2a

)
. (13)

Moreover, applying F−1 one can see that the fitness of the
particles converge to a p.d.f. h equal to

h(y) =
{

0 if y < pnu
c

f (y)/(1 − pnu
c ) if y � pnu

c

, (14)

just by applying F−1 to the uniform case. We emphasize
that 〈S〉 does not depend on f (w), it depends only on a.
This result implies that if one chooses a nonuniform update
distribution that favors small values of fitness [e.g., F (1/2) >

1/2], then the critical value pnu
c will be smaller than pc. Figure 5

highlights the difference between uniform and nonuniform
update distributions.

Next, we discuss some simplified BS models and study the
impact of using Eq. (3) and transformations similar to the one
presented above for the nonuniform update on those models.

B. Model 1: Random interacting neighbors

The most well-known modification to the BS model is
to break the assumption that the nearest neighbors are the

FIG. 5. Bak–Sneppen model. The update distribution is shown
on the left and the equilibrium fitness distribution on the right. Two
cases are shown: the (a) uniform (0,1) update distribution and (c) a
two-modes update distribution example, f (x). The dashed line in (c)
corresponds to pnu

c , which verifies
∫ pnu

c

−∞ f (x)dx = pc.

ones that interact with the lowest fitness particle [8,11,12]. A
simplified hypothesis is that the interacting particles are chosen
randomly between all possible particles at each time step.
This model was introduced in the previous section (“diluted
avalanche”); let us call this model the random Bak-Sneppen
model (rBS model). It is well known that this model also
presents a critical value, pr

c [11]. In the previous section, we
found that

pr
c = 1

1 + 2a
, (15)

just replacing 〈S〉 by zero in Eq. (3). The value of 〈S〉 is
zero because at the thermodynamic limit, all particles have
a fitness value greater than pc except for the ones that are part
of the avalanche, which are not each others’ neighbors. Fitness
converges to a uniform (pr

c,1) distribution, and thus the mean
fitness is equal to 1+pr

c

2 . Figure 6(a) shows the mean fitness as
a function of the number of interacting neighbors.

Note that the number of interacting neighbors can be odd
in this model; one just needs to replace 2a by the number of
interacting neighbors,m. This result can be extended to the case
of nonuniform fitness. The new critical value pr,nu

c verifies

pr,nu
c = F−1(pr

c) = F−1

(
1

1 + m

)
. (16)

C. Model 2: Random interacting neighbors and binary fitness

A discrete fitness version of this model can be introduced
just by considering values of fitness, now called Y , that can
only take the values 0 or 1. The dynamics is the following: At
each discrete time, a random site with fitness value 0 is updated,
as are m other random sites. If there is no site with 0 fitness,
then a random site with a fitness of 1 is selected and updated
with other m random sites. The sites are always updated with
a Bernoulli variable with probability 1/2. Note that, as there
may be ties in fitness, we are obligated to randomly select the
lowest fitness particle. The goal is the same as before: We want
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FIG. 6. (a) Mean fitness of models 1 and 2 as a function of the
number of interacting neighbors. Mean fitness of (b) model 3 and
(c) model 4 as a function of p (probability of fitness equal to zero
immediately after the update).

to understand the limit probability law of the particles’ fitness.
Since fitness in this case is binary, we study the proportion of
particles with fitness equal to 1, P (Y = 1), which is equivalent
to 〈Y 〉.

This model can be described in terms of the rBS model. Let
us take the original rBS model with fitness values X and apply
the following function over the fitness:

�1/2(X) =
{

1 if X > 1/2
0 if X � 1/2 . (17)

Again, the joint probability of (Y1(t),Y2(t), . . . ,YN (t)) is the
same as that of (�1/2(X1(t)),�1/2(X2(t)),. . .,�1/2(XN (t))),
i.e., the �1/2 function converts the rBS model into the discrete
version introduced above. At the thermodynamic limit, once
the system reaches the steady state, we know that the fitness of
the rBS model particles obeys a uniform distribution from pr

c

to 1. Therefore, the proportion of particles that have a discrete
fitness equal to 1, 〈Y 〉, verifies

lim
N→∞

〈Y 〉 = lim
N→∞

〈�1/2(X)〉 = P (X > 1/2) = 1 + m

2m
. (18)

Note that for m = 1 all particles have a discrete fitness equal
to 1. Figure 6(a) shows the behavior of the mean fitness as a
function of the number of interacting neighbors [Eq. (18)].

D. Model 3: Random interacting neighbors, binary fitness,
and Bernoulli updates

A new model can be introduced if we consider that the
updates of the discrete fitness values obey a Bernoulli variable
with probability 1 − p of having fitness equal to 1. This model,
unlike the Bak-Sneppen model, has a parameter. It resembles a
percolation model more than the self-organized Bak-Sneppen
model. Nevertheless, since part of the Bak-Sneppen dynamics
is conserved (dynamics governed by the minimum fitness
value), we anticipate some unexpected behavior at a particular
value of p. Fortunately, as before, this model can be obtained
from the rBS model. Just by applying the function �p [inter-
change 1/2 by p in Eq. (17)] to the particle fitness that evolves
according to the rBS model, we can obtain the new binary
fitness.

At the thermodynamic limit, the fraction of sites with fitness
equal to 1 behaves in the following way with the parameter p:

lim
N→∞

〈Y 〉 = lim
N→∞

〈�p(X)〉 =
{ 1−p

1−pr
c

if p > pr
c

1 if p � pr
c

. (19)

which is equivalent [using Eq. (15)] to

lim
N→∞

〈Y 〉 =
{

(1 + 1
m

)(1 − p) if p > 1
1+m

1 if p � 1
1+m

. (20)

Figure 7(b) shows the average fitness as a function of p for
three different values of m.

E. Model 4: Nearest-neighbor interactions, binary fitness,
and Bernoulli updates

Finally, we discuss a model similar to Model 3 where the
nearest neighbors are the ones that are updated. This model was
introduced by Barbay and Kenyon (BK) [15]. Fitness values
are binary, but now, once the lowest fitness particle is selected
(randomly, since there are ties), the m nearest neighbors are
updated with independent Bernoulli variables with parameter
1 − p [16]. In Ref. [15] the authors show that for m = 2
a critical value pBK

c exists. Moreover, they prove [15] that
0.4563 < pBK

c and show by simulations that pBK
c ≈ 0.635.

Here we present a better lower bound as well as an upper
bound for the case of an arbitrary number of neighbors (m).
The result is the following:

pr
c < pBK

c < pc. (21)
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FIG. 7. Simulations from the BS model for m = 2. Upper panels:
Representation of the BS model where circles represent inactive
particles and crosses represent active ones. Lower panels: Proportion
of times the lowest fitness particle is the one in the ith position going
clockwise when there are (a) three, (b) four, or (c) five active particles.

The critical value of the BK model is bounded by the critical
values of the rBS and BS models. For m = 2 [Eq. (21)],
we state that 1/2 < pBK

c < 2/3. The lower bound pr
c < pBK

c

is easy to understand based on the results presented in the
previous section. We have already shown that more “compact”
avalanches give rise to larger critical values. Now if we
compare the avalanches of Model 3 (critical value pr

c) with the
ones generated with Model 4 (critical value pBK

c ), then we see
that the latter are more compact, since Model 4 evolves through
the updates of nearest neighbors. To understand the upper
bound, pBK

c < pc, the argument is more complex but is based
on the same idea as avalanche compaction. The avalanches of
the discrete version of the BS model are more compact than
the ones of the BK model. We explain this argument next.

We first describe the BK model mathematically. Let N0,t be
the set that contains all particles with fitness equal to zero at
time t , and N1,t the set that contains the rest of the particles
(with fitness equal to 1). Let us randomly choose one particle
in each set (with equal probability), which we call h0,t , and
h1,t to the randomly selected particle from set N0,t and N1,t ,
respectively. The lowest fitness particle at time t , k̃t , is defined
as

k̃t =
{
h0,t if N0,t �= ∅

h1,t if N0,t = ∅
. (22)

Particles obey the following dynamics:

Yk(t + 1) =
{
Yk(t) if d(k,k̃t ) > a

Wk,t if d(k,k̃t ) � a
, (23)

where Wk,t and Yk(0) are independent and identically dis-
tributed Bernoulli random variables with parameter 1 − p.
For p = 1/2, although the model seems to be the binary
fitness version of the Bak-Sneppen model, it is not. In order
to create its discrete version, there must exist a function
� : R → {0,1} (or � : RN → {0,1}N ) which, when applied
individually to each fitness particle (or to its vector), converts
the fitness given by Eq. (1) into the discrete version given
by Eq. (23). Specifically, if the BK model with p = 1/2
were the discrete version of the BS model, then the joint
probability of (Y1(t),Y2(t), . . . ,YN (t)) must be equal to the
joint probability of (�(X1(t),�(X2(t)), . . . ,�(XN (t))) [or

�(X1(t),X2(t), . . . ,XN (t))], where Xk is the fitness of particle
k given by the BS model. To understand why there is no �

function that verifies the previous conditions, we focus on
the selection mechanism of the lowest fitness particle. In the
rBS (Model 1), in its discrete version (Model 2), and also in
Model 3, each particle below pr

c has the same probability of
being the lowest one (the same happens above pr

c). The BS
model behaves in a different way. Each particle below pc

does not have the same chance of being the lowest one. At
equilibrium, knowing that there are Zt particles below pc at
time t , the ones at the edge of the avalanche have a lower
chance than 1

Zt
of being the lowest one, which is one of the

reasons why avalanches in the BS model diffuse so slowly.
Figure 7 shows empirical evidence of this nonequiprobable
law. Once the system is in steady state, we take snapshots
and study the distribution of the fitness of active particles. In
these snapshots, there are different numbers of active particles
(Z). We only analyze the fitness of the snapshots that verify
Z = {3,4,5}. Once we have the fitness values for Z = 3, for
example, we construct a vector (Xa,Xb,Xc) with those fitness
values. In the vector’s first position, Xa , we put the fitness of
the first clockwise particle; in the second position, we put the
fitness of the particle in the middle, and in the third position,
we put the last particle’s fitness. The same procedure is done
for Z = 4 and 5. Figure 7 shows the fraction of times each
particle was the one with the lowest fitness when Z = 3 (a),
Z = 4 (b), and Z = 5 (c). As one can observe, the distribution
is symmetric as it must be, but the particles in the middle
have a greater probability of being the lowest fitness particle.
Moreover, the distance between the active particles shapes this
distribution (data not shown), i.e., the probability of being
the lowest particle depends on the relative positions of the
active particles (i.e., the order and distance between them).
In the BK model, all active particles have the same chance
of being the lowest fitness particle, and in the BS model, we
just showed that the particles in the middle have the greatest
probability. This last observation is the key argument for why
there is no � function that converts the BS model into the BK
model preserving the dynamics. There is no way to convert the
nonequiprobable selection mechanism in a equiprobable one
[Eq. 22].

Nevertheless, if we apply the �p function previously de-
fined to the fitness of the BS model, then we obtain the true
discrete version of the BS model when p = 1/2. This discrete
model evolves by Eq. (23) but with k̃t , obeying a much more
complicated probability law than the one defined in Eq. (22).
In particular, h0,t is not selected with equal probability from
the N0,t set. The specific law for k̃t exceeds the scope of this
work, but we can say that this true discrete version of the BS
model will verify the same type of behavior found in Model 3,

lim
N→∞

〈Y 〉 = lim
N→∞

〈�p(X)〉 =
{ 1−p

1−pc
if p > pc

1 if p � pc

. (24)

On the other hand, it is difficult for the BK model [Eqs. (22)
and (23)] to calculate the exact behavior of limN→∞〈Y 〉 as a
function of p. We can only say that pBK

c must be smaller than
the critical value of the true discrete BS model, which is equal
to the continuous case (pc), since the true discrete BS model
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generates more compact avalanches than the BK model, and
more compact avalanches give rise to larger critical values.

Finally, we study limN→∞〈Y 〉 by simulations. Figure 6(c)
shows the average fitness as a function p for cases m =
{2,4,50}. We can say that

lim
N→∞

〈Y 〉 =
{
g(p) if p > pBK

c

1 if p � pBK
c

, (25)

where g is a nonlinear decreasing function. We believe that
there is an interesting and challenging problem in describing
function g in detail.

IV. DISCUSSION

In summary, in this paper we presented a local equilibrium
equation [Eq. (2)] that allows one to obtain information about
the critical value pc of the Bak-Sneppen model. This equation
relates the critical value pc with the proportion of local

neighbors of the lowest fitness particle, plocal := 〈S〉
m

, that have
a fitness lower than pc. We believe that this local equilibrium
equation and similar ideas may be applied to advance in the
description of other self-organized criticality models. Also,
we showed how transformations of the original BS model can
be done without altering the model’s complex dynamics. First,
we showed how to compute the pc value for the BS model with
nonuniform updates. Although perhaps not surprising, this first
result gave us the mathematical tools to analyze four different
Bak-Sneppen-like models in detail. The average fitness and
critical values were studied in these models (see Fig. 6). We
believe that there is still a lot to be learned from the original BS
model and from BS-like models. How to calculate the value pc

for different topologies, and the function g for the BK model
are some of the challenging problems.
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