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Non-Gaussian diffusion is commonly considered as a result of fluctuating diffusivity, which is correlated in
time or in space or both. In this work, we investigate the non-Gaussian diffusion in static disordered media via a
quenched trap model, where the diffusivity is spatially correlated. Several unique effects due to quenched disorder
are reported. We analytically estimate the diffusion coefficient Ddis and its fluctuation over samples of finite size.
We show a mechanism of population splitting in the non-Gaussian diffusion. It results in a sharp peak in the
distribution of displacement P (x,t) around x = 0, that has frequently been observed in experiments. We examine
the fidelity of the coarse-grained diffusion map, which is reconstructed from particle trajectories. Finally, we
propose a procedure to estimate the correlation length in static disordered environments, where the information
stored in the sample-to-sample fluctuation has been utilized.
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I. INTRODUCTION

Modern imaging experiments provide a huge amount of
dynamic details of diffusion in crowded intracellular environ-
ments [1], which has greatly deepened our understanding of the
underlying stochastic motion [2]. A novel class of anomalous
diffusion, the non-Gaussian diffusion, has been frequently
reported by experiments in a wide range of disordered systems,
including soft matter systems [3–5], cytoplasm [6–8], cell
membrane [9,10], and even in the heat transport problem [11].

In the non-Gaussian diffusion, the distribution of displace-
ment is not Gaussian, while the mean-squared displacement
can be either linear [3,4,9,10] or sublinear [5–8,12] to time.
A simple interpretation suggests the dynamic heterogeneity
plays a key role in this phenomenon [3,4]. In the case that
each particle diffuses with random instantaneous diffusivity
D(t), the statistics over all the possible diffusivity introduces a
convolution to the distribution of displacement by

P (x,t) =
∫ ∞

0
dD(t)G(x,t |D(t))P (D(t)). (1)

In general, P (x,t) is non-Gaussian even when G(x,t |D(t)) is
Gaussian. A theory of fluctuating diffusivity was formulated
[13–20], where the diffusivity of each particle follows an
independent stochastic process. The theory has been supported
by direct observation of fluctuating diffusivity in experiments
[9,21] and simulation [10]. Most recently, a comprehensive
theoretical framework for the random walk of fluctuating diffu-
sivity was constructed, based on the idea of subordination [22].

It is a general concern that the dynamic heterogeneity
may be introduced by the quasistatic disordered environment
[8,10,14,23,24], where the diffusivity is correlated in space in-
stead of in time. Our understanding on non-Gaussian diffusion
in a static environment, however, is still very limited. We note
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such anomalous diffusive processes can be described by the
random walk on the lattices of quenched traps [25], which has
been intensively studied in the context of subdiffusion [26–30].
The quenched trap model provides insights into the fluctuation
among disordered static samples [31,32], which is essential in
biology, known as “every cell is different.”

In the current work, we study a quenched trap model for
non-Gaussian diffusion [33], where the landscape is locally
correlated and the local diffusivity D(l) follows the exponential
distribution P (D(l) = D) = D−1

0 exp(−D/D0). Three effects
due to the quenched disorder are reported in this paper. (1) A
sharp peak due to population splitting arises in the distribution
of displacement P (x,t) around x = 0. (2) In the case that 0 <

P (D � 0) < ∞, the measured diffusion coefficient depends
on the sample size. (3) The coarse-grained diffusion map
reconstructed from the trajectories is faithful to the genuine
landscape only when the spatial resolution is high enough to
distinguish the fine structures of the local domains. Inspired
by the coarse-graining processes, we propose an approach to
estimate the correlation length in samples.

The paper is organized as follows. In Sec. II we introduce the
quenched trap model. Section III reports unique effects due to
static disordered environments. Section IV provides insights to
the trajectory-based data analysis. We discuss generalizations
of the model and its connection to other works in Sec. V.
Finally, we give a brief summary in Sec. VI.

II. QUENCHED TRAP MODEL

Let us begin with the simplest form of the quenched trap
model, i.e., a particle hopping on a d-dimensional simple cubic
lattice with a set of site-dependent transition rates Wi→j =
n−1

c τ−1
i from site i to one of its nearest neighbors j . Here

nc = 2d is the lattice coordination number. The hopping rate
ki = τ−1

i out of site i can be associated with a site energy
Vi(<0) through the Arrhenius law ki = ω0 exp(Vi/T ), where
ω0 is the attempt rate and T the ambient temperature. The local
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FIG. 1. The color map of a typical sample of correlated random
energies with L = 1024 and rc = 16. The color is assigned to each
site according to Vi = ln D

(l)
i , where D0 = 0.25 is chosen.

diffusivity can be defined for each site by

D
(l)
i ≡ a2

2dτi

= ω0a
2

2d
eVi/T , (2)

where a is the lattice constant and the superscript (l) indicates
“local.” We set ω0 = 1,a = 1 for convenience and consider
the two-dimensional case d = 2.

In this work, we focus on a special random energy landscape
{Vi}, of which the diffusivity is locally correlated and follows
the exponential distribution

P
(
D

(l)
i = D

) = D−1
0 exp(−D/D0), (D > 0). (3)

The spatial correlation is usually introduced by independent
modes in Fourier space. This approach is not convenient here,
however, since it always leads to Gaussian distributed random
variables. We note that corresponding to P (D) given by Eq. (3),
{Vi = ln D

(l)
i } follows the Gumbel distribution

P (Vi = V ) = exp[V − ln D0 − exp(V − ln D0)], (4)

which is the limiting distribution of extreme statistics. A two-
step approach based on extreme statistics is hence introduced
for the spatially correlated {Vi}. First generate an uncorrelated
landscape {Ui}, following the exponential distribution P (Ui =
U ) = U−1

0 exp (U/U0). Then assign to Vi the minimum energy
in the rc neighborhood of i; i.e., Vi = min {Uj |rij < rc}.
Noting that {Ui} is uncorrelated, one can see P (Vi) converges
to the Gumbel distribution for large rc. D

(l)
i = eVi/T /2d with

T = 1 is then exponentially distributed, which is confirmed
by numerical sampling for rc = 16 (see Fig. S1 in the Supple-
mental Material [34]).

The extreme landscape {Vi} is composed of disks of local
extreme values, overlapping with each other, as shown in
Fig. 1. The spatial correlation of {D(l)

i } is hence introduced
up to the basin size ξ ≈ 2rc. The deepest basins are of full
shape as the whole disks, shown as the blue ones in the color
map. The more shallow basins are frequently overlapped by

the neighbor ones since larger density of states. They hence
appear as smaller but denser pieces of disks, which constitute
the rather continuous part of the landscape, shown as the
yellow region in the color map.

As a generalization, one can generate a class of correlated
landscapes of {D(l)

i } from given {Vi} via Eq. (2) with various
T �= 1. Noting P (D(l)

i = D)dD = P (Vi = V )dV , it can be
shown that P (D(l)

i = D) = D−1
1 T DT −1e−DT /D1 , where D1 =

D0/(2d)T . Let us focus on the T = 1 case in this work.

III. UNIQUE EFFECTS DUE TO STATIC DISORDERED
ENVIRONMENTS

A. Sample-dependent diffusion coefficient

For normal Brownian motion, the mean square displace-
ment (MSD) 〈x2〉 = 〈|x(t) − x(0)|2〉 is expected linear to time
t in long time limit. The diffusion coefficient is defined by
Ddis ≡ limt→∞〈x2〉/4t , where the average 〈·〉 is performed
over the trajectories. Following Kehr and Haus [25], the diffu-
sion coefficient of trap model depends on the local diffusivity

Ddis =
[

1

N

N∑
i=1

(
D

(l)
i

)−1

]−1

. (5)

It is confirmed by our simulation (not shown here). Its
relation to the instantaneous diffusivity D(t) is shown later by
Eqs. (13)–(15). We would like to call readers’ attention that
Ddis is in general different to D0 = limN→∞ 1

N

∑N
i=1 D

(l)
i .

One can find more details in the recent paper by Akimoto et al.
[32]. Noting τi = a2/(2dD

(l)
i ), one can see the connection

between the diffusion coefficient and the mean sojourn time
of the given sample,

τ̄N ≡ 1

N

N∑
i=1

τi = a2

2dDdis
. (6)

Ddis and τ̄ depend on the specific configuration of the
sample. We further consider the statistics over the ensemble
of samples, first estimating the distribution of τ̄ , then the
mean value and higher moments of Ddis. Exact estimation
is challenging due to the spatial correlation. Noting that the
correlation among extremal basins is quite weak, we consider
the coarse-grained lattice of basins instead. The typical sojourn
time in basin i is proportional to the inverse of the local
diffusivity, τi � 1/D

(l)
i . Noting that D

(l)
i follows exponential

distribution given by Eq. (3), we have

P (τi = τ ) = τ0τ
−2 exp(−τ0/τ ), (7)

where τ0 � 1/D0. The distribution is with heavy tail P (τ ) ∼
τ−2, which is mainly contributed by the frozen sites with
P (D(l)

i = 0) = 1/D0. The expectation value of τ diverges. The
generalized central limit theorem suggests the mean waiting
time τ̄N follows the one-sided Lévy stable distribution with
the exponent μ = 1 and the skewness β = 1,

τ̄N = 1

N

N∑
i=1

τi
d−→ z ∼ S(μ = 1,β = 1,γ,δN ; 1),for large N,

(8)
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FIG. 2. The distribution of mean waiting time τ̄N for samples
with rc = 16, D0 = 0.25 and various sizes N = L2. 8000 landscapes
are sampled for each size. The solid lines are the probability density
function of one-sided Lèvy stable distribution with μ = 1, γ = 6.35,
and δN = δ0 + 2

π
γ ln N with δ0 = −26.1.

where
d−→ means converging in the sense of the probability

distribution. Here we adopt the type-1 parametrization of the
stable distribution, where γ is the scale parameter and δN =
δ0 + 2

π
γ ln N is the position parameter [35]. As a consequence,

the position of the distribution shifts to infinity by ln N , which
is well confirmed by numerical sampling (see Fig. 2).

Noting that Ddis = a2/(2dτ̄N ), we see the moments of Ddis

are indeed negative moments of τ̄N ,

〈(Ddis)
α〉 =

(
a2

2d

)α〈
τ̄−α
N

〉
. (9)

Noting the Laplace transform of the one-sided Lévy stable
distribution [36,37], it can be shown that

〈Ddis〉α ∼
(

δ0 + 2

π
ln N

)−α

. (10)

(See Appendix A for details.) The analytical results are con-
firmed by numerical sampling for α = 1,2, as shown in Fig. 3.
One can read that the uncorrelated approximation works well
for samples larger than the extremal basins; i.e., L > ξ = 2rc.

B. Non-Gaussian distribution of displacement with additional
peak around origin

For more dynamic details, we performed kinetic Monte
Carlo simulation [38] for the random walk on two-dimensional
quenched samples with periodic boundary. The random walks
are composed by hops between nearest-neighbor sites. The
trapping time constants τi are assigned to the sites of quenched
sample. The actual waiting time for a hop follows an exponen-
tial distribution with the given time constants. The summation
of the waiting times gives the total walk time of a particle.
The random walk is terminated when the total time reaches an
upper boundary tmax, which can be understood as the limited
time duration of the imaging experiment. The trajectory is
further discretized by a fixed time bin 
t , to mimic the limited
time resolution of the camera. Ten-thousand trajectories are
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FIG. 3. 〈Ddis〉−1 (left) and 〈D2
dis〉−1/2 (right) are plotted against

log2(N/r2
c ). The averaging is performed over 8000 samples, for

various sample sizes N = L2 and various extremal basin radii rc.
The dash lines are added for guidance.

sampled for each disordered realization. The initial sites of
trajectories are chosen from Boltzmann distribution. Being
specific, a trajectory starts from site i with the probability

Pi = e−Vi/T

Z
, (11)

where Z = ∑N
i=1 e−Vi/T is the partition function over all the

N = L2 sites. In this work, the sample size is set by L = 1024,
while the radius of the extreme basin is set as rc = 16. The
mean local diffusivity is set as D0 = 0.25. The time bin is set
as 
t = 10. The total observation time is set as tmax = 25000,
so that nframe = 2500 frames are recorded for each trajectory.
Figure S2 in the Supplemental Material [34] illustrates typical
trajectories in a sample.

Figure 4 shows the distribution of displacement P (x,t) for
various lag time t . As can be seen in the figure, the tail of
the distribution changes continuously for increasing t , from
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FIG. 4. The distribution of displacement P (x,t) for a typical
sample and various t . The leading term of Eq. (18) is plotted by the
dash line. The inset enlarges the peak of P (x,t = 20) for a clearer
view.
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the exponential tail towards Gaussian. Such behavior was also
reported in previous studies [10,14,22]. It can be well explained
by noticing the heterogeneity in the ensemble of the trajectories
[22]. In the early stage of each trajectory, the random walk is
dominated by the local diffusivity of the initial extremal basin.
The exponential distributed local diffusivity introduces the
non-Gaussian tail. At the later stage a large fraction of particles
leave the original extremal basins. Self-averaging is gradually
achieved along the long trajectories of these fast moving
particles, which leads to the Gaussian tail. The characteristic
timescale for the convergence to the Gaussian ones has been
well discussed in the annealed models of fluctuating diffusivity
[15,17,22].

A sharp peak of P (x,t) appears around x = 0 for all
t . Similar peaks were also observed in various systems of
non-Gaussian diffusion, both by experiments [3,4,8,9] and by
molecular dynamics simulations [10]. Such peak has been stud-
ied as the phenomena of “population splitting” in the context
of subdiffusion [39–42], where the heavy-tailed sojourn time
distribution introduces localization. The immobilized particles
largely influence the statistics over time ensemble. The peak
appearing in non-Gaussian diffusion can be similarly explained
in the annealed framework of fluctuating diffusivity [14,22],
but at the cost of introducing additional immobile state. In
the quenched model, however, it is a natural consequence
of the localization due to the coupling between the local
diffusivity and the sojourn time in the trap. It can be simply
explained as: when the particle is trapped in area where the
“slow” state is preferred, to escape would be much harder,
since it walks slower. The quantitative description follows. The
distribution of displacement P (x,t) counts all the segments
{x(t0) → x(t0 + t)} of the trajectories. For small t , we assume
each segment is dominated by a fixed instantaneous diffusivity
D(t), which is equal to the local diffusivity D

(l)
i of the center

of the segment. Noting that the segments sample the landscape
with the Boltzmann weight [Eq. (11)] and also Eq. (2), we
can get the probability that a segment centers at site i in the
condition of D

(l)
i = D and measured Ddis by

P
[
x(t) = xi |D(l)

i = D,Ddis
] = D−1∑N

j=1

(
D

(l)
j

)−1 , (12)

where the denominator
∑N

j=1(D(l)
j )−1 = ND−1

dis is given by the
diffusion coefficient of the specific sample. The instantaneous
diffusivities D(t) of the segments hence follow the distribution
with additional weight,

P (D(t) = D|Ddis) =
N∑

i=1

P
(
x = xi |D(l)

i = D,Ddis
)
P

× (
D

(l)
i = D|Ddis

)
. (13)

We would like to call reader’s attention that all the above
probabilities are under the condition of the known Ddis of the
specific sample. Employing Eqs. (3), (5), and (12), it can be
shown that Ddis indeed gives a lower bound of D(l). A small-D
cutoff hence arises naturally, which leads to

P (D(t) = D|Ddis) = 0, D � Dc, (14)

where Dc = Ddis/N . When D(l) = D � Dc, the probability
P (D(l) = D) and P (Ddis) are independent, which leads to

P (D(t) = D|Ddis) = Ddis

D0
D−1e−D/D0 ,D � Dc. (15)

One can find the technical details in Appendix B.
Further assuming in each short segment the particle diffuses

as normal Brownian motion dominated by the instantaneous
diffusivity D(t), we have

G(x,t |D(t)) = 1√
4πD(t)t

exp

(
− x2

4D(t)t

)
. (16)

The distribution of displacement is obtained by counting all
the segments, which gives

P (x,t) =
∫ ∞

0
dD G(x,t |D(t))P (D(t) = D|Ddis). (17)

It is fortunate that the above integral can be explicitly expressed
by the Gauss error function. For x > xc ≡ √

Dct and Dc 

D0, it can be shown

P (x,t) = Ddis

D0
x−1e−x/

√
D0t + Ddis

D0
x−1e−x2/4Dct O

(√
Dct

x2

)
.

(18)

Since Dc is small for large N , the first term dominates P (x,t)
even for quite small x, which appears as a sharp peak around
the origin shown in the inset of Fig. 4. The height of the peak,
P (x = 0,t), is controlled by Dc as

P (x = 0,t) = Ddis

D0

1√
πDct

− Ddis

D0

1√
D0t

+O(
√

Dc/D0), (19)

which is finite for any finite Dc and diverges when Dc → 0.
Appendix C provides the full derivation on P (x,t).

IV. TRAJECTORY-BASED DATA ANALYSIS

A. Reconstruct the diffusion map from trajectories

The structural information of the environment is often
represented in the style of diffusion map (D-map), which is
a map of local diffusivity retrieved from trajectories. D-map is
generally constructed in the coarse-grained fashion, since the
trajectories are sparse in most experiments. We say a map is
of s-resolution if it is composed of the grains of size s � L.
The local diffusivity of each grain is estimated from all the
segments centered in the grain q and its nearest neighbors by

δ(s)
q = 1

2d

1

K

K∑
k=1

|xk(t + dt) − xk(t)|2
dt

, (20)

where dt is the time bin and {xk(t) → xk(t + dt)} is the
kth segment of all the K relevant ones. (See Fig. S3 in the
Supplemental Material [34] for the example of the retrieved
D-map.) The fidelity of D-map can be evaluated from the mean
value of the retrieved local diffusivities averaged over all the
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FIG. 5. A scheme for the trajectory-based data analysis, discussed in Sec.IV. The sample is divided into small grains of size s. The local
diffusivity δ(s)

q is evaluated for the grain q from the segments of trajectories centered therein [see Eq. (20)]. The mean local diffusivity δ̄(s) and
the typical time τ̄ (s) can be evaluated for each sample at various resolution s. The sample-to-sample fluctuation of τ̄ (s) is expected vanishing
while s approaches the typical correlation length ξ .

K grains in the sample,

δ̄(s) = 1

M

M∑
q=1

δ(s)
q . (21)

Figure 5 provides an illustration of the coarse-graining scheme.
The inset of Fig. 6 shows δ̄(s) retrieved for 10 disordered

samples, where 104 trajectories are simulated for each sample.
As can be seen in the figure, the fidelity is merely guaranteed for
s < rc that δ̄(s) ≈ D0. δ̄(s) deviates from D0 in the limit s → 1,
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FIG. 6. (Left) The inverse of mean local diffusivity of coarse-
grained diffusion map (δ̄(s))−1 for various s. The colors denote
different disordered samples. The orange cross mark shows 1/D0,
which is expected for the genuine map. (Inset) δ̄(s) for various
resolutions and different samples. (Right) The distribution of (Ddis)

−1

obtained by sampling 8000 disordered realizations (circles). It follows
one-sided Lévy stable distribution with μ = 1 (solid line).

since 104 trajectories are still not enough for reconstruction in
the finest resolutions. For coarse-grained maps with s > rc, the
deviance becomes more significant, accompanied by the rise of
sample-to-sample fluctuation which is clearly presented in the
fashion of (δ̄(s))−1 [see Fig. 6(a)]. Noticing the segments sample
the landscape by the Boltzmann weight, one can show δ(s)

q

equals the diffusion coefficient D
(s)
dis of the of grain q, given by

Eq. (5) with N = s2 traps. In the most coarse-grained case s =
L, δ(L) is exactly the diffusion coefficient Ddis estimated from
ensemble-averaged MSD of all the trajectories. One can expect
that (δ̄(L))

−1
follows the stable distribution provided by Eq. (8)

[shown in Fig. 6(b)]. δ̄(s) introduces a path linking the local
diffusivity and the instantaneous diffusivity, from determined
D̄(l) = D0 to random D̄(t) = Ddis, which is shown by color
lines in Fig. 6(a).

B. Estimate the correlation length

It is worthy to notice the sample-to-sample fluctuation of
(δ̄(s))−1 is depressed in D-map with fine resolutions. It leads
to an approach to estimate the typical correlation length in
quenched samples as follows:

(1) Divide the whole sample into subsamples of size s.
(2) Measure diffusion coefficient δ(s)

q of each subsample q

and calculate the mean value δ̄(s) ≡ 1
M

∑M
q=1 δ(s)

q over all the
M subsamples.

(3) Repeat (1) and (2) for various s, and record the s

dependence of τ̄ (s) = (δ̄(s))−1.
(4) Repeat (1), (2), and (3) for various samples, calculate

the sample-to-sample fluctuation 
2 ≡ 〈(τ̄ (s))2〉 − 〈τ̄ (s)〉2.
Figure 5 shows the above procedure. In the case the

x−1-peak is observed in the non-Gaussian distribution of
displacement, one may also expect that 
2 falls for decreasing
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s as that shown in Fig. 6(a). For the diffusion map with s < rc,
each subsample is dominated by a unique local diffusivity.
One may expect 
2 vanishes. The random samples are hence
characterized by two universal parameters, the correlation
length rc and the mean local diffusivity δ̄(s)|s<rc

� D0.

V. DISCUSSION

We provide here a brief reasoning for the sharp peak in
P (x,t). Due to inadequate trajectories, data from particle
tracking experiments is usually analyzed in the manner of
time averaging. In the time ensemble, additional sampling
weight joins in the statistics, which appears in this work
as the Boltzmann weight [Eq. (11)] depending on the local
diffusivity [Eq. (12)]. The sharp peak hence arises. Similar
phenomena have been reported as “population splitting” in
aging continuous time random walk (CTRW) [39–42]. In this
annealed model, subdiffusion is expected and the displacement
distribution P (x,t) is in general non-Gaussian. The aging
CTRW is hence a convenient model for “subdiffusive and
non-Gaussian” phenomena. We notice that Cherstvy et al. have
also investigated various types of anomalous diffusions in static
environments with deterministic local diffusivity [43,44]. In
this work, we show the sharp peak also exists in the “Brow-
nian, but non-Gaussian” diffusion while the environment is
disordered and static.

The main results in Secs. III and IV largely depend on the
heavy tail of the sojourn time distribution, P (τ ) ∼ τ−2, which
is contributed by the most deeply trapped particles. The τ−2

tail of P (τ ) leads to the Lévy stable distribution with exponent
μ = 1 [Eq. (8)], which is the marginal case that ln N correction
appears. There have been recently theoretical progresses on
the subtle and important case [45,46]. We would also like to
note that the diffusion is not exactly Brownian due to the ln-
correction, although it might be ignored in experiments.

In particle tracking experiments, it is a common observation
that a portion of particles are pinned at the initial positions over
the whole experiment. The threshold Dc for the single particle
diffusivity Ds is widely employed, smaller than which the
particle is labeled “immobile” (see, e.g., Ref. [9]). A small-D
cutoff is hence introduced in the statistics over the “mobile”
trajectories. It again leads to Eq. (14), but from practical consid-
eration in experiments. We notice that the threshold Dc is typi-
cally quite small. D−1 exp[−D/D0] behavior would still dom-
inate P (D(t)) observed in experiments, such as that in Ref. [9].

In this work, the spatially correlated local diffusivity {D(l)
i }

is generated from the extreme landscape {Vi} by D
(l)
i =

eVi/T /2d. The T = 1 case leads to exponential distributed
{D(l)

i }, which was reported by experiments. In more general
T �= 1 cases, P (D(l)

i ) could be stretched or compressed as
P (D(l)

i = D) = D−1
0 T DT −1e−DT /D0 . The whole class of mod-

els provide description of a range of non-Gaussian diffusion in
static disordered environments.

VI. SUMMARY

In summary, we have introduced a quenched trap model
for non-Gaussian diffusion in a static disordered environment,
which is spatially correlated. This model is largely inspired by

the particle tracking experiments on non-Gaussian diffusion,
especially those of more crowded and static media such as
cytoplasm of ATP-depleted cells [8] and cell membrane [9,10].
The relaxation time of such media would be longer than
the observation time. The assumption of static disorder may
hence apply. Our analytical and numerical studies show a
localization mechanism due to the coupling between the local
diffusivity and the sojourn time in the trap, which leads to
population splitting as a sharp peak in P (x,t) around x =
0. Cells would largely benefit from this phenomenon since
the biological functions of molecular machines are mostly
carried out by the immobile ones. We analytically estimate
the diffusion coefficient and its fluctuation among disordered
samples. Due to the heavy tail of sojourn time distribution,
the diffusion coefficient is depressed by the sample size. The
size-dependent effect of Ddis calls our attention to the fidelity
of the coarse-grained diffusion map, which is a widely used
approach to visualize the structure information obtained from
particle tracking experiments. Our study suggests the fidelity
is guaranteed only in the case that the spatial resolution is
high enough to identify the fine structures in the disordered
environment. On the other hand, it offers us an approach to
estimate the typical correlation length, from the trajectories in
a large bunch of samples. We hope this work would shed a light
on the experiments on cells where the cell-to-cell fluctuation
is always significant.
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APPENDIX A: NEGATIVE MOMENTS OF ONE-SIDED
LÉVY STABLE DISTRIBUTION WITH EXPONENT μ = 1

Let xN follow S(x; 1,1,γ,δN ) with δN = δ0 + 2
π
γ ln N . The

negative moments of xN is defined as〈
x−α

N

〉 = ∫ ∞

0
dx x−αS(x; 1,1,γ,δN ), α > 0. (A1)

Because the concerned distribution is not strictly stable, the
moments depend on N . In this section, we estimate the large-N
dependence of 〈x−α

N 〉.
The approach is similar to that of Chechkin et al. [36], where

they deal with the μ < 1 case. Noting

x−α = 1

�(α)

∫ ∞

0
ds sα−1e−xs,α > 0, (A2)

we have

〈
x−α

N

〉 = 1

γ α

〈(
xN

γ

)−α〉

= 1

γ α

∫ ∞

0
dx x−αf (x)
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= 1

γ α�(α)

∫ ∞

0
ds sα−1

∫ ∞

0
dx e−xsf (x)

= 1

γ α�(α)

∫ ∞

0
ds sα−1f (s), (A3)

where f (x) ≡ P ( xN

γ
= x) and its Laplace transform f (s) =

L[f (x)]. Noting the Laplace transform of g(x) ≡ P ( xN

γ
−

δN = x) = S(x; 1,1,1,0) is given by [37]

g(s) = L[S(x; 1,1,1,0)] = e−s ln s , (A4)

we can see

f (s) = L[f (x)] = L[g(x − δN )] = e−s(δN +ln s). (A5)

For the large-N dependence of 〈x−α
N 〉, we estimate the

integral in Eq. (A3). The integral can be separated into three
parts:

I = I1 + I2

=
(∫ 1

0
ds +

∫ ∞

1
ds

)
Q(s), (A6)

where the integrand Q(s) = sα−1e−s(δN +ln s).
For the first part, we can see∫ 1

0
ds sα−1e−sδN < I1 <

∫ 1

0
ds sα−1e−sδN −min(s ln s), (A7)

which gives

�(α) − �(α,δN )

δα
N

< I1 < e1/e �(α) − �(α,δN )

δα
N

, (A8)

where �(α,x) = ∫∞
x

dt tα−1e−t is the incomplete γ function.
Since �(α,x) ∼ x1−αe−x , it can be neglected for large N . We
see I1 is controlled by N as

I1 ∼ δ−α
N . (A9)

For the second part, we have

0 < I2 <

∫ ∞

1
ds sα−1e−sδN = exp(−δN )

δN

[
1 + O

(
δ−1
N

)]
.

(A10)

For large N , I1 dominates the whole integral I . The negative
moments 〈x−α

N 〉 depends on N as

〈
x−α

N

〉 ∼ (
δ0 + 2

π
ln N

)−α

. (A11)

It is confirmed by numerical sampling, as shown in Fig. 3 of
the main text.

APPENDIX B: THE DISTRIBUTION OF INSTANTANEOUS
DIFFUSIVITY P(D(t))

In this Appendix, we estimate P (D(t) = D|Ddis) given by
Eq. (13) as

P (D(t) = D|Ddis) =
N∑

i=1

[
P
(
x = xi |D(l)

i = D,Ddis
)

×P
(
D

(l)
i = D|Ddis

)]
. (B1)

The conditional probability of the position is given by Eq. (12)
as

P
(
x = xi |D(l)

i = D,Ddis
) = Ddis

N
D−1. (B2)

We focus on the estimation of the conditional probability
P (D(l)

i |Ddis). The Bayesian law suggests

P
(
D

(l)
i |Ddis

) = P
(
D

(l)
i

)P (Ddis|D(l)
i

)
P (Ddis)

. (B3)

One may notice that Ddis depends on D
(l)
i via Ddis =

[ 1
N

∑
j=1(D(l)

j )−1]
−1

. A decoupled D′
dis can be hence intro-

duced as

D′
dis =

⎡
⎣ 1

N − 1

∑
j �=i

(
D

(l)
j

)−1

⎤
⎦

−1

, (B4)

which is independent of D
(l)
i . Its relation to Ddis is given by

D′
dis = N − 1

N

1

1 − ε
Ddis, (B5)

where we denote ε ≡ Ddis/(ND
(l)
i ) for short. Noting

P
(
Ddis|D(l)

i

)
dDdis = P

(
D′

dis|D(l)
i

)
dD′

dis, (B6)

we can see

P
(
Ddis|D(l)

i

) = 1

(1 − ε)2
P

(
D′

dis = Ddis

1 − ε

)
. (B7)

Noting Eq. (B4), one can see P (D′
dis) = 0 for any D′

dis < 0. It
leads to a natural cutoff for ε > 1, which gives

P
(
Ddis|D(l)

i

) = 0, for ε = Ddis

ND
(l)
i

> 1. (B8)

That is to say, D
(l)
i is bounded by Dc = Ddis/N from below.

Using Eqs. (B1), (B3), and (B8), we arrive at Eq. (14) in the
main text,

P (D(t) = D|Ddis) = 0, for D � Dc. (B9)

In the region ε 
 1, Eq. (B7) suggests

P
(
Ddis|D(l)

i

) ≈ P (Ddis), for D � Dc. (B10)

That is to say, Ddis is independent of the shallow traps D
(l)
i �

Dc. Noting also Eqs. (B1)–(B3) and Eq. (3), we arrive at
Eq. (15) in the main text,

P (D(t) = D|Ddis) = Ddis

D0
D−1e−D/D0 , for D � Dc. (B11)

APPENDIX C: THE DISTRIBUTION OF DISPLACEMENT
P(x,t)

In this Appendix, we estimate P (x,t) given by Eq. (17) as
a convolution over D(t),

P (x,t) =
∫ ∞

0
dD G(x,t |D(t))P (D(t) = D|Ddis). (C1)

Noting that D(t) is bounded from below by Dc [Eq. (B9)]
and the independent approximation [Eq. (B10)], the above

042122-7



LIANG LUO AND MING YI PHYSICAL REVIEW E 97, 042122 (2018)

convolution becomes

P (x,t) =
∫ ∞

Dc

dD
1√

4πDt
e−x2/4Dt Ddis

D0
D−1e−D/D0 . (C2)

The primitive function of the integral can be expressed as

F (D) = Ddis

2D0

1

x

{
e−x/

√
D0t

[
erf

(√
D

D0
− x

2
√

Dt

)
− 1

]

+ ex/
√

D0t

[
erf

(√
D

D0
+ x

2
√

Dt

)
− 1

]}
, (C3)

where erf(x) is the error function. It is easy to seeF (D = ∞) =
0. We hence arrive at P (x,t) = −F (D = Dc). For x � √

Dct

and Dc 
 D0, it can be expanded as

P (x,t) = Ddis

D0

1

x

[
e−x/

√
D0t + 2√

π

√
Dct

x
e−x2/4Dct

+O
(
D3/2

c

)]
, (C4)

which is dominated by the first term as

P (x,t) � Ddis

D0
x−1e−x/

√
D0t , for x �

√
Dct. (C5)

Considering the height of the peak at x = 0, we have

P (x = 0,t) =
∫ ∞

Dc

dD
1√

4πDt

Ddis

D0
D−1e−D/D0

= 1√
4πDt

[
1√
Dct

1√
π

e−Dc/D0

− 1√
D0t

erfc

(√
Dc

D0

)]
, (C6)

where erfc(x) is the complemental error function. In exper-
iment practice, it is a usual case that Dc 
 Ddis < D0. The
expansion around Dc/D0 ∼ 0 gives

P (x = 0,t) = Ddis

D0

1√
π

{
1√
Dct

− 1√
D0t

√
π

+ 1√
D0t

O

[(
Dc

D0

)1/2]}
. (C7)

For Dc > 0, the height of the peak is finite and controlled by
1/

√
Dct as

P (x = 0,t) � Ddis

D0

1√
π

1√
Dct

, (C8)

which decays over time as t−1/2.
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