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We show that the decay of the density of active particles in the reaction A + B — 0 in one dimension, with
exclusion interaction, results in logarithmic corrections to the expected power law decay, when the starting initial
condition (i.c.) is periodic. It is well known that the late-time density of surviving particles goes as t~'/* with
random initial conditions, and as # ~!/? with alternating initial conditions (ABABAB . . .). We show that the decay
for periodic i.c.’s made of longer blocks (A" B" A" B" . ..) do not show a pure power-law decay when »n is even.
By means of first-passage Monte Carlo simulations, and a mapping to a g-state coarsening model which can
be solved in the independent interval approximation (IIA), we show that the late-time decay of the density of

surviving particles goes as ¢ ~'/?[In(t)]~! for n even, but as ¢~

1/2 when n is odd. We relate this kinetic symmetry

breaking in the Glauber Ising model. We also see a very slow crossover from a ¢ ~/?[In(#)] ! regime to eventual
t~1/2 behavior for i.c.’s made of mixtures of odd- and even-length blocks.
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I. INTRODUCTION

The two-species annihilation reaction A + B — ¢ is one
of the simplest examples of a reaction-diffusion system. It has
been studied for over thirty years, after first being introduced
by Zeldovich and Ovchinnikov in the context of bimolecular
chemical reactions [1], and by Toussaint and Wilczek [2] in
the context of particle-antiparticle annihilation in the early
universe, and has also been applied to hole-particle annihilation
in irradiated semiconductors [3]. The reaction has also been
important in clarifying the breakdown of mean-field kinetics
for finite dimensions [4,5]. In particular, it was realized that
in dimensions less than 4, the long-time decay starting from
an initially well-mixed configuration does not conform to the
mean-field kinetics.

Consider the process A+ B — ¢, starting from initial
conditions (i.c.’s) created by an independent Bernoulli point
process on each site of d-dimensional lattice: each site holds
either an A-type particle, a B-type particle, or is empty,
with probabilities c4, cp, and (1 —cq — cp) respectively.
We concentrate on the case where c4 = cg. Bramson and
Lebowitz proved that for large times ¢, for d < 4, the density
of surviving particles decays as ¢ ~%/4. This result differs from
the mean-field result which predicts a decay proportional to
t~!. The mean-field result fails because it assumes well-mixed
concentrations of both reactants, whereas the true picture, as
elaborated on later by Leyvraz and Redner [6], is that of a
diffusion-controlled late-time separation of the system into
domains of A-rich and B-rich regions. Due to the random
nature of the initial condition, a large region of size L has
an excess of one type of particle over the other, of magnitude
O(L'7?). Since the average length of the domains increases
diffusively as L ~ t!/2, this gives a decaying density of /4.
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This domain picture fails for correlated initial conditions
where the excess of one particle type over the other in
a large region is O(1); for example, period i.c.’s such as
AABBAABBAABB....Inthis case, we use another picture
of the late-time process. At late times, if it is reasonable to
expect that A and B particles mix well enough such that
they encounter each other equally often, we can remove the
distinction between A- and B-type particles, accompanied by
a halving of the reaction rate. The long-time decay with equal
starting densities would be then be given by the kinetics of
the single-species annihilation reaction [7], and hence goes as
t=42 ford < 2.

In this paper, we show that even this mixing requirement
fails in case of particles with exclusion interaction in one
dimension (1D). We show that, surprisingly, the decay from
initial conditions of the kind A” B" A" B" depends on the parity
of n. For odd n there is an eventual pure t~'/? decay, whereas
for odd n the density of particles decays as ~'/2/In(¢) in the
long-time limit.

A variety of exact results available for simple models such
as the symmetric exclusion process [8] have demonstrated the
drastic effects of exclusion interaction between particles in
one dimension. For example, a tagged particles in the simple
exclusion process in 1D shows subdiffusive behavior [9—11].

Deviations from the expected behavior because of exclusion
have been observed in simulations for various systems which
map to the AB annihilation problem with exclusion. Odor
and Meynhard [12] studied systems of interacting particles
for initial conditions which map to the initial conditions
A"B"A"B" ... in the AB annihilation problem, where [A"]
denotes a contiguous block of n A-type particles. They studied
the behavior for initial conditions which map to the periodic
ic’s A"B™..., and observed a decay exponent which is
different from the expected value of —0.5. They also studied
i.c.’s which were made of random mixtures of blocks A" B"
with different lengths n, and in this case the observed decay
exponents were found to vary with the proportions of different

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.042118&domain=pdf&date_stamp=2018-04-12
https://doi.org/10.1103/PhysRevE.97.042118

RAHUL DANDEKAR

PHYSICAL REVIEW E 97, 042118 (2018)

blocks in the mixture. Recent simulations of the conserved
lattice gas (CLG) [13,14], the dynamics of which also maps
to A B annihilation with exclusion, showed that an anomalous
decay exponent of 0.523 was observed for i.c.’s which map to
periodic i.c.’s of the A B process with even-length blocks.

These observed anomalous decay exponents for this impor-
tant problem have not received an analytical explanation till
now. We show in this paper that, for the 1D A B annihilation
problem with exclusion, and using the independent interval
approximation (IIA), for a purely periodic initial condition
made of blocks A”B" the particle density in the long-time
limit decays for even n goes as t~!/2(In(¢)) ™', while for odd
one obtains the usual ~!/? decay. We also show that, fori.c.’s
which are made of mixtures of blocks of different length, there
is a long-time crossover between the logarithmic correction
and the pure t~!/2 decay, which can account for the varying
exponent seen by Odor and Meynhard, and the exponent seen
by Lee for natural initial conditions. Since the 1D CLG is an
important simple model of an active-absorbing phase transition
[15,16], we discuss it in more detail in the conclusions.

We trace the origin of the logarithmic speed-up of the decay
to the phenomenon of “kinetic symmetry breaking,” studied in
the Glauber Ising model by Majumdar, Dean and Grassberger
[17]. In Sec. II, we briefly review this study with a view to
setting up a similar treatment of the AB system in the rest of
the paper. The rest of the paper is devoted to studying the AB
annihilation process starting from periodici.c.’s. In Sec. III we
consider block i.c.’s A"B"A"B" ... withn =1, 2, and 3. We
generalize to longer blocks in Sec. IV. In Sec. V we briefly
discuss the results of first-passage Monte Carlo simulations
of the model, and in Sec. VI we generalize our reasoning to
i.c.’s made of mixtures of blocks of different lengths, showing
that under general conditions there is a long-time crossover
to a pure 1~ !/2 decay. We conclude in Sec. VII along with a
discussion of how our results apply to recent simulations of
the 1D conserved lattice gas by various authors.

II. KINETIC SYMMETRY BREAKING IN
THE GLAUBER MODEL

Our aim in the paper is to study the two-species annihilation
reaction with exclusion. Each site can only be in one of three
states: occupied by an A particle, occupied by a B particle, or
empty (denoted by ¢). The particles react and diffuse according
to the rules

1

AB — ¢¢, (D
1/2

Ap = @A, 2
172

B¢ = ¢B. (3)

We study the A B annihilation reaction through a nontrivial
mapping to Glauber Ising dynamics with kinetic symmetry
breaking [17]. In this section we briefly review the results of
[17], and also set up notation for the rest of the paper. Consider
the 1D Ising model, and denote by W(S;_1,S;,S;+1) the rate
of flip of the ith spin, S; — —S;, when the neighboring spins
are S;_; and S;;. Majumdar, Dean, and Grassberger studied

the case with the following modified zero-temperature Glauber
rates:

W, +,4+) = W(—,—,—) =0, )
WH, +,-)=WH, —,—-)=1/2, ®)
W=, —.+) =W +.+) =1/2, (6)

W+, —,+) =« (7)
W= +.,-) =1 8)

For @ = 1 onerecovers up-down symmetry in the rates (and the
zero-temperature Glauber model). For o < 1 the symmetry be-
tween up and down spins is broken. Denote the magnetization
per unit length by m and the total magnetization of the system
by M. For all «, the only stable states are those with m = +1.
We now argue that, for all « < 1, m(t) - —1 as t — oo for
almost all initial conditions, in the thermodynamic limit.

For unmodified Glauber dynamics (¢ = 1), the total magne-
tization M performs a random walk on an axis from M = —L
to M = +L, ending at either value with equal probability. For
o < 1, the rightward moves corresponding to annihilation of
“—” (towards M = +L) occur with a rate «, giving rise to a
net leftward bias ry L, where r is the density of “—"" domains
of unit length. Thus the system performs a biased random
walk that ends up at M = —L with probability 1 — O(e cL)
for almost all initial conditions [all but those with M = L —
o(1)].

We allow for the fact that each “—” domain might have an
individual value of «, a measure of how easy it is to annihilate
that “—” domain (this value can be reassigned in some way
when two domains merge). We denote by « the value of «
averaged over all the “—” domains in the system. Due to the
merging of domains, & can change with time.

We now outline the derivation in [17]. By “number density”
of a quantity, we mean the sum of the quantity over the
lattice, divided by the lattice size. Denote the number density
of domain walls by N(#), and let L, (¢) and L_(¢) denote
the number densities of “4” and “—” domains respectively.
Also, the number density of “4” domains of length n will be
denoted by P,, and correspondingly for “—” domains by R,,.
The dynamics obeys the exact equations dd—ly =—P —aR;
and &= = —(1 -~ @)R.

The independent interval approximation (IIA) consists of
replacing joint probabilities such as the probability of findin a
domain of length length i next to a domain of length j, P; ;,
by the product of the probabilities of finding the two types of
domains independently, P; P; [18]. The evolution equations for
P, and R,,, in the ITA framework, are simpler to write in terms
of the quantities p, = P,/N and r, = R,/N, for n > 2 (for
details see [17]).

The evolution equations for p, and r, can be simplified
for large times, when the system has a magnetization per site
close to —1. Consider the system at a late-time stage, when it is
made of long “—”" domains punctuated by small “+”” domains.
These “+4” domains rarely merge, and hence the evolution of
Py is dominated by diffusion of the domain walls. On the other
hand, the dominant mechanism for the change in their length
distribution of the “—’’ domains turns out to be the merging (i.e.,
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annihilation of the intervening “+” domains), which changes
r, faster than the diffusion terms. Hence, at late times, keeping
only the dominant terms, we have forn > 2

P s + 2 )
dt Pn+1 Pn—1 Pn»

n—2
dr,
di ~ pi (Zrirn—i—l - "n+1), (10)

i=1

with %‘ Xy —ry.

The first equation implies Y np, & c¢|/t = L, (t)/N(t) =
[;. The second equation is solved by the ansatz r, =
A(t)exp [—nA(t)], where A(f) obeys the equation N(t)‘:l—’} =
A(t)‘ii—];’, which implies that A(¢) = ¢, N(¢). ¢1,c; are constants
set by the state of the system at a time fy when the IIA
description starts to hold [17].

Solving for N(¢) and m(z) using Lo (¢t) ~ ¢ N(t)+/t and
r1 & ¢y N(t), one gets

N(1) Y

_ C
- Vtin(bt)

a
m(t) = -1+ ——

In(bt)’ (12)

whereb = 1, 1, and a, c are constants which depend on the state
of the system, particularly the values of m(fy) and ri(#y) at a
time f, sufficiently large that (9) and (10) hold.

The above treatment holds even with the following two
modifications, important in the next few sections: (a) if o is
a function of time that approaches a nonzero constant value
for large times @ — ¢ > 0, and (b) if the “4” domains also
have oy < l,aslongaso_ < ay.

III. BLOCK INITIAL CONDITIONS WITH BLOCKS
OF LENGTHS 1, 2, AND 3

We now study the A-B annihilation process defined by
Egs. (1)-(3). The dynamics follows continuous-time updates,
and time is measured in the number of Monte Carlo sweeps of
the system. In this and the next section, we will study the decay
of the number of surviving particles, starting from periodic
initial conditions of the form A" B*A"B" ..., where we call n
the block length. In this section, we consider n = 1, 2, and 3.

The decay of the CLG starting from an initial condition
which corresponds to thei.c. ABABAB ... (n = 1), was first
studied by Bandyopadhyay [19]. Kwon and Kim [20] pointed
out a simple mapping to the zero-temperature Glauber Ising
model, by identifying the domain walls with particle types
+|— — A and —|+ — B. Then the block-length-1 initial
condition stated above maps to the starting configuration

A B A B A B A B
=+l =1+I=1+1=1+-. (13)

Then the rules (1)—(3) map to the zero-temperature Glauber
Ising evolution rules (without kinetic symmetry breaking, that
is, with @ = 1). The evolution of the density of domain walls
in the system is known to be [21]

1 1
NQ@) = ol-). 14
(0 M+ <t> (14)

Now we consider the i.c. withn =2, AABBAABB .... We
make a mapping of this system to a system where each dual-
lattice site can take three values of “spin,” ¢ = 1,2,3. Identify
112 - A, 2|3 - A, and (15)
2|1 - B, 3|2 - B. (16)
An A-type domain wall increases the value of g, while a B-type
domain wall decreases it. The n = 2 i.c. becomes

A AB B AABB
1121312]112]13]2]1..., (17)

where a vertical line denotes a domain wall. A possible state
after one A-B annihilation step would be

11213121.... (18)

The A-B annihilation dynamics in Egs. (1)—(3) thus maps a
dynamics to the following dynamics for domain walls:

i

qilq2lq1 = q1q1q1  and (19)
12

Q191192 = q11q29>. (20)

This is different from the traditional Glauber dynamics for
the g-state Potts model [22], in which domain walls can
coalesce as well (coalescence is a process where two domain
walls coalesce into one, of the kind g|g21g3 — ¢2921g3). In
our mapping domain walls cannot coalesce, because of the
exclusion between particles of the same species.

A domain with a given value of ¢ = i, say, is called an i-
domain. A 2-domain can be annihilated only if it has 1-domains
on both sides, or 3-domains on both sides. Starting from the
i.c. Eq. (17), none of the 2-domains can be annihilated at the
first time-step due to exclusion. Thinking back to the kinetic
symmetry-broken Ising model, we can thus assign a local value
of « = 0 to a 2-domain lying between a 1- and a 3-domain,
and o = 1 to one with same domains on either side. Starting
from Eq. (17), one sees that 1-domains and 3-domains will
always be surrounded by 2-domains on both sides, and hence
have = 1. Domain walls of the form 3|1 and 1|3 are never
formed.

Now we can map the evolution of domains walls in this
system to that of a corresponding Ising configuration with
kinetic symmetry breaking, by labeling 1- and 3- domains as
“+” domains and 2-domains as “—” domains, now allowed
to have a local values of «. The value of « for the 2-domains
changes on merging according to the rule o™" = (a" + )
mod (2).

We now argue that the value of @&, which starts at O,
converges at long times to 1/2, never becoming 1. At large
times, the system is dominated by large 2-domains, punctuated
by small 1- and 3-domains which rarely merge. The long-time
value of & is given by the steady-state value of « of the merging
process o) + o — (o] + o) mod (2). In this steady-state,
o = 0 and o = 1 are equally likely, giving o, .o, = 1/2.

Since this < 1, the results from the previous section apply,
and we expect that

N(t) 2n

C
= bty
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The decay in the n = 2 case thus has a logarithmic speed-up
compared to the decay in the n = 1 case.

Now consider the i.c. with n = 3. Mapping to a four-
state model, the domain walls map to particle type as
qgllg+1)— A and ¢q|(gq —1) - B, and hence the i.c.
AAABBBAAABBB... becomes

A AABBBAAABBB
1121314131211121314|3]2]1.... (22)

The evolution rules are as in Egs. (19) and (20), with annihi-
lation but no coalescence of domain walls.

We note a symmetry between the evolution of domains with
qg =i and g =5 — i, that is, g values which are at the same
“depth” inside A or B blocks in Eq. (22). The values of the
annihilation rate « for various types of domains are calculated
as follows: The 1- and 4-domains can always be annihilated if
they reach unit length, giving &; = o4 = 1, whereas for the 2-
and 3-domains o, = a3 = o < 1 ast — oo.

Forgetting for the moment the distinction between 2- and 3-

domains, we assign them both the label “—,” and assign 1- and
4-domains the label “+.” After this labeling, the i.c. becomes
H= =+ ==l ==+ (23)

where only domain walls of types 1|2, 2|1, 3|4, and 4|3 are
visible. Call N(¢) the density of these domain walls. Then, for
large times, N;(¢) is upper-bounded by the kinetic-symmetry-
broken Glauber decay,

Ni(t) < 0@~ 2 [In()]1 ™). 24)

Call N,(t) the density of domain walls of the types 2|3 and 3|2.
The 2- and 3-domains coarsen within the large “— domains
in the labeling above. The average size of a “—" domain grows
with time as ¢#!/?In(7). The 2- and 3-domains have the same
value of «, and thus there is no kinetic symmetry breaking
between them, and the average sizes of 2- and 3-domains thus
grow diffusively, as ¢'/2. (Therefore, each “—" domain of size
~ t1/2[In(1)] contains a large number of 2- and 3-domains, and
this picture is consistent.) We then get N»(t) ~ ¢/+/t. The total
number of domain walls decays as

N(t) = Ni(t) + Na(t) ~ 721+ O([In()] ™M)} (25)

IV. GENERALIZATION TO LONGER BLOCKS

We now proceed to longer blocks (n > 3), for which there
is no simple relabeling scheme which allows one to directly
use results from the Kinetic symmetry-broken Ising model.
However, we use the insights of the preceding section to
determine the form of the final uniform state; more precisely,
whether it is always a particular g value or if it is two g
values with equal probability, and then construct a mapping
to the kinetic symmetry-broken Ising dynamics that is exact as
t — o00. This allows us to determine the dominant term in the
long-time decay.
Let us consider the n = 4 i.c. In the g-state picture,
AAAABBBBAAAABGBIBSB

11213141514131211]2]314|51413]2]1.... (26)
We note that (1) there is a symmetry between the evolution for
q and (6 — g)-type domains, and (2) the 1- and 5-type domains
will get annihilated quickly, the average distance between them
growing at least as fast as ¢'/?In(¢).

We proceed to the determination of the asymptotic behavior
of N(t) by showing three things:

(1) The final state is almost always the uniform state with
q =3.

(2) The annihilation reaction rate for the 3-domains o3
approaches the value 1/2 as t — oo.

(3) The number of 2- and 4-domains is of the same
order as the number of 5- and 1-domains, upper bounded by
¢/[/1In(b1)].

Let us start with (1). We argue by contradiction. The final
state cannot be ¢ = 1 and ¢ = 5, and if it is ¢ = 4, by sym-
metry, it should be ¢ = 2 with an equal probability, and hence
the system at large times should be in a state with coarsening
4-type and 2-type domains of typical size ~ t!'/? (this is
the Leyvraz and Redner picture again). However, 4-type and
2-type domains cannot be in contact due to the un-eliminable
3-domains between them. However, the 2- and 4-domains can
be eliminated by these 3-domains surrounding them on both
sides, and hence the proposed late-time configurations are
unstable to takeover by the 3-domains. Hence the final state is
auniform g = 3 state with probability 1 in the thermodynamic
limit.

The late-time state looks (schematically) like this:

B A A A B B
33...333]222(33...33]4444|55 (44 ...4]33.... (27)

There are large 3-type domains, tiny and rare 1- and 5-
domains, and 2- and 4-domains of a characteristic size as yet
undetermined. The density of 1- and 5-type domains, call it
n(t), decays at least as fast as 1/[¢'/?In(¢)]. Denote the density
of 2- and 4-type domains as n,(¢) and that of 3-type domains
as ns(t).

To show (2), namely that the value of @3 approaches 1/2
for large times, we can apply the same reasoning as in Sec. 111,
namely that it is given by the steady-state value of the process
(a?ld + agld) mod (2) — o™V,

We proceed to (3). We have two types of 2-domains: those
with @ = 0 have a 3-domain on one side and a 1-domain on
the other, while those with « = 1 have 3-domains on both
sides. (We can neglect the number of 2-domains with 1- or
5-domains on both sides, as that would require annihilation of
3-domains in between.) The same goes for 4-domains, with the
result that oy, = oy < 1 ast — o0o. Assuming the independent
interval approximation, oy = 1 — n(¢)/n,(¢). Now consider
two cases:

(1) @y — 1 as t — oo. This means that n;/n, — 0, and
hence 1- and 5-domains can be neglected. Then we have a
system with domains of types 2, 3, and 4, where or; = g = 1
and o3 = 1/2. This is the same as the eventual state for the
i.c. AABBAABB. .., with the relabelling of g values 1 — 2,
2—3,and 3 — 4.

(2) In the long-time limit, o, is strictly less than 1.
Since oy = 1 — n(t)/n,(t), we get that ny(t) = 171072n1(t) =

Hence, in both cases, the tptal number of domains walls
N(t) = 4n(t) + 2ny(t) = m

A similar procedure can be followed for n > 5 i.c.’s, to
derive the following:

(a) For even n, there is a definite final state in the thermo-
dynamic limit, the one with ¢ = n/2 + 1. As a result, at large
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FIG. 1. Aplotof 1/[N(t)/t] (arbitrary units) against In(¢), which
asymptotes to either a straight line with a positive slope (even n) or to
aconstant (odd n). A pure power law decay is plotted for comparison;
note the upward curvature of the line. For a lattice size L = 2 x 107,
averaged over 500 realizations.

enough times domains with this value of ¢ have @ = 1/2, while
the density of other types of domains ~ #~'/?[In(¢)]~!. Hence

(b) For odd n, the final state can be the uniform states g =
[n/24 1] or ¢ = [n/2 + 17 with equal probability. Hence
N(t) ~ t~'/2 for large ¢.

V. FIRST-PASSAGE MONTE CARLO SIMULATIONS

We used a first-passage Monte Carlo algorithm [23] to
run fast simulations of the decay starting from various initial
conditions. Due to the dynamic nature of the algorithm, we
could go to very large times and use large lattice sizes. We
used the lattice variant of the method, described in [24].

Figure 1 shows the results of these simulations, starting from
initial conditions with block lengths n = 1ton = 5 on systems
with L = 2 x 107, and periodic boundary conditions. We plot
N(t)+/(t)~" versus In(t), showing that it asymptotes to either
a constant or to a straight line on the logarithmic scale. We
also studied the long-time behavior (data not shown) of « for
various g-domains for n = 2,3,4, and the results are consistent
with the discussion in the previous sections.

VI. MIXED INITIAL CONDITIONS

Define a “motif” as a finite-length string made of A’s, B’s
and empty sites such that the number of A’s is equal to the
number of B’s. Examples of motifs are the elementary blocks
we have considered so far, viz., AB, AAB B, etc. In this section,
we briefly consider first-passage MC simulations starting from
an initial configuration which is periodic and composed of the
two motifs AB and AAB B, in differing ratios.

The notation m:n denotes an initial configuration made by
the repetition of the block (AB)"(AABB)" to fill the lattice.
Figure 2 shows the result for studies done for various values of
r = m/n,onalattice of size L = 107. One can see a crossover
from the behavior at » = 0, which is N(¢) ~ t~'/?[In(z)] ", to
the behavioratr = oo, whichisapure N(¢) ~ t~!/? decay. The
crossover time seems to grow larger for smaller r, but it seems

0:1

0.16} g

0.15F 12 ]
i
I 014} g
—
@ 1:1

0.13} g
= 3:2
SN— .

0.09 Il L L
0 12 14

8
In(t)

FIG. 2. A plot of 1/[N(t)+/t] (arbitrary units) against In(¢), for
initial conditions made of the units (AB)"(AA B B)", denoted by m:n.
The results exhibit a crossover between intermediate-time ¢ ~'/? /In()
behavior and eventual t~!/? behavior, with crossover time depending
on the ratio n/m. For a lattice size L = 107, averaged over 100
realizations.

that for long times the behavior for any > 0 will eventually
cross over to a t~!/? behavior, for sufficiently large lattices.
The behavior of more complicated periodic combinations of
motifs, and indeed, of random combinations of motifs, is at
present unknown. However, based on the above simulations,
we expect the existence of two decay regimes even in these
cases.

Odor and Meynhard [12] studied the decay for a system
which can be mapped to two-species annihilation, starting from
initial conditions which can be mapped to a random mixtures
of AABB and AB blocks, in our notation. As they varied the
proportions of different types of blocks in the i.c., they saw a
change in the decay exponent, from about 0.53 to about 0.56.
This is consistent with the crossover phenomenon we observed
above, which especially for the relatively small system sizes
studied (L = 24000) can look like a slowly varying exponent
slightly different from 0.5. Lee’s results [25] for the “natural”
initial conditions, which show an effective exponent different
from and lying between the ones he observed for n even and n
odd, can also be explained in this fashion.

VII. CONCLUSIONS

We have shown, using the independent interval approxi-
mation, and through a mapping to a g-state model, that the
effect of exclusion in A-B annihilation in one dimension
is to induce kinetic symmetry breaking in the coarsening
process. In particular, we studied initial conditions of the type
A"B"A"B" ..., showing that, surprisingly, the eventual decay
depends on the parity of n. The number of surviving particles
at large times decays as ¢~!/? for n odd, and as ¢ ~'/?[In(z)]~!
for n even. We also performed first-passage Monte Carlo
simulations to verify our claims, and studied the behavior in
a system with a mixture of two types of blocks, showing two
time regimes.

These results also explain the results of Lee [25] for the
conserved lattice gas (CLG) in 1D, which maps to the A-B
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annihilation problem. The CLG consists of particles with an
exclusion interaction on a 1D lattice, and the dynamics maps
to the A-B annihilation problem (with stationary B particles)
with the configurations mapping to each other as 0"*! — B"
and 01"*! — ¢ A", where ¢ denotes an empty site. The density
o = 0.5 corresponds to equal densities of A and B particles.
o = 0.5 is also the critical density of the model, and hence the
decay exponent for two-species annihilation gives the critical
decay exponents for activity for the CLG. Based on the results
of this paper, one can say that, for initial conditions of the
form 1"+10"*+!, one expects a pure power law with exponent
—0.5 for odd n but a logarithmic correction for even n. Lee’s
measurements [25] on periodic configurations are consistent
with this interpretation. Lee also studied the decay for “natural”
initial conditions, which can be interpreted to be a mixture
of blocks 0011 and 000111. A deviation from the expected
exponent 0.5 was also found for this case, lying between the
values found for odd »n and even n, which is consistent with
the long-time crossover described in Sec. VI of this paper for
mixtures of AB and AAB B blocks.

We note that the CLG maps exactly to the A-B annihilation
problem with stationary B particles. Thus, the analysis of the
critical decay in the CLG within the ITA framework would

be the same as ours. However, our numerical results do not
carry over exactly, but only indicate that a reexamination of
the critical decay in the CLG [26,27] is necessary.

These results are also important in light of recent controver-
sies about the effect of initial conditions on critical relaxation
in 1D absorbing phase transitions [28,29], of which the CLG is
the simplest solvable example. Kwon and Kim [30] found thata
domain structure similar to that of the A B annihilation process
can be found in the Manna sandpile starting from random initial
conditions. Whether insights from the A B annihilation process
can explain the different exponents found for natural, random,
and regular initial conditions remains to be explored.

One can also consider multispecies reactions in 1D [4] with
periodic initial conditions and same-species exclusion. Perhaps
the mapping to a g-state model can be extended to these cases.
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