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We investigate the long-time behavior of a passive particle evolving in a one-dimensional diffusive random
environment, with diffusion constant D. We consider two cases: (a) The particle is pulled forward by a small
external constant force and (b) there is no systematic bias. Theoretical arguments and numerical simulations
provide evidence that the particle is eventually trapped by the environment. This is diagnosed in two ways: The
asymptotic speed of the particle scales quadratically with the external force as it goes to zero, and the fluctuations
scale diffusively in the unbiased environment, up to possible logarithmic corrections in both cases. Moreover,
in the large D limit (homogenized regime), we find an important transient region giving rise to other, finite-size
scalings, and we describe the crossover to the true asymptotic behavior.
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I. INTRODUCTION

Extending the paradigms of statistical mechanics to the
study of active matter is part of the main issues in contemporary
theoretical physics [1,2]. Random walks in static or dynamical
random environments constitute a good case study to analyze
numerous out of equilibrium phenomena [3–7]. More specif-
ically, a variety of interesting behaviors can be observed for
particles advected by a viscous fluid; as it turns out, an initially
uniform density of passive particles may display aging, cluster-
ing, phase separation, and intermittency as time evolves [8–13].

In this paper we consider a passive particle driven by a
one-dimensional (d = 1) time-dependent potential fluctuating
diffusively (Edwards Wilkinson dynamics), as shown in Fig. 1.
This system is a good candidate to host the phenomena
mentioned above. Moreover, it is a rather natural set-up
to consider since diffusive fluctuations occur in all typical
extended systems that satisfy local equilibrium and have exten-
sive conserved quantities. However, predicting the long-time
behavior of the passive particle turns out to be very puzzling
in d = 1 [14–21] (in contrast to a lot of progress made for
divergent free fields in d � 2 [22–25]). Indeed, since time
correlations decay only as t−d/2, one expects memory effects
to play a dominant role in d = 1, but it is hard to decide what
their influence actually is.

Our study reveals that their role is to trap the particle:
Potential barriers confine it to a certain region of space for
a finite time, and the behavior of the particle is eventually
dominated by the dynamics of the barriers. For short times,
the mechanism is already visible on Fig. 1, while on longer
timescales, it is due to the low modes of the potential; see
Ref. [3] for the analogous phenomenology in a static environ-
ment. In order to satisfactorily check our understanding, we
consider two different set-ups and analyze them consistently.
First we analyze the differential mobility of the particle, i.e., its
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response to a small external force, and, second, we consider its
fluctuations in a unbiased environment. In equilibrium, these
two quantities are related through the celebrated Sutherland-
Einstein relation [26,27], while generalizations of this relation
to systems violating the detailed balance condition are actively
studied at the present time, see Refs. [28–38] as well as
Refs. [39,40]. Our findings indicate that the system is genuinely
out of equilibrium: The differential mobility is zero, because
the asymptotic velocity of the particle scales quadratically with
the applied force, while the fluctuations are normal (up to
possible logarithms).

An important aspect of the model is the presence of big
finite-size effects in the limit where the diffusion constant D

of the diffusive field grows large. In this regime, the trapping
only becomes effective for very small external forces or very
long times (depending on the considered set-up). This fact led
to the proposal of the existence of two distinct phases as a
function of D in Ref. [15]. We will show instead that there is a
single phase and we will describe quantitatively the cross-over
between a finite-size scaling region and the true asymptotic
region.

The paper is organized as follows. After a proper description
of the model in Sec. II, we introduce the main results of this
paper in Sec. III, together with some brief account of previous
studies. These results are summarized in Table I and are shown
by means of scaling arguments and numerics in Secs. IV–VI. A
heuristic theory connecting the behavior of fluctuations to the
differential mobility of the particle is developed in Sec. VII.
Finally Sec. VIII contains several technical results on a self-
consistent approximation introduced below, while the details
of our numerical scheme are gathered in Sec. IX.

II. MODEL

Let Xt be the position of the particle at time t . In the
overdamped regime, its evolution is governed by

Ẋt = λ[−∂xV (Xt,t) + F ], (1)
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V (x, t) − Fx
Ẋt

FIG. 1. Evolution of the passive particle in the potential V (x,t) −
Fx.

where λ is the mobility of the advected particle, V is the
fluctuating potential, and F is an external constant force. See
Fig. 1. In our context, the potential V may conveniently be
though of as a height function and measured in units of length.
It evolves in time according to an Edwards-Wilkinson type
dynamics [41],

∂tV (x,t) = D∂2
xV (x,t) + ξ (x,t), (2)

where D is the diffusion coefficient and where ξ is white noise
in time and smooth in space with finite correlation length �:

〈ξ (x,s)ξ (y,t)〉 = 2Dδ(t − s)e− (x−y)2

2�2 . (3)

Our aim in introducing the finite correlation length � is
to avoid any problem in understanding the dynamics on
short timescales, i.e., t � D−1�2. Moreover, we assume that
X0 = 0 and that the field −∂xV (x,t) is in equilibrium with
〈∂xV (x,t)〉 = 0, so that 〈Xt 〉 = 0 at F = 0 by symmetry.
Numerical results are expressed in units � = 1,D = 1. To
lighten the notations, we will also use these units throughout
the text and mostly drop � and D from our notations (except
in a few expressions where it may just help to keep them). The
control parameters are thus the mobility λ and the constant
force F .

The evolution equation (1) neglects the effect of thermal
fluctuations. Indeed, if the passive particle is at positive tem-
perature, then one should add some white noise term κdBt/dt

in Eq. (1), where κ is the molecular diffusivity. However, it is
cumbersome to have an extra parameter in the model and one
may reasonably conjecture that a finite molecular diffusivity
does not affect the long-time asymptotic behavior of the passive
particle, that is eventually dictated by the low modes of the the
potential.

A. Fourier representation

Both for the theoretical analysis and numerical implementa-
tions, it is convenient to express the force field −∂xV (x,t) by its
Fourier transform: Let p(·) be the standard normal distribution
(for concreteness) and

−∂xV (x,t) =
∫

R

dk
√

p(k) [Ak(t) eikx + c.c.], (4)

where Ak(t) are stationary, zero mean, Gaussian processes such
that 〈Ak(s)Ak′(t)〉 = 0 and

〈Ak(s)A∗
k′(t)〉 = 1

2δ(k − k′)e−k2|t−s|. (5)

One can readily recover Eqs. (2) and (3) from this repre-
sentation, observing that the processes Ak(t) defined by the
correlation (5) are independent complex Ornstein-Uhlenbeck

processes obeying the evolution equation

dAk(t)

dt
= −k2Ak(t) + |k|dBk(t)

dt
, (6)

where Bk(t) are independent complex Brownian motions:
Bk(t) = 1√

2
[B1

k (t) + iB2
k (t)], with B1

k (t) and B2
k (t) indepen-

dent real Brownian motions.
Our numerical scheme is described in details in Sec. IX,

but it may be worth to mention here that it uses a simple
discretization of the evolution equation (1) with −∂xV (x,t)
given by Eq. (4). In Eq. (4), the integral is replaced by a sum
over a finite number of modes. Since one expects the low
modes to play the crucial role in determining the behavior of
the particle, not all modes are sampled equally: The resolution
becomes ever finer as k → 0. With this way of doing, we are
able to reach significantly larger times than in Refs. [15,16].

B. Lattice models

Lattice versions of the evolution equation (1) have been
considered both in the probabilist community [16–20] and
in numerical studies, e.g., Refs. [12,13,15]. Since our results
do likely not depend on the specific modeling, we believe
that it may be of some interest to make here some explicit
“dictionary” between our set-up and a lattice model as in
Refs. [18].

On the integer lattice Z, the correlation length � = 1
featuring in Eq. (3) corresponds simply to the lattice spacing.
As a very simple choice, one may require that the force field
−∂xV (x,t) = −[V (x + 1,t) − V (x,t)] takes only the values
±1, and that the time evolution of V is governed by the
so-called corner flip dynamics:

V (x,t + dt) − V (x,t)

= [V (x − 1,t) − 2V (x,t) + V (x + 1,t)]dND(t),

where ND(t) is a Poisson point process with rate D. In this
case, the evolution of −∂xV (x,t) can be mapped to the simple
exclusion process, see, e.g., Ref. [42], by identifying η(x,t) :=
[−∂xV (x,t) + 1]/2 with an empty site if η(x,t) = 0 and with
an occupied site if η(x,t) = 1. The simple exclusion process
is at equilibrium at a density ρ = 〈η(x,t)〉 = 0.5 + F for 0 �
F � 0.5. The passive particle is usually referred to as a random
walker in this context, and evolves according to the following
rule: It jumps to the right if it sits on top of an occupied site
and to the left if it sits on a vacant site, with constant jump
rate λ:

Xt+dt − Xt = (δ(η(Xt,t) = 1) − δ(η(Xt,t) = 0))dMλ(t),

where Mλ(t) is a Poisson point process with rate λ.

III. RESULTS

The fluctuations of the passive particle for analogous or
even identical set-ups have been studied in Refs. [12,14–
16]. In Ref. [14], the authors predict that 〈X2

t 〉 crosses over
between a superdiffusive behavior λ2t3/2 for t � λ−4 to an
almost diffusive behavior t log t for t � λ−4. This prediction is,
however, not directly backed up by numerical simulations. In
Ref. [15], a transition is proposed as a function ofλ: For smallλ,
a self-consistent approximation (SCA) predicts 〈X2

t 〉 ∼ (λt)4/3
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TABLE I. Behavior of the walker, up to possible logarithmic
corrections, for λ � 1.

T (F ) T (F ) ∼ F −4

v(F ) F > λ : v(F ) ∼ λF F < λ : v(F ) ∼ F 2

〈X2
t 〉 t < λ−4 : 〈X2

t 〉 ∼ λ2t3/2 t > λ−4 : 〈X2
t 〉 ∼ t

at long times, while for larger λ, the particle gets trapped by the
diffusive field and becomes itself diffusive. We review the SCA
in Sec. VIII and a close look reveals that it also predicts the
behavior 〈X2

t 〉 ∼ λ2t3/2 for t � λ−4, see Eqs. (24) and (25).
The approximations in Refs. [14] and [15] for λ small are
of a similar nature, see Eqs. (27) and (28) below, and it is
not obvious to decide whether any of them is correct. The
theoretical predictions of Ref. [15] are validated numerically
in the same paper, but the possibility is raised that the (λt)4/3

regime at small λ is actually a finite-size effect and that the
particle becomes eventually always diffusive. In Ref. [12], it
is claimed that this is indeed what happens. This conclusion
is, however, based on numerics at a single value of λ, and no
hint is given that the transition does not actually occur at some
lower value. Finally, in Ref. [16], a bunch of different exponent
for 〈X2

t 〉 are observed in numerical experiments, but possible
finite-size effects are not analyzed.

Our study confirms the original prediction by Ref. [14],
though we make no clear stand on the logarithmic correction
in the regime t � λ−4. Indeed, our data are compatible with
a behavior of the type t(log t)δ for some 0 � δ < 1, but we
are not able to extract a value for δ and it is not even obvious
whether δ > 0 is a transient effect or not. See Fig. 4. In addition,
we study the behavior of the walker in the presence of the
external force F > 0 in the limit F → 0. When F > 0, we
expect the particle to drift and eventually escape to the strong
memory effects of the environment. For this reason, we also
expect that the full system, consisting of the particle and its
environment, will reach a nonequilibrium stationary states
(NESS). We first analyze the time T (F ) needed for the system
to reach a NESS and find that this time diverges as F → 0. As
a consequence, the system should never reach stationarity at
F = 0, which is as such a good indication that aging or trapping
effects are at play. Second, we investigate the behavior of the
asymptotic velocity of the walker,

v(F ) = lim
t→∞ Xt/t for given F > 0, (7)

in the limit F → 0. Let us notice that mean-field-like approx-
imations as in Ref. [14] or Ref. [15] in the small λ regime,
would all predict the behavior v(F ) ∼ λF . Instead, we find
that this scaling is only valid for F � λ and then crosses over
to the behavior v(F ) ∼ F 2.

All these conclusions are based on scaling arguments and
numerical simulations and are summarized in Table I. Two
remarks are in order. First, the transient behavior (left column)
can only be neatly observed forλ significantly smaller than 1, as
a consequence of the obvious ballistic behavior of the particle
for t � 1. Second, we notice that in the true asymptotic regime
(right column), the behavior of the particle does not depend
anymore on the value of λ. This is one of the signs of the
trapping by the environment.

Let us finally comment on a recent result in Ref. [43]: The
variance of a tracer a particle driven by a constant force and
evolving in a quasi-one-dimensional diffusive environment is
found to crossover from a superdiffusive t3/2 to a diffusive
behavior. The crossover time is there of the order of the time
needed for the tracer particle to reach a new carrier (hole). After
this time, its increments become practically independent, since
the slow on-site decay of the correlations of the environment
becomes irrelevant thanks to the drift, see, e.g., Ref. [18]
for a mathematical study of a similar phenomenology. This
results in a diffusive behavior. It seems thus that rater different
mechanisms are at play in Ref. [43] and that the analogy with
our results is mostly a coincidence.

IV. TIME TO STATIONARITY

Let us assume that F > 0 and let us estimate the time T (F )
needed for the particle to reach a stationary state, i.e., the time
after which the average of any local observable, in a frame
moving with the particle, converges to some stationary value.
As is by now well documented in the mathematical literature,
in the case where the environment is itself able to relax to
equilibrium in a finite time, T (F ) can be estimated, or at least
upper bounded, by this time itself, see, e.g., Ref. [44] and
references therein. This does not apply as such in our case
since the dynamics defined by Eq. (2) is diffusive and does not
converge to equilibrium in a finite time, due to the presence
of the low modes (k ∼ 0) in Eq. (4) that relax in a time of
order 1/k2, see Eq. (5). The point is, however, that the force
F provides an effective infrared cut off for all modes with
|k| 
 F 2. Indeed, the contribution of these modes corresponds
roughly to the smearing of the field −∂xV (x,t) over boxes
with length of order L � 1/F 2. Since the amplitude of this
averaged field is significantly smaller than F , its only effect is
a slight modulation of the average velocity. With this cutoff,
the time for stationarity of the field is of order F−4, and we
conclude that

T (F ) ∼ F−4 as F → 0 (8)

for generic observables.
It still can be that some observables converge faster. Of

particular interest for us is to know the time needed for the
particle to reach its asymptotic speed v(F ) defined in Eq. (7).
To probe this numerically, let us measure how fast v(F,t) :=
〈Xt 〉/t converges to v(F ) as a function of F for various values
of the parameter λ. For given F , let us define a rescaled time
0 � τ � 1 via t = KF−4τ for some large constant K , and let
us compare the curves

W(τ ) = 〈XKF−4τ 〉/τ
〈XKF−41〉/1

for various F . They collapse if the scaling (8) is valid.
Numerical results are shown on Fig. 2, with K = 210 in

the definition of the rescaled time τ (such a large prefactor
is needed to reach values that are stationary in good ap-
proximation at τ = 1). The scaling (8) is manifestly accurate
for λ = 1, λ = 0.5 (top panels). For λ = 2−3, λ = 2−4 (lower
panels), the scaling is only accurate for the smallest values of
F . The fact that the convergence is faster than expected for
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FIG. 2. Time to stationarity: W (τ ) for various values of F and λ.
Average over 1000 realizations at least.

the large values of F may be interpreted as the fact that the
system is initially in a state close to the stationary state. It
is indeed reasonable that these two states are similar to each
other in the homogenized regime λ < F discussed in more
details in the next section. The important point is thus that we
observe a reasonably good collapse of the data for F < λ in
Fig. 2.

V. DRIFT

Let us now investigate the behavior of the asymptotic
velocity v(F ) in the limit F → 0. The most naive expectation
from Eq. (1) is that v(F ) ∼ λF . This scaling is plotted on
the upper panel of Fig. 3, where one sees that it is only
approximately correct for F/λ > 1. Since our main interest
is in the behavior of v(F ) as F → 0 at a fixed value of λ,
we seek thus for another scaling. For this, we notice that the
modes with |k| ∼ F−2 in Eq. (4) have a strong tapping effect:
The amplitude of this set of modes is comparable to F , its
relaxation time is of order F−4, and it varies in space on a
scale of order F−2. Thus, if the field −∂xV (x,t) would consist
only of them, we would conclude right away that the velocity
v(F ) of the particle must be of order F−2/F−4 = F 2. Since
we identify no stronger source of slowing down, we come to
the proposal v(F ) ∼ F−2. This guess is rough and ignores the
possible effects of fluctuations, stemming from all modes with
momentum higher thanF−2. Nevertheless, the data in the lower
panel on Fig. 3 show that this is a reasonably good scaling, up
to possible logarithmic-like corrections.

In addition, this simple way of thinking yields the crossover
value λc ∼ F between the two regimes represented on Fig. 3.
Indeed, all trapping effects turn out to be prohibited for λ < F .
The reason for this is that the modes that could trap the particle
relax too fast as compared to the time needed for the particle
to get trapped. Let us illustrate this with the set of modes with
|k| ∼ F−2. As we showed above, trapping due to these modes
takes place on a length scale of order F−2. But the time for
the particle to travel such a distance [if the field −∂xV (x,t)
would consist only of these modes] is at least (λF )−1F−2 and,
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1
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0
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1

v(F )
λF

v(F )
F 2

log2(F/λ)

λ = 2−2λ = 2−1 λ = 2−3 λ = 2−4λ = 1

FIG. 3. Drift: v(F )/λF (upper panel) and v(F )/F 2 (lower panel)
as a function of log2(F/λ) for various values of λ. v(F ) is approxi-
mated by 〈Xt(F )〉/t(F ) with t(F ) = 210F −4 for F = 2−1, . . . ,2−5 (see
the discussion on the time to stationarity), while slightly long times
are taken for F = 20, . . . ,23 (these points are obviously not the most
relevant to determine the asymptotic F → 0). Average over 1000
realizations at least.

in the regime λ < F , this is clearly larger than the relaxation
time F−4. This reasoning can be repeated for higher modes as
well (that could potentially also trap the particle though less
strongly) and yields the same conclusion (the set of modes with
|k| < F−2 has an amplitude smaller than F and cannot trap the
particle).

VI. FLUCTUATIONS

Let us now set F = 0 and study the behavior of 〈X2
t 〉 as

t → ∞. The behavior 〈X2
t 〉 ∼ λ2t3/2 is best understood if one

approximates −∂xV (Xt,t) by −∂xV (0,t) in Eq. (1), since this
scaling follows then from an explicit computation. While it
is clear that this approximation must be reasonable at small
enough λ, it is less obvious that it is still valid up to t ∼ λ−4.
The kind of reasonings in Refs. [14,15] furnish eventually the
shortest way to get there, see also Eqs. (24) and (25) below for
an explicit computation. Moreover, in a similar way to what we
did in the previous section for the drift, we may estimate that
t ∼ λ−4 corresponds to the minimal time for trapping effects
to appear. Indeed, the particle may be trapped by the modes of
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FIG. 4. Fluctuations: 〈X2
t 〉/λ2t3/2 (upper panel), 〈X2

t 〉/t (lower
panel), and 〈X2

t 〉/(λt)4/3 (inset) as a function of log2(λ4t) for various
values of λ. Dotted line in the upper panel: See the main text. Average
over 8000 realizations at least.

order k if the relaxation time of these modes (1/k2) is longer
than the time needed for them to bring the particle over a
distance of the order of one wavelength [k−1(k1/2λ)−1]. Thus
only modes with k � λ2 do provide trapping, and this effect
needs a time at least λ−4 to be effective.

The scaling 〈X2
t 〉 ∼ λ2t3/2 is shown on the upper panel of

Fig. 4. As we see, the curves do not properly collapse for t <

λ−4. The reason for this is to be found in the obvious transient
ballistic behavior of the passive particle. To check this, we have
plotted 〈X2

t 〉/λ2t3/2 for −∂xV (Xt,t) replaced by −∂xV (0,t) in
Eq. (1) atλ = 2−5 (the result is clearly independent ofλ and this
parameter only enters since the data are plotted as a function of
the rescaled time λ4t), see the dotted line on the upper panel on
Fig. 4. If we could consider much smaller values of λ and wait
long enough, then we would expect all curves to eventually
reach a plateau at a value close to 2.5.

The scaling 〈X2
t 〉/t is shown on the lower panel of Fig. 4.

To logarithmic-like corrections, this scaling seems accurate
in the regime t > λ−4. Finally, in the inset of Fig. 4, we
consider the scaling 〈X2

t 〉/(λt)4/3 predicted in Ref. [15]. As
we see, it is only accurate near the crossover point t ∼ λ−4,
where it coincides with the scalings λ2t3/2 and t . We conclude
thus that this scaling is never genuinely realized in this
system.

VII. RELATING DRIFT TO FLUCTUATIONS

We finally provide a heuristic scheme relating the behaviors
of drift and fluctuations. This leads to the conclusion that
trapping dominates the true asymptotic regime, as observed
in the numerics.

As a first step, we establish a phenomenological relation
between the exponent α of the drift and the exponent β of the
fluctuations, i.e.,

v(F ) ∼ Fα as F → 0, 〈X2
t 〉 ∼ tβ as t → ∞.

Assuming a given value for α (we take 1 � α � 2 as suggested
by the data on Fig. 3), we replace the evolution equation (1) at
F = 0 by Ẋt = λϕ(Xt,t), where ϕ is an effective force field
defined by

ϕ(x,t) =
∫

R

dk |k| α−1
2

√
p(k) (Ak(t) eikx + c.c.)

with Ak(t) as in (5). The introduction of the weight factor
|k| α−1

2 with respect to (4) is such that the amplitude of the
integral over |k| � F 2 for any F > 0 is of order Fα as F → 0
instead of being of order F for −∂xV (x,t) defined by (4). This
is consistent: If the response to an external force scales in a
certain way as this force goes to zero, then the response to the
lowest modes of the fluctuating field should scale the same way.
Once the field −∂xV (x,t) has been replaced by the effective
field ϕ(x,t), one may assume that all trapping effects have been
taken into account and one may apply the SCA, reviewed and
generalized in the next section, to determine the fluctuations
of Xt . Straightforward computations yields

β = 4/(2 + α), (9)

see Eqs. (17) and (18) below.
In a second step we determine the values of α and β. Let

T be some arbitrary large time, and let us decompose ϕ into
an almost static part and a fluctuating part, ϕ(x,t) = ϕsta(x) +
ϕflu(x,t), according to

ϕ(x,t) =
∫

|k|2�1/T

dk(. . . ) +
∫

|k|2>1/T

dk(. . . ).

In the absence of ϕflu(x,t) the particle would move to the
nearest stable fixed point of ϕsta(x), i.e., a point x∗ such that
ϕsta(x∗) = 0 and (dϕsta/dx)(x∗) < 0. To evaluate the effect of
ϕflu(x,t) we proceed again through the SCA; due to the in-
frared cutoff, fluctuations are always diffusive with a diffusion
constant scaling as T (2−α)/4, see Eq. (19) below. Hence, in
the vicinity of a stable fixed point x∗, the dynamics can be
effectively described by the overdamped Ornstein-Uhlenbeck
equation

Ẏt = −λT − 2+α
4 Yt + λ

1
2 T

2−α
8 dBt/dt,

with Yt = Xt − x∗, as long as Yt remains smaller than T 1/2.
The processYt reaches a stationary state after some time τ 
 T

for 1 � α < 2 (since τ ∼ λ−1T
2+α

4 ), and remarkably this state
is characterized by a mean-square displacement equal to T for
any value of α. Thus Xt should not be trapped on a length
scale T 1/2 (at least if α < 2) but on a slightly longer length
scale by the same mechanism as a random walker is trapped
in a static environment [3]. Indeed Xt will be trapped for a
time of order ecL2/T if ϕsta(x) keeps a fixed sign for length L.

042116-5



FRANÇOIS HUVENEERS PHYSICAL REVIEW E 97, 042116 (2018)

Hence, considering an approximate mapping on the model in
Ref. [3] for a lattice with spacing T 1/2 and hopping time of the
walker τ , we conclude that XT ∼ T 1/2(log T )2 if α < 2 (the
logarithmic correction is not present if α = 2). In all cases, this
leads to the exponent β = 1 and hence α = 2.

VIII. SELF-CONSISTENT APPROXIMATION

We review and generalize the SCA introduced in Ref. [15]
yielding predictions for the average velocity and the fluctu-
ations of the passive particle. Let us rewrite the evolution
equation (1) in integral form as

Xt = λ

∫ t

0
ds [−∂xV (Xs,s) + F ]. (10)

The basic idea is to replace the process Xt on the right-hand
side of (10) by an independent process Yt that simply “visits”
the environment in such a way that Xt and Yt have the
same probability distribution. More precisely, we look for two
processes (Xt )t�0 and (Yt )t�0 with the three following require-
ments: (a) the processes (Xt )t�0 and (Yt )t�0 have the same
probability distribution; (b) the process (Yt )t�0 is stochastically
independent of the environment, and hence of (Xt )t�0 (since
Xt depends deterministically on the environment); and (c) Xt

and Yt solve the equation

Xt = λ

∫ t

0
ds [−∂V (Ys,s) + F ] (11)

in distribution. The hope is that processes (Xt,Yt )t�0 satisfying
(a)–(c) can be found rather explicitly and that the probability
distribution of Xt solving (10) is qualitatively similar to the
distribution of Xt solving (11). Here we will not deal at all with
the second issue and we will solve (11) at the level of the first
and second moments through some Gaussian approximations
(that are arguably harmless). However, we will replace the
force field −∂xV (x,t) by some more general field ϕ(x,t), as
needed for the theory in Sec. VII.

A. Asymptotic speed

For any zero average field ϕ we get 〈Xt 〉 = λF t by taking
expectations in Eq. (11). Hence the SCA predicts always

v(F ) = λF. (12)

B. Fluctuations

Let us now assume F = 0 and let us study the second
moments of Xt . The generalized field ϕ(x,t) is defined by
Eq. (4) with now

〈Ak(s)A∗
k′(t)〉 = f (k)δ(k − k′)e−k2|t−s| (13)

instead of Eq. (5) for some function f (k). This expression
boils down obviously to Eq. (5) for f (k) = 1, hence ϕ(x,t) =
−∂xV (x,t) in this case. We will consider the more general
function

f (k) = χ (|k| � k0) |k|γ (14)

for some 0 � k0 
 1 and 0 � γ � 0.5, where χ (A) is the
indicator function of the set A. We will look for Xt and
Yt having stationary increments and we will compute both

〈X2
t 〉 in the leading order of the t → ∞ asymptotic, and the

correlations 〈ζ (0)ζ (t)〉, with

ζ (t) = ϕ(Yt ,t). (15)

Let us start by computing 〈X2
t 〉 in the large t limit, without

keeping track of constant prefactors:

〈X2
t 〉 = λ2

∫ t

0

∫ t

0
dsds ′ 〈ϕ(Ys,s)ϕ(Ys ′ ,s ′)〉

∼ λ2t

∫
R

dk p(k)f 2(k)
∫ t

0
dθ e−k2θ 〈cos kYθ 〉

∼ λ2t

∫ t

0
dθ

∫
R

dk e−k2( 1
2 +θ+〈X2

θ 〉)f 2(k). (16)

To get the second line, we used the assumption that (Yt )t�0

have stationary increments; to get the last line, we used that
p(z) is a standard normal distribution, that 〈X2

t 〉 = 〈Y 2
t 〉 by

assumption, and that (Yt )t�0 is Gaussian. This last assumption
is presumably not exact, but we expect that the results do not
depend qualitatively on this Gaussian approximation. Equation
(16) is the self-consistent equation solved by the variance 〈X2

t 〉.
For various values of k0 and γ in Eq. (14), Eq. (16) yields〈

X2
t

〉 ∼ (λt)
4

3+2γ , 0 � γ < 0.5, k0 = 0, (17)〈
X2

t

〉 ∼ λt(log t)
1
2 , γ = 0.5, k0 = 0, (18)

〈
X2

t

〉 ∼ k
γ− 1

2
0 λt, 0 � γ < 0.5, k0 > 0. (19)

Next, to compute the correlations 〈ζ (0)ζ (t)〉, we notice that

〈ζ (0)ζ (t)〉 = 〈ϕ(Y (0),0)ϕ(Y (t),t)〉
∼

∫
dk f 2(k)e−k2( 1

2 +t+〈X2
t 〉). (20)

Hence, from (17)–(19),

〈ζ (0)ζ (t)〉 ∼ 1

(λt)2 1+2γ

3+2γ

, 0 � γ < 0.5, k0 = 0, (21)

〈ζ (0)ζ (t)〉 ∼ 1

(λt)(log t)
1
2

, γ = 0.5, k0 = 0, (22)

〈ζ (0)ζ (t)〉 ∼ e−k
3
2 +γ

0 (λt)

(�k0)γ
2− 1

4 (λt)
1
2 +γ

,

0 � γ < 0.5, k0 > 0. (23)

C. Remark on transient behavior

The expressions (17)–(19) and (21)–(23) only hold in the
limit t → ∞ at fixed values of all other parameters and may
have to be modified on some transient timescales. For example,
to determine Eq. (17), we assumed that θ � 〈X2

θ 〉 in Eq. (16).
If this condition is violated, then we obtain instead〈

X2
t

〉 ∼ λ2t2− 1+γ

2 (24)

and in particular 〈X2
t 〉 ∼ λ2t3/2 for γ = 0. This expression

should replace Eq. (17) for all times short enough so that
t � 〈X2

t 〉 for 〈X2
t 〉 given by Eq. (24). For example, for γ = 0

we find that Eq. (24) holds as long as

t � λ−4. (25)

We recover thus the behavior announced in Sec. III.
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D. Remark on static environments

The same SCA can be applied to a random walker in a static
environment (D = 0) in d = 1:

Ẋt = −λ∂xV (Xt ) + κ
dBt

dt
(26)

(one needs here to take the molecular diffusivity κ to be finite in
order to avoid a trivial dynamics). If we reintroduce the param-
eters D,� in Eq. (17), then we find actually 〈X2

t 〉 ∼ �2(λt/�)4/3.
This expression is independent of D, and performing similar
computations for the evolution equation (26) yields again the
same expression. In this case, it is known that the SCA does
not predict the correct behavior for 〈X2

t 〉 at any value of λ.
Indeed the particle is always strongly subdiffusive: 〈X2

t 〉 scales
as (log t)4 as t → ∞, see Ref. [3].

E. Remark on Refs. [14] and [15]

It may be interesting to point out explicitly the difference
between the approximations made in Refs. [14] and [15] to
determine the asymptotic behavior of 〈X2

t 〉 as t → ∞ for
F = 0. In both cases, it is determined through a consistency
condition, but the correlator Cs,s ′ = 〈∂xV (Xs,s)∂xV (Xs ′ ,s ′)〉
is estimated in a slightly different way. Let us assume s ′ � s.
In Ref. [14], the approximation

Cs,s ′ ∼ 〈
∂xV

(〈
X2

s ′−s

〉1/2
,s ′ − s

)
∂xV (0,0)

〉
(27)

is used, while the slightly more refined approximation

Cs,s ′ ∼
∫

dy
e−y2/2〈X2

s′−s
〉√

2π〈X2
s ′−s〉

〈∂xV (y,s ′ − s)∂xV (0,0)〉. (28)

is made in Ref. [15], for s ′ − s > 0.

IX. NUMERICAL SCHEME

We describe the discretization of Eq. (1) and (4) and (5)
used in our numerics. Let us denote by �t the elementary time
step of the particle. Equation (1) becomes

Xt+�t = Xt + λ(�t)(−∂xV (Xt,t) + F ). (29)

The integral (4) defining −∂xV (x,t) becomes a sum

−∂xV (x,t) =
∑
k∈K

ρ(k)(Ak(t)eikx + c.c.), (30)

where K = {k1, . . . ,kN } is the set of accessible inverse wave-
length ki > 0 for 1 � i � N and where ρ(k) is the weight of
mode k. Given some 0 < δ < 1, we set

ki = δi−1, 1 � i � N, (31)

and the corresponding weights

ρ(ki) = (δi−1 − δi)
1
2 , 1 � i � N − 1, (32)

and ρ(kN ) = δ(N−1)/2.

Let us next see how the force field −∂xV (x,t) is updated.
Since every mode Ak(t) is an independent Ornstein-Uhlenbeck
process evolving according to Eq. (6), if one knows the value
of Ak(t) at some time t , one can write explicitly the value of
the real and imaginary part of Ak(t ′) at any time t ′ > t :

Ak(t ′) = e−k2(t ′−t)Ak(t)

+N
[

0,
1 − e−2k2(t ′−t)

4

]
(33)

and similarly for the imaginary part (real and imaginary part are
independent), where N (m,σ 2) denotes a normal distribution
with mean m and variance σ 2. In our scheme, there is no reason
to update the modes at times shorter than the elementary time
step �t of the particle. Moreover, it is reasonable to update the
low modes less frequently than the high modes, in such a way
that all modes are updated in essentially the same way each
time they are. The mode ki is updated once every

�ti = ⌈
Kk−2

i

⌉
�t (34)

for some K > 0, as

Ak(t + �ti) = e−Dk2
i �ti Ak(t)

+N
(

0,
1 − e−2Dk2

i �ti

4

)
, (35)

and similarly for the imaginary part. As we see, if not for
rounding off, the update is identical for all modes since
Dk2

i �ti � DK�t .
Since �t comes as (�t)λ in Eq. (29), one may fix �t = 1.

The parameters N, δ, and K are discretization parameters,
fixed to N = 130, δ = 0.9, and K = − log(0.5) � 0.7 in all
our experiments. With these values of N and δ, our results
should be safe of any periodicity or quasiperiodicity effects.
Moreover, for intermediate timescales, we checked that rea-
sonable variations of these parameters did not fundamentally
affect the results.

X. CONCLUSIONS

We have investigated the behavior of a passive particle
advected by a fluctuating surface in the Edwards-Wilkinson
universality class. Both the differential mobility and the fluc-
tuations have been analyzed with the same rationale. Our study
exhibits the existence of a finite-size scaling limit that differs
from the true asymptotic limit. The latter regime is dominated
by trapping effects of the environment.
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