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Strong-coupling statistical thermodynamics is formulated as the Hamiltonian dynamics of an observed system
interacting with another unobserved system (a bath). It is shown that the entropy production functional of stochastic
thermodynamics, defined as the log ratio of forward and backward system path probabilities, is in a one-to-one
relation with the log ratios of the joint initial conditions of the system and the bath. A version of strong-coupling
statistical thermodynamics where the system-bath interaction vanishes at the beginning and at the end of a process
is, as is also weak-coupling stochastic thermodynamics, related to the bath initially in equilibrium by itself. The
heat is then the change of bath energy over the process, and it is discussed when this heat is a functional of
the system history alone. The version of strong-coupling statistical thermodynamics introduced by Seifert and
Jarzynski is related to the bath initially in conditional equilibrium with respect to the system. This leads to heat
as another functional of the system history which needs to be determined by thermodynamic integration. The log
ratio of forward and backward system path probabilities in a stochastic process is finally related to log ratios of the
initial conditions of a combined system and bath. It is shown that the entropy production formulas of stochastic
processes under a general class of time reversals are given by the differences of bath energies in a larger underlying
Hamiltonian system. The paper highlights the centrality of time reversal in stochastic thermodynamics, also in
the case of strong coupling.
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I. INTRODUCTION

Stochastic thermodynamics describes mesoscopic systems
which can be controlled individually while also interacting
with a surrounding uncontrolled environment, here, for brevity,
called a bath. Work done on such systems is, as in classical
macroscopic thermodynamics, the total change in energy of
the system and the bath during a process. In a general setting
this could depend on the bath, but for conservative dynamics
where only the system Hamiltonian HS depends explicitly on
time, work defined this way reduces to

∫
∂tHSdt , a functional

of the system history only [1–4].
In its standard formulation, stochastic thermodynamics

assumes that the energy stored in the coupling between the
system and the bath is negligible compared to the system
energy. The internal energy change can then be taken to be the
change of system energy only, and as work is then a quantity
determined by the system history only. Heat can similarly be
taken to be the change of bath energy. By itself this is not
measurable on the system, but it can be deduced from the
system history in many standard models in nonequilibrium
physics, in particular, for master equations (for discrete states)
and for Langevin equations (for continuous states). Work, heat,
and change in internal energy then obey a trajectory-wise first
law where all three quantities are measurable functionals of
the system history. The theoretical and fundamental interest
in stochastic thermodynamics stems to a considerable extent
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from work and heat also satisfying exact equalities collectively
known as fluctuation relations [1,5].

“Strong coupling” refers to the setting where the variations
of the energy stored in the coupling between the system and
the bath are comparable to or greater than the variations in
system energy. It is not obvious if such a change should be
counted with the change of bath energy as heat, or if it should
be counted with the change of system energy as an internal
energy change, or if its variation should somehow be split
between the two. In the related quantum problem, internal
energy has in fact in different publications been assumed to
include none, half, and all of the system-bath interaction energy
(for a recent critical discussion, see Ref. [6]). It is therefore not
obvious that there is a meaningful trajectory-wise first law in
strong-coupling statistical thermodynamics, nor if there are
meaningful strong-coupling fluctuation relations. The issue
was first raised in Ref. [7] and answered for Jarzynski equality
(JE) soon after in Ref. [8], where this fluctuation relation was
restated as

〈e−βδW 〉eq = e−β�F̃S . (1)

In the above, β = 1
kBT

is the inverse temperature, δW is the
work, and the average is over realizations starting from a joint
equilibrium of the system and the bath. The left-hand side
is hence the same as in standard stochastic thermodynamics
and measurable on the system alone. The quantity F̃S on the
right-hand side is, on the other hand, a free energy at mean
force [8–14]. This depends on the equilibrium state of the
system and the bath together. It is not measurable on the system
alone, but has to be deduced by thermodynamic integration,
i.e., by following changes in F̃S as the temperature or other
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parameters are varied. Importantly, the right-hand side of (1),
however, does not depend on the protocol for changing the
system energy HS while the left-hand side does. This shows
that there is a meaningful strong-coupling JE, and also that
fluctuating strong-coupling work is a meaningful quantity.

Other strong-coupling fluctuation relations have been
slower to obtain. In fact, up to the recent proposals in
Refs. [15,16], there was no strong-coupling definition of total
entropy change in the combined system and bath that would
satisfy the integral fluctuation theorem (IFT),

〈e−�STOT〉 = 1. (2)

Heat would be related to such a quantity as δQ =
β(�STOT − �SS), where a general definition of �SS , the
entropy change of the system, has also been lacking. The
proposal of Ref. [15], to be discussed below, was criticized in
Ref. [17], where the authors reached the conclusion that open
system trajectories only specify work and not heat. Following
upon Refs. [15,16], two important steps were later taken in
Ref. [18] where the proposal was derived by a time-scale
separation argument (coarse graining), and in Ref. [19], where
it was related to a time reversal.

The first goal of this paper is to restate the issue of
strong-coupling thermodynamics as one of time reversals in
a combined system and bath. It will emerge that the entropy
production functional of stochastic thermodynamics is equal
to the log ratio of probabilities of the initial states in the larger
system. Although quite simple, this result was, to the author’s
knowledge, first explicitly stated quite recently [19].

Entropy production functionals as log ratios lead to fluc-
tuation relations as “tautologies” [20,21]. The second goal of
this paper is hence to show that different initial probabilities
and different time reversals of a system and a bath lead
to different entropy production functionals which all satisfy
fluctuation relations. This also gives a different perspective on
entropy production and time reversals in stochastic differential
systems, whenever these can be seen as the effective dynamics
of a system also interacting with a bath.

The paper is organized as follows. In Sec. II, I relate ratios of
forward and backward path probabilities of the system to initial
probability distributions of the combined system and bath in
the forward and backward process. In Sec. III, I discuss three
different examples. In the first, the system-bath interaction is
assumed to vanish at the beginning and the end of the process,
and the bath is initially in equilibrium, while the system state
can be arbitrary. This gives an additional term in the work, as
recently discussed at length in Ref. [22], but heat is simply the
change of bath energy, the same as in weak-coupling statistical
thermodynamics. The second example is a reformulation of the
approach of Refs. [15,16,18,19] where the bath is initially in
conditional equilibrium with respect to the system. The last
example is finally, as in the discussion around (1) above, of
the case when the system and the bath are assumed initially
jointly in equilibrium. This leads to formulas for heat which at
first glance look unfamiliar, but which can be reduced to the
case of conditional equilibria. In Sec. IV, I consider entropy
production and time general reversals in stochastic dynamics
when that dynamics results from an interaction with a bath,
and show that related entropy production functions equal the
differences of bath energies in units of kBT . In Sec. V, I discuss

and compare the results. Three Appendixes contain technical
details or material which is either standard or already presented
elsewhere.

II. FORWARD-BACKWARD PATH
PROBABILITIES AND BATHS

I will assume that the system and the bath together are one
big closed conservative system. The total Hamiltonian is hence

HTOT(x,y) = HS(x) + HI (x,y) + HB(y), (3)

where the three parts refer to the system, the interaction,
and the bath, respectively. The phase space of the system is
parametrized by x (coordinates and momenta of the system)
and the phase space of the bath is parametrized by y (coor-
dinates and momenta of the bath). I will assume either that
only HS depends explicitly on time, or that only HS and HI

depend explicitly on time. The initial state of the system and
the bath is ρi(xi,yi), where the subscript indicates “initial.”
Special classes will be considered later.

Let us assume that the system has D degrees of freedom
and the bath N degrees of freedom. Observing the system
at n = N

D
time points t1,t2, . . . ,tn should generically give the

same information as observing the bath at the initial time ti . We
may therefore postulate an equivalence between the probability
distribution ρi over initial conditions of the total system,
and the joint probability distribution P F (x0,x1, . . . ,xn) of the
coordinates and momenta of the system at time points ti =
t0,t1,t2, . . . ,tn = tf . By the law of conservation of probability,
this equivalence is

P F (x0,x1, . . . ,xn)
n∏

k=0

dxk = ρi(x
i,yi)dxidyi . (4)

The shift from xi,yi to x0,x1, . . . ,xn is a change of variables.
Equation (4) can therefore also be written

P F (x0,x1, . . . ,xn) = ρi(x
i,yi)

∣∣∣∣∣∂
({xk}nk=0

)
∂(xi,yi)

∣∣∣∣∣
−1

, (5)

where the second term is a Jacobian of the transformation.
Let us now consider a time-reversed process parametrized

by a reversed time t∗ = tf − t . This process starts at t∗i =
0 (t = tf ) and runs until t∗f = tf − ti (t = ti). The general
concept of time reversal in stochastic thermodynamics was
discussed in great detail by Chétrite and Gawȩdzki in Ref. [23].
I will assume that time reversal is implemented by a functional
I such that the time-reversed coordinates (x∗

t∗,y
∗
t∗) are I(xt ,yt )

and the time-reversed Hamiltonian H ∗
t∗ is IHt . Time-reversed

dynamics is thus Hamiltonian dynamics in the coordinates
(t∗,x∗

t∗,y
∗
t∗) with the Hamiltonian H ∗

t∗ (x∗
t∗,y

∗
t∗). The time-

reversal functional is assumed to have the following general
properties:

Involution: I is an involution on (x,y,H ), i.e., (I)2 = 1.
Separability: I acts separately on the system, i.e.,

[I(x,y)]system = Ix.
Volume preservation: I separately preserves system phase

space volume and bath phase space volume.
A main example which satisfies all the above is standard

time inversion of all the generalized coordinates asq∗
t∗ = qt and
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the generalized momenta as p∗
t∗ = −pt , and the Hamiltonian,

when there is no magnetic field, as H ∗
t∗ = Ht . When there is a

nonzero magnetic field, time reversal can be done by changing
the sign of the magnetic field [24], but other time reversals are
also possible [25].

Let the initial density of the time-reversed process be ρ∗
i .

Then the backward path probability satisfies

P B(x∗
0 , . . . ,x∗

n)
n∏

k=0

dx∗
k = ρ∗

i [(x∗)i ,(y∗)i]d(x∗)id(y∗)i . (6)

Combining (4) and (6), one has

P F (x0, . . . ,xn)

P B(x∗
0 , . . . ,x∗

n)
= ρi(xi,yi)

ρ∗
i [(x∗)i ,(y∗)i]

∣∣∣∣∣∣∣
∂

(
{x∗

k }nk=0

)
∂[(x∗)i ,(y∗)i ]

∂

(
{xk}nk=0

)
∂(xi ,yi )

∣∣∣∣∣∣∣. (7)

The ratio of Jacobians in (7) can be combined with ∂({x∗
k })

∂({xk}) and
∂[(x∗)i ,(y∗)i ]

∂(xf ,yf ) , both of which have an absolute value of one. The
absolute ratio of Jacobians in (7) therefore has the same value

as | ∂(xf ,yf )
(xi ,yi ) |−1

, which is one, because Hamiltonian dynamics
preserves the total phase space volume.

Instead of (7), we therefore have much more simply

P F (x0,x1, . . . ,xn)

P B(x∗
0 ,x∗

1 , . . . ,x∗
n)

= ρi(xi,yi)

ρ∗
i [(x∗)i ,(y∗)i]

. (8)

Equation (8) says that for classical conservative systems, path
probabilities are only consequences of uncertainties in the
initial conditions, and the ratios of path probabilities are given
by the ratios of probabilities of the initial conditions.

III. SCENARIOS FOR STRONG-COUPLING HEAT

In this section, I will give self-contained descriptions of
three scenarios. The scenarios differ only in what is assumed
for the initial states ρi(xi,yi) and ρi[(x∗)i ,(y∗)i]. The descrip-
tions end with a summary of what strong-coupling heat has
to be in each scenario to satisfy the integrated fluctuation
theorem (2).

A. Factorized equilibria with time-dependent
system-bath coupling

In standard stochastic thermodynamics the interaction be-
tween the system and the bath is weak and the bath is initially in
equilibrium by itself. The smallest deviation from this scenario
that allows one to treat also strong coupling is to assume that the
interaction is time dependent, and vanishing at the beginning
and the end of the process. As then both HS and HI depend
explicitly on time, the work is

�HTOT = δW (J ) + δWif =
∫

∂tHSdt +
∫

∂tHIdt. (9)

The first term in the above is, as in (1), the Jarzynski work, while
the second term was introduced in Ref. [22]. It is a functional
of the system history only for some models of the bath and
the system-bath interaction. In particular, it is, however, so
for the Zwanzig model (Caldeira-Leggett model), which leads
to Kramers-Langevin system dynamics [26–28]. A summary
with some extensions is given in Appendix A.

The factorized initial conditions, where the bath is in
equilibrium, are

ρi(x
i,yi) = ρi

S(xi)ρeq
B (yi), (10)

where the system state ρi
S(xi) can be anything and

ρ
eq
B (y) = e−β(HB (y)−FB ). (11)

There is no dependence on the interaction Hamiltonian in (11)
since that has been assumed to vanish at the beginning of the
process.

The initial conditions of the backwards process are analo-
gously

ρi[(x
∗)i ,(y∗)i] = ρ

i,∗
S [(x∗)i]ρeq

B [(y∗)i], (12)

which give an entropy production

�S
(fact.eq.)
TOT = log

P F (x0,x1, . . . ,xn)

P B(x∗
0 ,x∗

1 , . . . ,x∗
n)

= log ρi
S − log ρ

i,∗
S

+ log ρ
eq
B (yi) − log ρ

eq
B [(y∗)i]. (13)

In Sec. IV and Appendix C, I consider a class of examples
where the comparison is made between log ρ

eq
B [(y∗)i] and

log ρ
eq
B (yi) and where (y∗)i is determined from the whole

system path. In a general setting, (y∗)i will hence not be a
simple transformation of yf only. Assuming here that the
equilibrium state of the bath is time-reversal invariant, that
is, ρeq

B [(y∗)i] = ρ
eq
B (yf ), which holds for the “canonical” time

reversal of Sec. IV, the difference in the last line in (13) is
β�HB , the change in bath energy in units of kBT .

If further the initial state of the time-reversed system (ρi,∗
S )

is identical to the final state of the system going forwards (ρf

S ),
one recognizes in (13) from standard stochastic thermodynam-
ics the stochastic entropy −� log ρ, the negative log change
in probability density from an initial position at the initial time
to a final position [5]. It is simple to then rewrite (13) as

�S
(fact.eq.)
TOT = −� log P + β(δW (J ) + δWif ) − β�HS. (14)

The heat functional in this scenario is thus

δQ(fact.eq.) = δW (J ) + δWif − �HS = �HB. (15)

Since the interaction energy has been assumed to vanish
at the boundaries, heat is only the change in bath energy
during the process, the same as in standard (weak-coupling)
stochastic thermodynamics. If δQ(fact.eq.) in (15) is a functional
measurable on the system alone however, depends on the
second term δWif (see Appendix A).

B. Conditional equilibria with time-reversal symmetric states

Next, I turn to the approach of Refs. [15,16,19]. Only HS

now depends explicitly on time, and the work functional is, as
in (1), only the Jarzynski work,

�HTOT = δW (J ) =
∫

∂tHSdt. (16)

The bath is assumed to be initially in equilibrium conditional
of the system,

ρi(x
i,yi) = ρi

S(xi)σ (yi |xi), (17)
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where ρi
S(xi) can be anything and

σ (yi |xi) = e−β(HI (xi ,yi )+HB (yi ))∫
dy ′e−β(HI (xi ,y ′)+HB (y ′))

. (18)

The initial conditions of the time-reversed process are also such
that the bath is in equilibrium conditional to the system, and
adopting analogous assumptions to the above (also stated in
Ref. [19]), I will assume that the conditional distribution of the
bath is time-reversal symmetric. This means

ρi[(x
∗)i ,(y∗)i] = ρ

i,∗
S [(x∗)i]σ (yf |xf ), (19)

with the same conditional probability as in (18). The total
entropy change is then

�S
(cond.eq.)
T OT = log

P F (x0,x1, . . . ,xn)

P B(x∗
0 ,x∗

1 , . . . ,x∗
n)

= log ρi
S − log ρ

i,∗
S

+ log σ (yi |xi) − log σ (yf |xf ). (20)

In the same setting as in the previous section, where the initial
state of the system going backwards (ρi,∗

S ) is the same as
final state of the system going forwards (ρf

S ), it was shown
in Ref. [15] that (20) can be rewritten as

�S
(cond.eq.)
TOT = �s̃S + βδW (J ) − β�ũS, (21)

where ũS is an energylike function, f̃S is the constant in a
Gibbs-Boltzmann-like distribution P (cond.eq.) = eβ(f̃S−ũS ), and
s̃S = − log P (cond.eq.) is the corresponding entropylike quantity.
For completeness, this derivation is repeated in Appendix B.

The heat functional in this scenario is thus

δQ(cond.eq.) = δW (J ) − �ũS. (22)

As F̃S in (1), the quantities f̃S , ũS , and s̃S depend on the bath. A
parameter variation, i.e., thermodynamic integration, is needed
to determine an arbitrary constant in ũS and f̃S which would
otherwise render (21) and (22) indeterminate.

The explicit form of ũS , rederived in Appendix B and stated
in (B6), is HS − ∂β log 〈e−βHI 〉B , where 〈· · · 〉B indicates an
average with respect to the Gibbs state eβ(FB−HB ). The change
�ũS hence includes the change in system energy �HS and the
change in average both of the bath and interaction energy with
respect to a conditional bath Gibbs state eβ(F ′

B−HB−HI ) (HI and
F ′

B depend on the system coordinate). The heat in (22) includes
the corresponding fluctuating quantities. It is quite interesting
that the proposal in Ref. [15] hence does not reduce to any of
the simpler earlier suggestions that counted in the heat some
definite fractions of respectively �HB and �HI .

C. Joint equilibrium of the system and the bath

The last scenario adheres closely to the the equilib-
rium strong-coupling theory and several earlier contributions
[8–14]. Of the three terms in (3), again only the system
Hamiltonian HS depends explicitly on time and the work
is given by (16). The assumption is now that the bath and
the system are jointly in equilibrium at the beginning of the

process,

ρi(x
i,yi) = ρ

eq
TOT(xi,yi) = 1

Zi
TOT

e−βHi
TOT . (23)

The initial conditions of the backwards process are analogously
taken to be

ρi[(x
∗)i ,(y∗)i] = 1

Z
f

TOT

e−βH
f

TOT . (24)

From (8) we then have

�S
(tot.eq.)
TOT = log

P F (x0,x1, . . . ,xn)

P B(x∗
0 ,x∗

1 , . . . ,x∗
n)

= βδW (J ) + log Z
f

TOT − log Zi
TOT. (25)

The Jarzynski work is a functional of the system history and
gives, for this scenario, all the coordinate dependence. The
statistical properties of �S

(tot.eq.)
TOT and δW (J ) are therefore in

this scenario the same.
The last two terms (constants) in (25) can be referred to the

total free energy with respect to that of the bath alone,

F̃S = 1

β
log

ZB

ZTOT
= FTOT − FB, (26)

and are thus the change of a free energy at mean force, as
already used in (1) above,

log Z
f

TOT − log Zi
TOT = −β�F̃S. (27)

The free energy at mean force can be written

F̃S = ŨS − 1

β
S̃S, (28)

where the internal energy (or potential) at mean force is

ŨS = ∂β(βF̃S) = UTOT − UB, (29)

and the corresponding entropy is

S̃S = β(ŨS − F̃S) = STOT − SB. (30)

With these conventions, (25) can be rewritten,

�S
(tot.eq.)
TOT = �S̃S + βδW (J ) − β�ŨS, (31)

and the heat functional is

δQ(tot.eq.) = δW (J ) − �ŨS. (32)

To compare (32) to (22) we must recognize that the time
reversals are qualitatively different. The heat in (22) was
derived under the assumption that the initial state of the system
in the backward process is the same as the final state of the
forward process. This is not the same as in (32) where the initial
state of the system in the backward process is the marginal of
a total equilibrium state, while the final state of the forward
process is generally something else. To compare, we must
instead go back to the total entropy productions in (20) and
(25) and identify the initial system states of the forward and
backward states in (20) as = eβ(FS−HS ), where HS and FS are
the potential and free energy at mean force of Onsager and
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Kirkwood [8–10,13,14]. With this, (20) reduces to (25)

�S
(cond.eq.-red.)
TOT = β�HS − β�FS

= β�HTOT − β�HS + � log〈e−βHI 〉B, (33)

where in the second line I have used (B3) from Appendix B.

IV. TIME REVERSALS IN STOCHASTIC DYNAMICS

In this section the focus is not on strong coupling. The
interaction will hence be taken weak, or assumed to depend
on time as in Sec. III A. The focus is instead on using the
general result in Sec. II to give a different perspective on
time reversals in stochastic dynamics [23]. To lighten the
presentation, technical details are given in Appendix C.

It is well known that a Kramers-Langevin equation ẋ = p

m

and ṗ = −∂xV (x,t) − γ
p

m
+ √

2kBT γ ξ can be derived from
the total Hamiltonian dynamics of a system interacting linearly
with a bath of harmonic oscillators which are initially in
thermal equilibrium [26,29,30]. Complete time reversal refers
to standard time inversion of all the coordinates and momenta,
of both the bath and the system. On the level of the system
this is a process conditioned by the future, that at the final
time the bath will be in equilibrium, and is therefore not
a Markov process. It follows immediately from (8) that the
entropy production in such a time reversal is zero because

the right-hand side of (8) can also be written ρf (xf ,yf )
ρ∗

i [(x∗)i ,(y∗)i ]
(preservation of phase space volume) and this ratio is one (time
reversal preserves phase space volume). This is logical because
when the motion of both the system and the bath is reversed,
they will evolve back to their initial state, and no information
will be lost.

The closest to complete time reversal defined on the level
of the system is natural time reversal [23]. This is standard
time reversal on the system and transforming the dynamics
to dx∗

dt∗ = p∗
m

and dp∗
dt∗ = −∂xV (x,tf − t) + γ

p∗
m

+ √
2kBT γ ξ ∗,

where ξ ∗ is a noise with the same statistical properties as ξ . The
antifriction (γ p∗

m
) shows that this equation does not originate

from the system interacting with a bath initially in thermal
equilibrium. In the other direction it was shown in Ref. [23]
that the entropy production associated to natural time reversal
is (tf − ti)γ /m; natural time reversal is therefore different
from complete time reversal. For completeness, a sketch of
a derivation of this fact is given Appendix C.

We turn now instead to canonical time reversal [23],
where the backward process also obeys a Kramers-Langevin
with positive friction, dx∗

dt∗ = p∗
m

and dp∗
dt∗ = −∂xV (x,tf − t) −

γ
p∗
m

+ √
2kBT γ ξ

′
, and ξ ′ again is a noise with the same

statistical properties as ξ . It is convenient to consider a wider
class of general time reversals, introduced in Ref. [23] by
splitting the drift field (time derivative of the system coordi-
nate). We split the system potential in two parts that transform
differently, Vt = V +

t + V −
t and the time-reversed total Hamil-

tonian H ∗
t∗ will contain the piece V

∗,+
t∗ − V

∗,−
t∗ = Vt − 2V −

t .
Canonical time reversal is the case when V − = 0. The system
equation under such general time reversal is dx∗

dt∗ = p∗
m

and
dp∗
dt∗ = −∂xV + 2∂xV

− − γ
p∗
m

+ √
2kBT γ ξ

′′
. Introducing the

notation of Ref. [23] that u+ = −γp/m − ∂xV
− is the part

of the drift field that transforms as a vector and u− = −∂xV
+

is the part that transforms as a pseudovector, and identifying
D = kBT γ as the diffusion coefficient, one has

�STOT = log
P F

P B
= − log �P +

∫
(ṗ − u−)

1

D
u+dt,

(34)

which is a main result of Ref. [23], adapted to this situation.
Using explicit expressions for the dynamics of the continuum
of harmonic oscillators that make up the bath, it is, on the other
hand, straightforward to show that

H ∗
B[(y∗)i] − HB(yi) =

∫
(ṗ − u−)

1

γ
u+dt, (35)

with the same definitions of u− and u+ as above. Detailed
derivations of (34) and (35) are given in Appendix C. The
entropy production formula under general time reversal is thus,
in fact, the energy difference in a microscopic bath model in
units of kBT . For canonical time reversal, (35) simplifies to

Eq. (35) (canonical reversal) =
∫

− p

m
dp − ∂xV dx, (36)

where the right-hand side equals the work (δW = �HTOT)
minus the total change of system energy (�HS). For this
time reversal, H ∗

B[(y∗)i] − HB(yi) hence equals HB(yf ) −
HB(yi), the change in bath energy in the forward process, and
e−βH ∗

B [(y∗)i ] = e−βHB (yf ).
The above examples extend naturally to when the system-

bath coupling is nonlinear in the system. As already found
in Ref. [26], this leads to a friction term that is nonlinear
in the system coordinate and a noise term which satisfies
an Einstein relation with the friction term. More recently,
perturbative solutions have been found when the bath is weakly
anharmonic [31,32]. Although these contributions establish a
form of fluctuation-dissipation theorems, they can also be inter-
preted as showing that naive versions of fluctuation-dissipation
theorems do not hold. Hence, at least some general diffusion
processes where the noise terms do not satisfy an Einstein
relation with the friction term also have representations in
terms of explicit baths.

Time reversals in overdamped stochastic systems, where
the diffusion tensor D can depend on the coordinate effected
by the noise (dx = · · · + √

2DdW , D = kBT /γ ), can be
embedded in the underdamped case discussed above (dx =
p

m
dt , dp = · · · − γ dx + √

2kBT γ dW ). When temperature is
constant, the overdamped limit gives no new contributions
to the entropy production [33]. Entropy production under a
general time reversal of an overdamped stochastic with a
possibly space-dependent friction coefficient γ can hence also
be related to an energy change in a bath, as above.

V. DISCUSSION AND CONCLUSIONS

Entropy production is related to irreversibility and how a
system transforms under time reversal. As such, it has long
been a fundamental topic in statistical physics [34], where
the two central results that hold near to equilibrium are the
fluctuation-dissipation theorem and Onsager’s relations.

When terms in the dynamical equations of macroscopic
quantities can be classified as reversible (conservative) and
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irreversible (dissipative), results generalizing Onsager’s re-
ciprocal relations have been obtained far from equilibrium
[35,36]. Connections between time reversal and entropy pro-
duction have also more recently been made in macroscopic
fluctuation theory [37].

This paper has addressed time reversal and entropy produc-
tion in the context of stochastic thermodynamics where the sys-
tem is assumed small (mesoscopic or microscopic), the system
history is observable, and fluctuations of the quantities which
would be constant in the thermodynamic limit are important. I
have considered the dynamics of a system interacting with an
unobserved environment (bath) in a Hamiltonian framework
with an arbitrarily strong system-bath coupling. I have shown
that the log ratios of forward and backward path probabilities
of a system are related to the log ratios of the initial state of
the total system (system and bath) in a forward and backward
process.

Depending on what is assumed for the initial state of the
bath, one gets different entropy productions for the system.
This is not surprising because different initial states of the
bath correspond to different levels of control, and time reversal
then leads to a different loss of information. Here, I compare
(21) and (14). In both cases the initial state of the system can
formally be anything. In practice, it is, however, reasonable to
assume in the first case either that the system and the bath are
jointly in equilibrium (discussed above in Sec. III C), or that
the system has been fixed for some time in position xi so that
the bath will have had time to relax to conditional equilibrium
σ (yi |xi). I hence assume that this is the scenario for both the
forward and backward process. Using the explicit expression
of ũS from (B6), we then have

δQ(fact.eq.) − δQ(cond.eq.)

= δWif − 〈HI + HB〉xf + 〈HI + HB〉xi . (37)

The difference in heat is hence in one part the extra work
δWif needed to change the system-bath interaction, and in
the other part the change in the expected value of the bath
energy and interaction energy, conditioned on the system state.
For factorized equilibrium this second term vanishes while for
conditional bath equilibrium it is counted in the change of
internal energy. The two different forms of strong-coupling
heat are hence mutually compatible. The critique of Ref. [17]
that strong-coupling heat is not a uniquely defined concept
can therefore partly be reformulated as saying that different
versions correspond to different physical situations.

Finally, in this work I have shown that the entropy pro-
duction functional of stochastic thermodynamics applied to
diffusive systems defined as the log ratio of path probabilities
can be interpreted as the change of bath energy in an under-
lying, more detailed, microscopic model. This is a different
connection between the mathematical and physical notions of
entropy production, and a further strong argument in favor of
the physical soundness of stochastic thermodynamics.
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APPENDIX A: WORK WITH TIME-DEPENDENT
SYSTEM-BATH INTERACTION

This Appendix summarizes the discussion in Ref. [22] of
time-dependent strong coupling, with some extensions.

I will now write the system as x = (Q,P ) and the bath as
y = (q,p), and I will assume that the system and the bath only
interact through their generalized coordinates

HTOT = HS(Q,P,t) + HI (Q,q,t) + HB(q,p), (A1)

where the explicit time dependencies have been indicated. The
equation of motion of the system is

Q̇ = ∂P HS(Q,P,t)

(
typically = P

M

)
(A2)

and

Ṗ = −∂QHS(Q,P,t) − ∂QHI (Q,q,t). (A3)

The second term, which depends on bath coordinate q, is a
force acting on the system, conventionally said to be from
the bath on the system. For the Zwanzig (Caldeira-Leggett)
model, the bath is a collection of harmonic oscillators and the
interaction term is

HI = −QqCq(t) + 1

2mqω2
q

Q2C2
q (t) (Zwanzig). (A4)

In the above, Cq (t) is the time-dependent interaction coefficient
between the system and bath oscillator q, mq and ωq are the
mass and angular frequency of that oscillator, and the last
term (which does not depend on q) is the Caldeira-Leggett
counterterm. The force from the bath on the system is then

−∂QHI = qCq(t) − 1

mqω2
q

QC2
q (t) (Zwanzig). (A5)

It is well known that for an Ohmic bath with all Cq constant,
this tends to the sum of the friction force and the random force
in a Kramers-Langevin equation. In Ref. [22] the situation was
considered where for all interaction coefficients Cq ∝ √

η(t),
where η(t) is a time-dependent friction coefficient. In that
setting, the force from the bath on the system is

−∂QHI ≈ −ηQ̇ − η̇

2η
Q +

√
2η

β
ξ (from Ref. [22]), (A6)

where ξ is standard white noise.
From the structure of the interaction term it is now easy to

determine the second contribution to the work for the Caldeira-
Leggett model. Namely,

∂tHI =
(

− Ċq(t)

Cq(t)
Q

)
(−∂QHI ), (A7)
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which, when Cq ∝ √
η(t), leads to

δWif =
∫

∂tHIdt

=
∫ (

− η̇

2η
Q

)(
−ηQ̇ − η̇

2η
Q +

√
2η

β
ξ

)
dt

(from Ref. [22]). (A8)

Summarizing, the effective motion of the system in the
Caldeira-Leggett model with time-dependent friction is

Q̇ = P

M
, Ṗ = −∂QV + FS, (A9)

where the generalized Sekimoto force FS is

FS = −ηQ̇ − η̇

2η
Q +

√
2η

β
ξ. (A10)

The change of internal energy is for this model

�U = �HS =
∫

(∂tHS + Ṗ ∂P HS + Q̇∂QHS)dt

= δW (J ) +
∫

P

M
FSdt, (A11)

and the work δWif from (A8) is

δWif =
∫ (

− η̇

2η
Q

)
FSdt. (A12)

Finally, the heat is

δQ = δHB = δW − �U =
∫

FS

(
− η̇

2η
Q − P

M

)
dt.

(A13)

Work, heat, and internal energy change are hence for this model
in equal measure functionals of the system history only.

The above approach can be generalized to interactions of
the type

HI (Q,q,t) = A(Q)B(q)C(t), (A14)

where A(Q) is a known function of the system, and C(t) is a
known function of time. The bath will then exert a force on the
system as

−∂QHI (Q,q,t) = −∂QA[B(q)C(t)]. (A15)

When the acceleration of the system can be measured, this
force is a system observable since

−∂QHI (Q,q,t) = Ṗ + ∂QHS(Q,P,t). (A16)

On the other hand,

∂tHI (Q,q,t) = [A(Q)B(q)]∂tC

= − ∂t log C

∂Q log A
[−∂QHI (Q,q,t)]. (A17)

The second contribution to the work is then a functional of
system history as∫

∂tHI (Q,q,t)dt

=
∫ (

− ∂t log C

∂Q log A

)
[dP + ∂QHS(Q,P,t)dt]. (A18)

APPENDIX B: STRONG-COUPLING SYSTEM ENTROPY,
INTERNAL ENERGY, AND FREE ENERGY

This Appendix contains the details of the transition from
(20) to (21) in Sec. III B above. We repeat the starting point as

�STOT = �(− log ρS) − �[log σ (y|x)]. (B1)

Using the assumption stated in Ref. [19] below Eq. (17), the
two parts of the last term in (B1) can be written

log σ (yi |xi) = −βHi
TOT + βHi

S − log〈e−βHI 〉iB,

log σ (yf |xf ) = −βH
f

TOT + βH
f

S − log〈e−βHI 〉fB,

where we have introduced the notation of Ref. [15],

〈· · · 〉B = eβFB

∫
dy ′e−βHB (y ′)(· · · ). (B2)

We thus have a contribution to (B1) as

−� log σ (y|x) = β�HTOT − β�HS + � log〈e−βHI 〉B
(B3)

The contributions of the free energy of the bath (FB) cancel
and do not contribute to (B3).

The difference �HTOT in (B3) is the work δW . Under the
assumption that only HS depends explicitly on time, δW is the
Jarzynski work δW (J ). The second difference �HS in (B3) is
the change of the system internal energy as usually defined,
for many models of system-bath interactions that can also be
taken as a functional of the system history only.

The logarithmic terms in (B3) can, on the other hand, be
rewritten,

log〈e−βHI 〉B = β2∂β

(
− 1

β
log〈e−βHI 〉B

)
+ β∂β log〈e−βHI 〉B.

(B4)

The first term can be included in a strong-coupling system
entropy,

s̃S = − log ρS + β2∂β

(
− 1

β
log〈e−βHI 〉B

)
, (B5)

while the second can be combined with the bare change of the
system internal energy as

ũS = HS − ∂β log〈e−βHI 〉B

= ∂β

(
β

(
HS − 1

β
log〈e−βHI 〉B

))
. (B6)

With these definitions we hence have (21), which we copy also
here as

�STOT = �s̃S + βδW − β�ũS. (B7)

The definitions of s̃S and uS can be related to a strong-
coupling system free energy,

f̃S = ũS − 1

β
s̃S = HS + 1

β
log ρS − 1

β
log〈e−βHI 〉B, (B8)
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through the standard thermodynamic relations (Legendre
transforms)

ũS = ∂β(βf̃S) = f̃S + β∂βf̃S, (B9)

s̃S = β(ũS − f̃S) = β∂β (βf̃S) − βf̃S. (B10)

APPENDIX C: DETAILS ON TIME REVERSALS
IN STOCHASTIC DYNAMICS

This Appendix provides technical details for Sec. IV in
the main text. The Kramers-Langevin equation ẋ = p

m
and

ṗ = −∂xV (x,t) − γ
p

m
+ √

2kBT γ ξ is to be interpreted in the
Stratonovich convention [23]. Over a small time interval t to
t ′ = t + ε this means

x ′ − x = ε
p

m
, (C1)

p′ − p = −εγ
p

m
− ε∂xV (x,t) +

√
2kBT γ�, (C2)

where p = p+p′
2 and � is a centered normal variable of

variance ε. Terms higher than ε have been suppressed. It
follows that the probability distribution of p′ conditioned on
p is

P (p′|p) = 1

(4πkBT γ ε)
d
2

exp

(
−

[
p′ − p + εγ

p

m
+ ε∂xV (x,t)

]2

4kBT γ ε

)(
1 + ε

γ d

2m

)
, (C3)

where d is the dimension of space, and the last term arises from the Jacobian when transforming from � to p′. Natural time
reversal of the Kramers-Langevin equation means dx∗

dt∗ = p∗
m

and dp∗
dt∗ = −∂x∗V (x∗,t∗) + γ

p∗
m

+ √
2kBT γ ξ ∗, where x∗

t∗ = xt ,
p∗

t∗ = −pt , and ξ ∗ is a noise with the same characteristics as ξ . The probability distribution of (p∗)′ conditional on p∗ over a
short time t∗ to (t∗)′ = t∗ + ε is thus

P ((p∗)′|p∗) = 1

(4πkBT γ ε)
d
2

exp

(
−

[
(p∗)′ − p∗ − εγ

p∗
m

+ ε∂x∗V (x∗,t∗)
]2

4kBT γ ε

)(
1 − ε

γ d

2m

)
. (C4)

Inserting (p∗)′ = −p and (p∗) = −p′ one can form the ratio

P (p′|p)

P [(p∗)′|p∗]
=

(
1 + ε

γ d

m

)
+ O(ε2), (C5)

which leads to an entropy production in the environment, over
the whole process, as

δSnatural
env = log

P F

P B
= (tf − ti)

γ d

m
. (C6)

The general time reversal of the Kramers-Langevin equation as
discussed in the main text means dx∗

dt∗ = p∗
m

and dp∗
dt∗ = −∂x∗V +

2∂x∗V − − γ
p∗
m

+ √
2kBT γ ξ

′′
, where ξ

′′
is, as above, a noise

with the same characteristics as ξ . In this case the ratio of the
two propagators over a short time interval is

P (p′|p)

P [(p∗)′|p∗]
= exp

(
1

kBT γ
(p′ − p + ∂xV

+)

× (−γp/m − ∂xV
−)

)
. (C7)

Introducing the notation of Ref. [23], that u+ = −γp/m −
∂xV

− is the part of the drift field that transforms as a vector
and u− = −∂xV

+ is the part that transforms as a pseudovector,
and identifying D = kBT γ as the diffusion coefficient, one has

δSgeneral
env =

∫
(ṗ − u−)

1

D
u+dt, (C8)

which is the formula quoted as (34) in the main text. For
canonical time reversal, the special case of the above when
V − = 0, a more detailed discussion along the same lines as
above can be found in Ref. [33]. Mathematically rigorous
derivations of (C6) and (C8), as well as other time reversals of
diffusion processes, can be found in Ref. [23].

1. Microscopic model

I will now show that (C8) can also be derived as the change
of bath energy in an explicit model of a bath as harmonic
oscillators initially in thermal equilibrium. The oscillators are
labeled by their frequencies ω, have mass mω and density of
states f (ω), and interact with the system with coupling strength
Cω. An Ohmic spectrum that satisfies

f (ω)C2(ω)

mω

= 2

π
γω2 (C9)

leads to Kramers-Langevin dynamics for the system with
friction coefficient γ [26,29,30].

It is convenient to introduce the following terms for map-
pings:

I is as before the mapping (x,y,H ) → (x∗,y∗,H ∗). On the
system I acts as, in general time reversal above; on the level
of the bath, the action of I is to be determined.

T is the forward evolution of the system and the bath
from time ti and initial conditions (xi,yi) to time tf and final
conditions (xf ,yf ) under Hamiltonian H .

T ∗ is the time-reversed evolution of the system and the
bath from time t∗i = 0 and initial conditions [(x∗)i ,(y∗)i] to
time t∗f = tf − ti and final conditions [(x∗)f ,(y∗)f ] under
Hamiltonian H ∗.

F is the determination of (xi,yi), the initial conditions in
the forward process, in terms of {xk}nk=0, the forward trajectory
of the system. Note that xi = x0, i.e., this mapping is trivial on
the system.

F∗ is the determination of (y∗)i , the initial conditions in the
time-reversed process, in terms of {x∗

k }nk=0, the time-reversed
trajectory of the system. Also here, (x∗)i = x∗

0 .
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All mappings are assumed to be smooth and invertible as
needed. We can then define

I(xf ,yf ) = F∗IF−1T −1(xf ,yf ), (C10)

I[(x∗)f ,(y∗)f ] = FIF∗−1T ∗−1[(x∗)f ,(y∗)f ]. (C11)

In other words, the above says that the time-reversed final
conditions of the bath, in either process, are what they have
to be as initial conditions so that the whole trajectory of the
system is time reversed. With these (formal) definitions, I is

an involution, as illustrated by the following diagram,

2. Phase space volume

To show that I preserves phase space volume, we have to consider the Jacobians corresponding to (C10) and (C11). To avoid
undercounting in the continuously sampled limit, take the forward system path {xk}nk=0 to be specified by initial system coordinates
and momenta x0 = (Xi,P i) and 2n momenta increments xk = (�P2k−1,�P2k), and similarly for the time-reversed path.

The initial conditions of the bath are only reflected in the noise term of the Kramers-Langevin equation, that is,

F−1 :
√

2kBT γ ξ =
∫ ∞

0
f (ω)C(ω)

[
qω cos ωt + pω

mωω
sin ωt

]
dω, (C12)

and similarly for the backward process,

F∗−1 :
√

2kBT γ ξ
′′ =

∫ ∞

0
f (ω)C(ω)

[
q∗

ω cos ωt∗ + p∗
ω

mωω
sin ωt∗

]
dω. (C13)

Equation (C12) determines how the momentum increments (�Pk,k > 0) depend on the initial conditions of the bath (qω,pω),
and analogously for the time-reversed path. The initial conditions of the paths can be solved for by an inverse Fourier transform,

F :

{
qω = 1

π
1

f (ω)C(ω)

∫
(ṗ + ∂xV + γp/m) cos ωtdt,

pω = 1
π

mωω

f (ω)C(ω)

∫
(ṗ + ∂xV + γp/m) sin ωtdt,

(C14)

and similarly,

F∗ :

{
q∗

ω = 1
π

1
f (ω)C(ω)

∫
(ṗ + ∂xV − 2∂xV

− − γp/m) cos ωt∗dt∗,

p∗
ω = 1

π

mωω

f (ω)C(ω)

∫
(ṗ + ∂xV − 2∂xV

− − γp/m) sin ωt∗dt∗.
(C15)

Equation (C10) defines the determinant of the Jacobian of I as

∣∣∣∣∂I(xf ,yf )

∂(xf ,yf )

∣∣∣∣ =
∣∣∣∣∂[(x∗)i ,(y∗)i]

∂{x∗
k }nk=0

∣∣∣∣
∣∣∣∣∂{x∗

k }nk=0

∂{xk}nk=0

∣∣∣∣
∣∣∣∣∂{xk}nk=0

∂(xi,yi)

∣∣∣∣
∣∣∣∣ ∂(xi,yi)

∂(xf ,yf )

∣∣∣∣ =
∣∣∣∣∂{x∗

k }nk=1

∂(y∗)i

∣∣∣∣
−1∣∣∣∣∂{xk}nk=1

∂yi

∣∣∣∣. (C16)

In the above, it has been used that | ∂{x∗
k }nk=0

∂{xk}nk=0
| is one because I preserves the system volume, that ∂(xi ,yi )

∂(xf ,yf ) is one because the full
dynamics is conservative, and that F acts trivially on the system. The whole expression is finally one because by (C12) and (C13)
the two Jacobians ∂{x∗

k }nk=1
∂(y∗)i and ∂{xk}nk=1

∂yi are the same.

3. Change of bath energy

Finally, we consider the energy change of the bath between the starting positions of the backward and forward process,

�HB =
∫ ∞

0
f (ω)

(
1

2mω

((p∗
ω)2 − (pω)2) + 1

2
mωω2((q∗

ω)2 − (qω)2)
)

dω, (C17)

where the contributions from a given ω are

(p∗
ω)2 − p2

ω

2mω

+ 1

2
mωω2((q∗

ω)2 − q2
ω

) =
(

mωω

πf (ω)C(ω)

)2 ∫∫
cos ω(t − t ′)[−2(ṗ + ∂xV

+)

× (γp/m + ∂xV
−)′ − 2(ṗ + ∂xV

+)′(γp/m + ∂xV
−)]dt dt ′. (C18)
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In the above, primed quantities refer to time t ′ and unprimed to time t . Using (C9), the notation in (C8), (C17), and
∫

cos ω(t −
t ′)dω = 2πδ(t − t ′), this leads to

�HB =
∫

(ṗ − u−)
1

γ
u+dt, (C19)

which is Eq. (35) in the main text.
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[21] K. Gawȩdzki, arXiv:1308.1518.
[22] E. Aurell, Entropy 19, 595 (2017).
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