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We study transitions in log-correlated random energy models (logREMs) that are related to the violation of a
Seiberg bound in Liouville field theory (LFT): the binding transition and the termination point transition (a.k.a.,
pre-freezing). By means of LFT-logREM mapping, replica symmetry breaking and traveling-wave equation
techniques, we unify both transitions in a two-parameter diagram, which describes the free-energy large deviations
of logREMs with a deterministic background log potential, or equivalently, the joint moments of the free energy
and Gibbs measure in logREMs without background potential. Under the LFT-logREM mapping, the transitions
correspond to the competition of discrete and continuous terms in a four-point correlation function. Our results
provide a statistical interpretation of a peculiar nonlocality of the operator product expansion in LFT. The results
are rederived by a traveling-wave equation calculation, which shows that the features of LFT responsible for
the transitions are reproduced in a simple model of diffusion with absorption. We examine also the problem by
a replica symmetry breaking analysis. It complements the previous methods and reveals a rich large deviation
structure of the free energy of logREMs with a deterministic background log potential. Many results are verified
in the integrable circular logREM, by a replica-Coulomb gas integral approach. The related problem of common
length (overlap) distribution is also considered. We provide a traveling-wave equation derivation of the LFT
predictions announced in a precedent work.
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I. INTRODUCTION

Log-correlated random energy models (logREMs) form
an extended class of simple disordered systems, which have
applications in various problems of physics and mathematics,
e.g., spin-glass theory [1–4], extremal properties of branching
processes [5–7], two-dimensional (2D) XY model [8,9], An-
derson localization transitions [10–13] (see, e.g., Refs. [14,15]
for more recent developments), random matrix and number
theory [16–21]. LogREMs share a host of glassy thermody-
namic properties, which are reminiscent of, but considerably
richer than, the uncorrelated random energy model (REM)
[1]. In particular, all logREMs display a freezing transition
[2,22]: in the low-temperature glassy phase, the Boltzmann-
Gibbs measure is dominated by a few atoms, and the free
energy becomes temperature independent. These features can
be analytically understood by either velocity selection of
traveling-wave equations of Fisher-Kolmogorov-Petrovsky-
Piskunov (KPP) type, or one-step replica symmetry breaking
(RSB), which is recently applied to multifractal wave functions
in localization problems on treelike lattices [23,24], inspired
by many-body localization [25].

A third intriguing approach is based on the connection
between logREMs and Liouville conformal field theory (LFT).
This connection was proposed in Refs. [12,22] and is closely
related to the probabilistic construction of LFT using the 2D

Gaussian free field (GFF) [26–28]. Our previous work [29,30]
revisited the connection and made it concrete. In particular,
we showed that LFT correlation functions provide the Gibbs
measure statistics of a thermal particle in a 2D Gaussian free
field plus an attractive deterministic logarithmic potential, a
prototypical representative of the logREM class. Combined
with freezing, this provided the first exact prediction of the
minimum position of 2D Gaussian free field. Two types of
transitions besides freezing were observed in that study: (i) a
binding transition [22,31,32] occurs when one of the charges,
generating the deterministic potential, is sufficiently strong
to trap the particle; (ii) a termination point transition (also
known as prefreezing [33,34]) related to the scaling of the
qth fractional moments of the Gibbs measure (more precisely,
the Gibbs probability weight). Indeed, their associated mul-
tifractal exponent τq saturates above a critical value q � qc.
This saturation, induced by the presence of atoms dominat-
ing the value of large moments, corresponds, in the LFT
approach, to a competition between discrete and continuum
terms in the operator product expansion (OPE) [35–37]. This
remarkable link has had multiple consequences, including the
prediction of universal log corrections associated with the
transition [29,30], the extension to arbitrary temperature of
recent results [3,4] on the overlap distribution of directed
polymers on a Cayley tree, and the resolution of some standing
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puzzles concerning models such as the log-fractional Brownian
motion [32,38].

The purpose of this paper is to further explore the link
between features of LFT and universal properties of the
logREM class, by focusing on the statistics of the free energy
of “logREMs with one charge,” exemplified by the model of
a thermal particle in a 2D Gaussian free field plus a deter-
ministic logarithmic background potential generated by one
attractive charge a. In particular, at a given temperature 1/β,
we determine the scaling of the nth moment of the partition
function, and find a rich diagram (a,n) plane (Fig. 3) consisting
of four large deviation regimes; the scaling exponents undergo
transitions (nonanalyticity) on the regime boundaries. This
model provides a common framework to study the binding
and the termination point transitions. We call both of them “of
Seiberg type,” for being related to the violation of the Seiberg
bound in LFT [29]. We argue that the regimes of this model
are associated to different short-distance behaviors of the LFT
correlation functions. Interestingly, one of them (the bound
regime defined below) is associated to LFT correlation func-
tions whose short-distance singularity depends on the scaling
dimension of distant fields. This nonlocality is a consequence
of the LFT conformal bootstrap solution [35–37], yet it has
been little explored so far and requires an interpretation in
terms of well-defined operator product expansions in a local
conformal field theory. The application of this LFT property
in logREMs generalizes significantly previous works.

We also compare the LFT approach to more conventional
methods of disordered systems, i.e., replica symmetry breaking
(RSB) and traveling-wave equations, with which we rederive
and complement the LFT predictions. It turns out that the
traveling-wave approach is equivalent to the LFT one in their
ability to calculate the universal quantities studied in this work,
while RSB is different: it cannot calculate log corrections to the
leading behavior at the present stage, but can access the ‘log-
normal” region [39], inaccessible from the other approaches.

The rest of the paper is organized as follows. Section II
defines the models and the observables. Sec. III presents the
LFT approach, which allows us to obtain a nontrivial part of
the 2D diagram. In Sec. IV we use the RSB method to obtain
the complete diagram, confirming the LFT prediction. We
also discuss extensively large deviation theory consequences
of the results. Section V confirms the LFT predictions using
a traveling-wave equation approach and compare the three
approaches. Section VI is devoted to the overlap distribution
problem and confirms the LFT prediction in Ref. [29] by an
independent, traveling-wave equation calculation. The con-
cluding Sec. VII is followed by a few appendices. In particular,
Appendix C tests some predictions of the main text in an
integrable logREM defined on the circle [32,38,40].

II. THE LOGREM CLASS AND ITS OBSERVABLES

The logREM class can be divided into two subcategories,
the Euclidean ones and the hierarchical ones. In both cases
the disorder is given by a set of centered and correlated
Gaussian random energy levels (or potential values), φj ,j =
1, . . . ,M . The hierarchical logREMs is represented by the
directed polymer on Cayley tree model, or the closely related
branching Brownian motion (BBM) model [2]. Because of its

close relation to the traveling-wave equation approach, we shall
postpone their introduction to Sec. V.

A. Euclidean logREMs

For Euclidean logREMs in d-dimension, φj is the dis-
cretization of a log-correlated field φ on a lattice {rj }Mj=1 of

lattice spacing ε = M−1/d [so the large distance cutoff is of
order-unity, |rj | � R ∼ O(1)], so that the covariance decays
logarithmically:

φj = 0 , φjφk ∼
{−2d ln |rj − rk| |rj − rk| � ε

2 ln M j = k
. (1)

In particular, for d = 2, φ is known as the 2D GFF, so 2D
logREMs are closely related to its extreme values. One-
dimensional (1D) logREMs can be seen as obtained by restrict-
ing the 2D GFF on a 1D geometry (such as a circle [31,41] or
an interval [31,32]); besides, 1D log-correlated fields (in the
temporal domain) are also known as realizations of the 1/f

noise.
Given the random energy levels φj , one defines the logREM

by the partition function:

Z0
def.=

M∑
j=1

e−βφj . (2)

The above normalizations ensure that the freezing critical
temperature is β = βc = 1, and that the free energy has the
following behavior [2,22]:

F0
def.= −β ln Z0 =

{
−Qt + O(1) β < 1

−2t + 3
2 ln t + O(1) β > 1

(3)

t
def.= ln M, Q

def.= β + β−1, β < 1 ; Q
def.= 2, β > 1.

(4)

The notation Q is inspired by LFT [29]. The notation t = ln M

is inspired by the branching Brownian motion (see Sec. V A).
In fact, t is arguably a better measure (than the naive M) of the
“system size” of logREMs, since the free energy is proportional
to t ; it is also known that the finite-size corrections in logREMs
are of form A1/t + A2/t2 + · · · [3,42,43]. We shall use both
notations t and M in what follows.

In Eq. (3), 3
2 ln t is the universal log correction character-

izing the log-REM class [22] (it becomes 1
2 ln t at β = 1),

while “O(1)” denotes the order-unity fluctuating part of the
free energy. Its distribution in the thermodynamic limit can
be exacted calculated for BBM (see Sec. V) and for a few
integrable logREMs [31,39,41].

We are also interested in the random Gibbs probability
weights

pβ,j
def.= 1

Z 0
e−βφj . (5)

Disorder-averaged moments and correlations of the logREM
Gibbs probability weights were the key object in the LFT-
logREM mapping [12,22,29]. In this work, we shall consider
the joint moment of the Gibbs probability weights at a point
and the partition function p

q

β,1Z
n
0 .
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B. LogREMs with charge

To study the binding transition, we define a logarithmic
background potential (in short, log potential or background
potential) for general logREMs, as follows:

Uj
def.= −a φjφ1, j = 1, . . . ,M, (6)

where a > 0 is called the charge. We can check that this defi-
nition coincides with the same notion considered in Ref. [29]
for 2D log-REMs in a continuum setting. Indeed, Eqs. (1) and
(6) imply

Uj = −2da ln |zj − z1| =: U (zj ),

with U (z) = −2da ln |z − z1|. This expression, when d = 2,
reduces to the deterministic background potential with one
charge inserted at z1 defined in Ref. [44] (for d = 2). We
shall consider attractive potentials (a > 0), since only they
can trigger a binding transition. We have picked j = 1 to
be the charge position by convention; in general, it does not
correspond to a boundary of the lattice on which the logREM
is defined.

With the log potential, we can define the logREM with
one charge by the following partition function summing over
composite energy levels:

Za
def.=

M∑
j=1

e−βϕj , ϕj
def.= φj + Uj . (7)

As is known [22,29,31], the free energy Fa
def.= −β−1 ln Za

undergoes the binding transition when a = Q/2:

Fa =
{−Qt + o(t) a < Q/2

−2at + o(t) a > Q/2.
(8)

That is, when a > Q/2 (a < Q/2), we have a bound (un-
bound) phase in which Eq. (3) fails (holds, respectively). In
Sec. IV we shall obtain the large deviation function of Fa which
puts the binding transition in a broader context.

C. Girsanov transform

The partition function moments of a logREM with charge
is related to a joint moment of the logREM without charge by
the Girsanov transform, also known as the complete-the-square
trick (see Appendix A):

p
a/β

β,1 Z
n+a/β

0 = e−aφ1Zn
0 = Ma2

Zn
a . (9)

The observables in this equation are the central object of this
work and allow us to study both termination point and binding
transitions:

(1) Setting n = −a/β, we obtain a fractional moment

of the Gibbs probability weight p
a/β

β,1 , which undergoes a
termination point transition when a = Q/2; this transition
has been studied by the LFT mapping in Refs. [29,30]. Via
the Girsanov transform, the corresponding moment Zn

a =
Z

−a/β
a = eaFa describes positive large deviations of the free

energy Fa .
(2) On the other hand, the binding transition concerns the

typical value of Fa and is obtained by tuning a across Q/2
while keeping n infinitesimally close to 0.

FIG. 1. Diagram for the logREM observable p
a/β

β,1 Z
n+a/β

0 =
e−aφ1Zn

0 , Eq. (10), obtained by the LFT approach (or by the traveling-
wave equation approach, see Sec. V). The parameter space is drawn
with axes nβ + a and a. We indicate the three regimes (U, B,
C), which are characterized by different dominating terms in the
LFT correlation function, see Sec. III C. The locus of binding and
termination point transition follow from the discussion below Eq. (10).
The LFT-logREM mapping is only valid in a half of the diagram with
n < 0, i.e., above the dash-dotted diagonal. The rest of the diagram,
drawn with pale colors, is a formal extrapolation, see Eq. (29), and
will be corrected by the RSB approach; see Fig. 3.

III. THE LIOUVILLE FIELD THEORY APPROACH

We are interested in the asymptotic behavior of the joint
distribution appearing in Eq. (9), which will be shown to have
the following general form:

e−aφ1Zn
0 ∼ M−�(a,n)(ln M)−η(a,n). (10)

Here and below, ∼ means equal up to an order-one factor as
M → ∞. In Eq. (10), �(a,n) is the leading exponent and
η(a,n) the log-correction exponent. We will be working in the
high-temperature β < 1 phase throughout this section.

A. Summary of results

The LFT-logREM connection allows to determine the ex-
ponents �(a,n) and η(a,n) in a subspace of the a,n-parameter
space delimited by n < 0. We find three regimes for the leading
exponent:

�(a,n)
n<0=

⎧⎪⎨⎪⎩
−a2 − Qnβ a < Q

2 ,

−(nβ + a)2 a + nβ > Q/2,

Q2

4 − Q(nβ + a) a > Q

2 , a + nβ < Q

2 .

(11)

Note that �(a,n) undergoes a second-order transition across
a boundary between the regimes. We shall call the three
regimes unbound (U), bound (B), and critical (C); see Fig. 1.
The unbound (bound) phase, corresponding the typical free
energy of the logREM with one charge, are described by
the unbound (bound, respectively) regime near the line n =
0, respectively. The critical regime (restricted to the nβ +
a = 0 line) was known as “termination point” [29,30], or
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“prefreezing” [33,34], and is characterized by the log correc-
tions, as the exponent η(a,n) is nonzero only in that regime
and its boundaries:

η(a,n)
n<0=

⎧⎪⎨⎪⎩
3
2 a > Q

2 , a + nβ < Q

2 ,

1
2 a = Q

2 or a + nβ = Q

2 ,

0 elsewhere.

(12)

Setting n = −a/β (i.e., along the vertical axis in Fig. 1),
we recover the results of Refs. [29,30] concerning fractional
moments of pβ,1 (or equivalently, annealed averages of the
inverse participation ratio). The leading-order exponent in this
special case,

�(a,−a/β) =
{
a(Q − a) a < Q/2

Q2/4 a > Q/2,
(13)

was at the origin of the logREM-LFT connection [12].

B. Mapping to LFT

To obtain the above results, we shall consider a four-point
correlation function of LFT with central charge c = 1 + 6Q2

defined on the sphere, which is equivalent to the complex
plane plus infinity: C ∪ {∞}. Using the same conventions
as in Ref. [29], we denote Va(z) the LFT primary field
with holomorphic and antiholomorphic conformal dimensions
(�a,�a), with

�a = a(Q − a). (14)

In the standard LFT terminology, Va(z) is called a vertex
operator of charge a. We will denote by 〈∏j Vaj

(zj )〉
β

an LFT
multipoint correlation function.

It is known [29] that, in the high-temperature phase, β <

1, one has the following relation between LFT correlation
functions and observables of a logREM defined by a 2D GFF
on the sphere:∏
j

eaj φj Zn
0 ∼ M

∑
j a2

j +Qnβ

〈∏
j

Vaj
(zj )

〉
β

, where

n = Q − ∑
j aj

β
< 0 and aj < Q/2 for all j .

(15)

This statement can be shown using the Lagrangian representa-
tion of LFT, and a detailed exposition can be found in Sec. B of
the Supplemental Material of Ref. [29]. We note here that the
factor M

∑
j a2

j +Qnβ comes from the ultraviolet regularization of
the exponential fields defined on the discrete 2D GFF:

(eaφj )lattice → Ma2
(eaφ(zj ))continuum

Z0 =
M∑

j=1

eβφj → MQβ

∫
d2z eβφ(z), (16)

whereas in Eq. (1), φj = φ(zj ) is the discretization of the 2D
GFF φ(z) on a lattice of points (zj )Mj=1 on the sphere. The
inequalities in the last line of Eq. (15) are known as the Seiberg
bounds [45].

To compute the exponents in Eq. (10), we propose to
consider the following LFT correlation function of two groups

of 	 and m vertex operators:

K def.=
〈

	∏
j=1

Vaj
(zj )

m∏
k=1

Va	+k
(wk)

〉
β

, (17)

where the charges satisfy

	∑
j=1

aj = a,

m∑
k=1

a	+k = Q − nβ − a. (18)

The points of the first group, z1,z2, . . . ,z	, are separated by
lattice-space distance, |zj − zi | = O(M−1/2), while all other
pairs have order-unity separation. The number of operators
in each group should be at least 2 and sufficiently large to
satisfy Eq. (18) and the Seiberg bound aj < Q/2. Further
specifications of the parameters will turn out irrelevant. The
idea is that, via the LFT-logREM mapping Eq. (15), the
“local group”

∏	
j=1 Vaj

(zj ) produces the charge e−aφ1 , and the
“remote group”

∏m
k=1 Va	+k

(wk) generates the correct power n

in Zn
0 .

We now detail the above idea. For conciseness of the
argument, let us restrict to the region a < Q and a + nβ > 0.
Then, the Seiberg bounds allow us to take m = 	 = 2, so that
Eq. (17) becomes a four-point function. To match the notations
of Ref. [29], which we shall rely on in Sec. III C, we reorder
the indexes and consider the four-point function defined as
follows:

K = 〈
Va1 (0)Va4 (z)Va2 (1)Va3 (∞)

〉
β
, |z|2 ∼ M−1, (19)

a1 + a4 = a, a2 + a3 = Q − nβ − a. (20)

Namely, a1,a4 form the local group and a2,a3 the remote group.
The charge in Eq. (10) is now located near the origin of the
complex plane.

Applying the general mapping Eq. (15) to K gives

e−a1φ(0)−a4φ(z)Zn
0e−a2φ(1)−a3φ(∞)M−a2

2−a2
3

∼ M−�a1 −�a4 +Q(a+nβ) × K, (21)

where we used Eqs. (20) and (14) to rearrange the exponent
of M .

Then, we apply a Girsanov transform to the charges a2 and
a3 (see Appendix A for more details), and obtain

e−a1φ(0)−a4φ(z)Z̃n
0 ∼ M−�a1 −�a4 +Q(a+nβ) × K. (22)

Here, Z̃0 = Z0|φ→φ̃ , where φ̃ differs from φ by a deterministic
background potential [see Eq. (A4)] which is smooth near
z = 0, and has log-singularities at z = 1 and z = ∞, with
charges a2,a3 < Q/2. They satisfy the Seiberg bound and are
not strong enough to trigger a binding transition at either point
[see Eq. (8)]. We thus expect that Z̃0 and Z0 lead to the same
exponents � and η. This allows us to replace Z̃n

0 by Zn
0 in

Eq. (22) and in what follows. Ultimately, we will justify this
assumption self-consistently in the end of Appendix A.

Finally, since |z| = 1/
√

M is of lattice-size spacing, we
can merge the two charges, i.e., perform the replacement
e−a1φ(0)−a4φ(z) � e−aφ1 (recall a = a1 + a2) in the left-hand
side of Eq. (22) without affecting the asymptotic behaviors
(this procedure is equivalent to the splitting method used in
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Ref. [29], Sec. 2.6.6). We thus obtain

e−aφ1Zn
0 ∼ M−�a1 −�a4 +Q(a+nβ) × K. (23)

This is the main formula of this section. It connects the
exponents in Eq. (10) to the asymptotic behavior of the four-
point LFT four point function K, which will be shown to be of
the following form:

K ∼ Mδ(ln M)−η , |z|2 ∼ 1/M → 0. (24)

Then Eq. (23) implies

�(a,n) = −δ + �a1 + �a4 − Q(nβ + a), η(a,n) = η.

(25)

C. Discrete terms and nonlocality

The exponents δ and η depend on the value of a1, . . . ,a4

and can be calculated by an analysis similar to Supplemental
Material Eq. (C.3) of Ref. [29], generalized in Appendix B to
take into account the remote discrete terms produced by the
group 2,3. To explain the main idea, we first present the results
for the leading exponent δ:

δ = �a1 + �a4 − �α, (26)

α = min(a1 + a4,a2 + a3,Q/2). (27)

These results are obtained in Appendix B by the conformal
bootstrap solution of LFT. In this approach, α is known as
the internal charge that dominates the four-point function. It is
selected as having the smallest scaling dimension �α among
the following candidates:

(1) The dominant discrete term produced by the local
group 1,4, α = a1 + a4 = a, which exists if and only if a1 +
a4 < Q/2;

(2) The dominant discrete term produced by the remote
group 2,3, α = a2 + a3, which exists if and only if a2 + a3 <

Q/2.
(3) The continuous term α = Q/2, which is the dominant

charge among the LFT spectrum α = Q/2 + iP,P ∈ R.
Combining Eqs. (25), (14), and (26), we obtain the leading

exponent in Eq. (10):

�(a,n) = α(Q − α) − Q(a + nβ). (28)

The three regimes in Eq. (11) can be characterized by the choice
of dominant α [see also Eq. (20)]:

(1) Unbound: when a1 + a4 = a < Q/2, the local discrete
term dominates: α = a.

(2) Bound: when a2 + a3 < Q/2 ⇔ nβ + a > Q/2, the
remote discrete term dominates: α = Q − nβ − a.

(3) Critical: when a > Q/2 and nβ + a < Q/2, no dis-
crete term is present, so the continuous term dominates: α =
Q/2.

One can readily check that Eq. (28), supplemented by the
above values of α, agrees with Eq. (11). To obtain the log
corrections, we recall [29,46] [see also Appendix B, below
Eq. (B6)] that it is absent in the LFT correlation function (24)
(η = 0) when a discrete term dominates, and it is present with
exponent η = 3/2 when dominated by the continuous term;
finally, η = 1/2 in the marginal case corresponding to regime

boundaries. Equation (12) follows readily from these facts and
the regime characterizations above.

For the sake of comparison with the RSB approach (in
Sec. IV), we note that the above analysis can be formally
extended to the region n � 0, by ignoring the bound n < 0 in
Eq. (15). Then, both discrete terms will be present and compete
with each other, resulting in the following formal extrapolation
of Eq. (11):

Formally,�(a,n)

n�0=
{
a(Q − a) − Q(nβ + a) 2a + nβ > Q

−(nβ + a)2 2a + nβ < Q.
(29)

The new boundary 2a + nβ = Q,n > 0 separating the U and
B regimes is generated by the competition between the two
discrete terms.

To close, we remark the “nonlocality” of the asymptotic
behavior of the four-point correlation function above. Since
only the local fields 1 and 4 are approaching each other,
one would be tempted to expect that the asymptotic behavior
depends only on a1 and a4, but not on the remaining fields in
the correlation function. However, in LFT, and more generally,
in conformal field theories, such as the minimal models [47],
this is not necessarily the case. As we illustrate in Appendix B,
the conformal bootstrap solution of LFT implies that when a
remote discrete term is present, the OPE depends explicitly
on the remote charges. This property is crucial for describing
correctly the bound regime. To our knowledge, such an ap-
plication to disordered statistical mechanics was not noticed
before (the importance of discrete terms for the consistency of
LFT is well understood, see, e.g., Ref. [36]). In the following,
we shall corroborate the LFT predictions by two independent
methods.

IV. REPLICA SYMMETRY BREAKING

In this section, we calculate the leading exponent of Eq. (9)
in the full parameter space, by one-step replica symmetry
breaking. This method has the advantage of covering the full
parameter space, which allows us to explore the log-normal
regime, invisible to the other approaches. In Sec. IV A we
go through the RSB calculation and obtain the complete
diagram. The two remaining subsections discuss the physical
and probabilistic meanings of the results in terms of large
deviation theory.

A. Determination of the complete diagram

1. One-step replica symmetry breaking

Replica symmetry breaking can be applied to logREMs,
Euclidean as well as hierarchal, because all logREMs enjoy an
asymptotic ultrametricity property; see Ref. [30] (Sec. 2.3.2)
for explanation. It is useful to introduce the notion of overlap
qij between two sites of a logREM, defined as

qij
def.= 1

2t
φiφj , t

def.= ln M. (30)

By Eq. (1), when the two sites ri and rj are separated by a
distance of lattice spacing order, qij → 1; when they are far
away, and the covariance between φi and φj is of order unity,

042111-5



CAO, LE DOUSSAL, ROSSO, AND SANTACHIARA PHYSICAL REVIEW E 97, 042111 (2018)

FIG. 2. Illustration of a dominating configuration according to
the one-step RSB Ansatz. The horizontal axis represents the space
on which is defined the logREM potential. The circles represent the
position jμ of the n replicas. The n0 replicas in the circle are attached
to the charge at j = 1. The other (n − n0) replicas form groups of
size m, whose positions are not fixed. Section IV A 2 discusses the
RSB of the (n − n0) replicas away from the charge (optimization of
m); Sec. IV A 3 discusses the optimization of n0.

qij = 0; in general, qij ∈ [0,1]. The terminology originates
from hierarchal logREMs; see Eq. (44) below.

The starting point of the RSB method is the following
exact formula for Eq. (9) when n = 1,2,3, . . . , which can be
obtained by the Wick theorem:

e−aφ1Zn
0

=
∑

(jμ)nμ=1

exp

⎡⎣β2

2

n∑
μ,ν=1

φjμ
φjν

+ a2

2
φ2

1 + βa

n∑
μ=1

φ1φjμ

⎤⎦.

(31)

We need to estimate the M → ∞ asymptotics of this replica
sum, when n is considered to be analytically continued to a real
value. The techniques involved are quite peculiar and heuristic,
yet relatively well-known in the spin-glass literature; see,
e.g., Refs. [48,49]. For logREMs without charge, the replica
approach was developed in Refs. [22,44,50] (see Ref. [30],
Sec. 2.3 for a more pedantic introduction).

For our situation with one charge, we shall adopt and extend
the one-step RSB Ansatz proposed in Ref. [33]. According
to it, the dominant terms in Eq. (31) have the positions of
the n replicas j1, . . . ,jn organized in the following way (an
illustration is provided in Fig. 2): n0 of them are attached to
the charge a, and have overlap 1 with the site 1; the rest of
replicas are not affected by the charge, and form groups of size
m that are free to move in the system. More precisely, replicas
of the same group have mutual overlap q = 1 and different
groups have mutual overlap 0, and all groups have overlap 0
with site 1. The attribute “one-step” refers to the fact that the
overlaps assume only two values (so the permutation symmetry
between the replicas is spontaneously broken “once”): 0 and 1.

Under the above one-step RSB Ansatz, Eq. (9) is evaluated
to have the following leading behavior:

e−aφ1Zn
0

∣∣
m,n0

≈ M−�(a,n|m,n0), (32)

�(a,n|m,n0) = −(a + n0β)2 − n − n0

m
(1 + m2β2). (33)

In the right-hand side of Eq. (33), (a + n0β)2 corresponds to
the Wick contractions between the n0 replicas near site 1 and
the charge, and the remaining term corresponds to the other
(n − n0)/m groups of replicas. In the bracket, 1 is an entropic

TABLE I. One-step replica-symmetry-breaking solutions for (Eu-
clidean) logREMs without charge. The first case is the replica-
symmetric solution. The third case is the replica-symmetry-breaking
phase. The second and fourth cases correspond to the log-normal
solution in β < 1 and β > 1 phases, respectively.

β n − n0 m −�(a,n|m,n0) − (a + n0β)2

<1 <β−2 1 (n − n0)(1 + β2)
<1 >β−2 (n − n0) 1 + ((n − n0)β)2

>1 <β−1 β−1 2(n − n0)β
>1 >β−1 (n − n0) 1 + ((n − n0)β)2

term (the constraint that different groups cannot have overlap
>0 does not affect the leading behavior); m2β2 comes from
the Wick contractions between replicas of the same group.
The Wick contractions between replicas from different groups
do not affect the leading exponent (because of their vanishing
overlap) and are ignored in Eq. (33). The notation �(a,n|m,n0)
is chosen in relation to �(a,n) in Eq. (10). They both denote
the leading exponent, yet �(a,n|m,n0) depends in addition on
the variational parameters m and n0, that we need to optimize,
according to the nonrigorous optimization rules of RSB that
we discuss below. The result of the optimization will be (the
RSB prediction of) �(a,n):

�(a,n)|RSB = �(a,n|m,n0)|m,n0 optimized. (34)

2. Optimization of m: freezing transition and log-normal regime

We first review the rules for the optimization of the sec-
ond term of Eq. (33) with respect to m, with n − n0 fixed.
These rules concern the replicas not attached to the charge.
Equivalently, one may consider logREMs without charge,
corresponding to the special case a = 0,n0 = 0. The RSB rules
are known to be the followings:

(1) m is between n − n0 and 1: m ∈ [n − n0,1] if n − n0 <

1 and m ∈ [1,n − n0] if n − n0 > 1.
(2) �(a,n|m,n0) is maximized with respect to m when n −

n0 < 1 and minimized, otherwise.
We now apply these rules to Eq. (33) with fixed n − n0. As

a function of m, Eq. (33) has a unique maximum at m = 1/β.
According to the above rules, this is the actual optimal m if and
only if n − n0 < 1/β < 1. In all other cases, the optimal m is
one of the boundaries n − n0 or 1. A thorough case study leads
to the results summarized in Table I; in particular, we find the
solutions are smooth across n − n0 = 1 despite the change of
the rules.

The results of Table I, specialized to the case a = 0 and n0 =
0,n − n0 = n, correspond to known facts of logREMs without
charge, which we review in the rest of this section. The typical
free energy of the bulk, corresponding to n ∼ 0, is governed by
the replica symmetric solution m = 1 and the replica symmetry
breaking solution m = 1/β in the high-temperature (β < 1)
and the frozen (β > 1) phase, respectively. On the other hand,
the negative large deviation of the free energy, corresponding
to n � 0, is governed by the log-normal solution [30,39]
m = n. We call it log-normal because it corresponds to a
Gaussian far tail of the free energy, and thus a log-normal
tail of the distribution of the partition function [39]. In the
high-temperature phase, the transition at nβ = 1/β is due to
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FIG. 3. Complete large deviation diagram of the logREM with a
charge for any fixed temperature 1/β, obtained by computing the
observable e−aφ1Zn

0 = Ma2
Zn

a [see Eqs. (9) and (7)] by the RSB
approach. The axes are the same as in Fig. 1. The four regimes:
unbound (U), critical (C), and bound (B), and log-normal (LN),
drawn in different colours, are separated by first- (solid) and second-
order (dashed) transitions. The diagonal n = 0 describes the typical
fluctuation of the free energy Fa of the logREM with one charge.
The binding transition happens when crossing the tricritical point
(Q/2,Q/2) along the diagonal (the full large deviation theory of Fa

is discussed in Sec. IV B). The termination point transition of the
Gibbs probability weight happens when crossing U-C boundary along
the a axis. The region n > 0 is not accessible in the LFT approach,
whose formal prediction misses the log-normal regime; see Fig. 1. We
denoted b = min(1,β) and Q = b + b−1 in agreement with Eq. (4).
The triple (T) point at which join the U, LN, and B regime boundaries
has coordinates (nβ + a = 1/b + b/2,a = b/2).

an exponential left tail of the distribution of the free energy
centered around its typical value: f0 = F0 + Qt,t := ln M

[see Eq. (3)]:

P (f0) ∼ ef0/β, f0 → −∞.

This tail is at the origin of the divergence of Zn
0 ∝ exp(−nβf0)

in continuum replica calculations [39]. In the frozen phase
β > 1, the tail acquires a log correction and its exponent
becomes independent of β [22,39]:

P
(
f0 = F0 + Qt − 3

2 ln t
) ∼ |f0|ef0 , f0 → −∞.

Therefore, the transition to log-normal regime happens at
nβ = 1. As we shall see in Sec. IV B and Appendix C,
exponential tails are a characteristic signature of first-order
transitions between different regimes describing the negative
large deviations of the free energy. We will also generalize the
above results to the case of logREMs with one charge.

3. Optimization of n0

Now we come to the optimization of n0. Since it concerns
the interaction with the log-potential and not among the
replicas themselves, the rules are different from those for m:

(1) n0 is between n and 0: n0 ∈ [0,n] if n > 0 and n0 ∈
[n,0] if n < 0.

(2) �(a,n|m,n0) is minimized (maximized) with respect
to n0 when n > 0 (n < 0, respectively).

We apply these rules on top of the previous results in Table I.
The case analyses are completely elementary but cumbersome
to enumerate in detail. The key point is to consider separately
n < 0 and n > 0, and observe that the log-normal solution
(m = n − n0) can only occur in the n > 0 case; otherwise, m =
1/b, with b = min(1,β) independently of n0. Going through
all cases, we obtain the complete diagram depicted in Fig. 3;
the optimal parameters and the leading behavior of Eq. (9) are
provided in Table II.

We now compare the above results with the LFT ones.
The leading exponent obtained by RSB agrees with the LFT
prediction Eq. (11) in the whole region n < 0 allowed by the
LFT-logREM mapping. This is remarkable given the difference
of the two methods: no intermediate steps can be compared.
We can push the comparison to the region n � 0, where the
LFT approach loses its validity in principle. Even then, the
formal LFT prediction, Eq. (29), still agrees with the RSB
result outside the log-normal regime, which is neglected by
LFT and can be only accessed within the RSB approach.

Another advantage of the RSB approach is that its so-
lution provides more direct physical insights (than the LFT
approach). Indeed, the nature of different regimes can be
understood by examining the optimized value of the variational
parameters. Let us focus on n0, which we recall is the number
of replicas that are attached to the charge [see above Eq. (32)]:

(1) In the unbound regime, n0 = 0: no replica is attached
to the charge, so the thermal particle is unbound. In particular,
in the unbound regime of the high-temperature β < 1 phase,
the replica symmetry is preserved everywhere.

TABLE II. Summary of the results of RSB analysis. See Fig. 3 for an illustration of the locus of each regime. The third and fourth columns
give the optimal value of the variational parameters m,n0. The fifth column gives the RSB prediction of the leading exponent, Eq. (34). For

compactness of the expressions, we denoted b
def.= min(β,1), so Q = b + b−1, as in Eq. (4), and (x)+ = max(x,0). The last column is obtained

by applying τ (s) = −�(a,−s/β) − a2, Eq. (38).

Regime Locus n0β mβ �(a,n) τ (s)
def.= limt→∞ ( 1

ln M
ln esFa )

Unbound a < Q

2 − (nβ)+,nβ < 1
b

0 b −a2 − Qnβ −Qs

Critical 0 < a − Q

2 < −nβ Q

2 − a b Q2

4 − Q(nβ + a) −Qs − ( Q

2 − a)2

Bound a > max( Q

2 − nβ,Q

2 − nβ

2 , 1
2nβ

) nβ b −(nβ + a)2 s2 − 2as

Log-normal 1
b

< nβ < 1
2a

0 nβ −a2 − n2β2 − 1 s2 + 1
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(2) In the bound regime, n0 = n: all replicas are attached
to the charge, so the thermal particle is trapped at the bottom
of the log-potential.

(3) The critical regime is the only one in which n0 attains
its stationary point (i.e., ∂n0� = 0),

(n0β)Critical = Q/2 − a, (35)

which is in the interior of the allowed interval: n < n0 < 0.
In this respect, this regime describes a “critical” state between
unbound and bound regimes (more precise statistical interpre-
tations will be provided in Secs. IV B and IV C).

The presence of the critical regime adjacent to the binding
transition point (a = Q/2,n = 0, see Fig. 8) makes the latter
the most intricate spot of the whole 2D diagram: it is a tricritical
point. To our knowledge, such a nontrivial nature of the binding
transition is revealed here for the first time.

B. Large deviations of Fa

To better understand the results from the viewpoint of
logREMs with one charge, we consider the large deviation
function of its free energy Fa = −β−1 ln Za [Za is defined in
Eq. (7)], defined as

L(ŷ)
def.= − lim

t→∞
1

t
ln δ(Fa/t − ŷ), t

def.= ln M. (36)

In other words, the probability distribution of the free-energy
density is

P (Fa/t = ŷ) = e−tL(ŷ)+o(t).

As a result, the leading exponent of the characteristic function
τ (s) is the Legendre transform of L(ŷ):

τ (s)
def.= lim

t→∞

(
1

t
ln esFa

)
= max

ŷ
[sŷ − L(ŷ)]. (37)

On the other hand, τ (s) can be related to the exponent
�(a,n), thanks to the Girsanov transform Eq. (9) [together
with Eq. (10), note also esFa = Z

−s/β
a ], as follows:

τ (s) = −�(a,−s/β) − a2. (38)

Applying this to the expressions of �(a,n) in Table II, we
obtain τ (s) in the four regimes, which we exhibit in its last
column. Then we calculate L(ŷ) as the Legendre transform of
τ (s) (recall that the inverse of Legendre transform is Legendre
transform itself). The results, illustrated in Fig. 4, will be
discussed in the bound and unbound phases below.

1. Bound phase: a > Q/2

The large deviation function is as follows:

L(ŷ = Fa/t) =
{ 1

4 (ŷ + 2a)2, ŷ < −Q

+∞, ŷ > −Q
. (39a)

As a consequence, the typical behavior of the free energy
is governed by the bound phase, and is a Gaussian with the
following mean and variance:

Fa = −2at + o(t), Var(Fa) = −2 + o(t), t = ln M.

(39b)

FIG. 4. Illustration of the large deviation function of the free
energy Fa of logREMs with one charge. The three panels correspond
to Eqs. (39a), (39d), and (39e), from top to down. The large deviation
function L(ŷ = Fa/ ln M) Eq. (39) is drawn in solid curve. Dots on
the curve indicate a nonanalyticity.

Note that the mean value agrees with Eq. (8), while the variance
diverges as M → ∞. This extensive variance is a character-
istics of the bound phase: in comparison, Var(F0) remains
of order unity in logREMs without charge. It is possible to
calculate the non-Gaussian corrections to Eq. (39b) for specific
integrable logREMs; see Appendix C 4 and Ref. [38].

The above Gaussian tail extends to the whole bound regime
Fa ∈ [−∞,Qt + o(t)]. The critical regime describes rare re-
alizations where the free energy behaves as if the charge did
not exist: Fa = −Qt + o(t). The probability of ŷ > −Q is
vanishing even under the large deviation scaling. Indeed, it is
rigorously known [51] that the distribution of the free energy of
logREMs without charge has generically a double exponential
right-tail beyond its typical value F0 = −Qt + o(t); since the
log-potential is attractive, the free energy of logREMs with one
charge is more negative Fa < F0, so we always have a hard wall
at ŷ = −Q. In this sense, ŷ = −Q is also a termination point,
and the C/B transition is another kind of termination point
transition. We remark that Eq. (39a) was already announced in
Ref. [38] [in a slightly different form, see Eq. (47) therein], and
the termination point transition predicted here played a crucial
role in that work; see Appendix C 4 for further discussion on
this matter.

2. Unbound phase: a < Q/2

When a < Q/2, the typical free energy is governed by the
unbound phase, and has the same leading behavior as the free
energy of logREMs without charge [see Eq. (8)]. However,
the negative large deviations of Fa have a highly nontrivial
structure. When conditioned to atypically negative free energy,
the system can transit from the unbound regime to the log-
normal and/or bound regimes. These are generically first-order
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transitions, i.e., the derivative τ ′(s) has a jump at the transition.
Via Legendre transform, such jumps correspond to intervals
where L(ŷ) is linear. In what follows we use the short-hand

b = min(β,1) =
{
β β < 1

1 β > 1
(39c)

and Q = b + b−1 to include both phases, and we distinguish
two cases:

(1) When min(β,1)/2 < a < Q/2, we have

L(ŷ) =
{

(ŷ + Q)(2a − Q) 2(a − Q) < ŷ < −Q

(ŷ + 2a)2/4 ŷ < 2(a − Q).
(39d)

The unbound regime corresponds to a single point ŷ =
−Q,L = 0, and the bound regime the parabola of the third line.
The first-order transition between the two regimes generates
the linear interpolation regime described in the second line of
Eq. (39d). It is obtained as the nonhorizontal tangent of the
parabola L = (ŷ + 2a)2/4 that intersects the point (−Q,0).

(2) When 0 < a < min(β,1)/2, there appear two first-
order transitions, unbounded to log-normal, and log-normal
to bound, as ŷ and s decrease (moving to the right in Fig. 3).
So we have a rich alternation of Gaussian and exponential tails:

L(ŷ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− ŷ+Q

b
, − 2

b
< ŷ < −Q

ŷ2

4 − 1, − 1
a

< ŷ < − 2
b

− ŷ

2a
− 1 − 1

4a2 , − 1
a

− 2a < ŷ < − 1
a

(ŷ+2a)2

4 , ŷ < − 1
a

− 2a.

(39e)

The two linear parts are found as a tangent line of the parabola
L = (ŷ + 2a)2/4 intersecting (−Q,0) (the unbound regime)
and a tangent line of both parabolas, respectively. When a = 0,
the last two cases disappear, and we retrieve the known
linear-quadratic tail of the free-energy distribution in logREMs
without charge [31].

The alert reader may have noticed that the results above rely
on the hypothesis that L(ŷ) is convex [otherwise, the Legendre
transform of τ (s) will be the convex hull of L(ŷ), but not L(ŷ)
itself]. The convexity assumption is directly responsible for
the prediction of the linear parts in L(ŷ), which correspond
to of exponential tails in the free energy distribution P (Fa).
We will check in Appendix C that these exponential tails can
be all found in an integrable logREM, the circular model with
one charge, by a completely different method: we calculate
the moments Zn

a beyond the leading behavior, by relating
to exactly solvable Coulomb gas integrals. By analyzing the
pole structure of Zn

a , seen as the Laplace transform of the
distribution of Fa , we identify its exponential tails. They turn
out to agree exactly with the linear parts of the large deviation
theory prediction, Eqs. (39). This is a nontrivial test of the
convexity assumption, which we will use again in Sec. IV C.

C. Joint large deviation of logREM without charge

Another way to interpret the results in Table II is to consider
the joint large deviation function of − ln pβ,1 and F0 of the
logREM without charge:

P (−β−1 ln pβ,1 = t x̂,F0 = t ŷ)

def.= exp[tf (x̂,ŷ) + o(t)], t
def.= ln M, (40)

which can be also viewed as a generalization of the multifractal
spectrum of the Gibbs probability weight. We shall consider
it for ŷ � −Q and x̂ � 0 (since pβ,j � 1 by normalization).
Equations (40), (9), and (32) imply then that f (x̂,ŷ) is related
to leading exponent �(a,n) in Table II by Legendre transform:

� = min
x̂,ŷ

[ax̂ + (a + nβ)ŷ − f (x̂,ŷ)], (41)

i.e., the variables x̂,ŷ are dual to a,a + nβ (which are the two
axes in Fig. 3), respectively. Performing the (inverse) Legendre
transform, we obtain the following results:

(1) The unbound regime transforms to

f (x̂ > 0,ŷ = −Q) = − 1
4 (x̂ − Q)2, (42a)

which describes realizations where F0 ∼ −Qt + o(t) has its
typical value [Eq. (3)] and pβ,1 � 1. Note that the usual mul-
tifractal spectrum of the Gibbs probability weight [10,11,52]
is given as f̃ (γ ) = f (x̂ = γ /β, − Q) + 1; the +1 differ-
ence is due to the fact that f̃ counts all the sites pβ,j ,j =
1, . . . ,M , whereas Eq. (40) describes the distribution of pβ,1

at a single site. We remark also that values of x̂ such that
f (x̂,−Q) + 1 < 0 is absent in a typical large realization, and
occurs only in rare samples (this leads to different transitions
in the typical/quenched ensemble [33,52] of Gibbs measure
multifractality, whereas our study corresponds to the annealed
ensemble).

(2) The critical regime transforms to a single point,

f (x̂ = 0,ŷ = −Q) = −Q2

4
, (42b)

which describes realizations where F0 is still typical but the
Gibbs probability weight at site 1 is atomic pβ,1 ∼ O(1).
This happens for a few pβ,j ’s (among j = 1, . . . ,M) in a
typical sample when β > 1 [because Q = 2 ⇒ f + 1 = 0,
see Eq. (3)], and only in rare samples when β < 1. Compared
to the bound regime (see below), the critical regime describes
realizations at the onset of a binding to site 1.

(3) The bound regime transforms to

f (x̂ = 0,ŷ < −Q) = − ŷ2

4
, (42c)

which describes realizations with an atomic Gibbs probability
weight pβ,1 ∼ O(1) and a negative large deviation of the
free energy F0 � −Qt . Such large deviations are due to
an atypically negative potential value φ1 ∼ −ŷt . From the
viewpoint of the logREM without charge, the whole bound
regime describes rare samples. The Girsanov transform Eq. (9)
can be seen as a biased sampling that makes them typical in
the logREMs with one charge a > Q/2.

Notice that the above regimes have only covered the
boundaries of the (x̂,ŷ) parameter space. Its interior is occu-
pied by the log-normal regime and the interpolation regimes
corresponding to first order transitions between them. We refer
to Appendix D for further details.

For the sake of comparison with the traveling-wave equation
approach, we note down the transformation between dual
variables given by Legendre duality Eq. (41) inside different
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FIG. 5. (a) A sample of the BBM model, with the common length
between a pair particles i and j illustrated. The two families of
particles after the first branching are drawn in different colours/gray
scale. (b) A sample of the drifted BBM. The drifting particle (in black,
leftmost, beside the arrow indicating the drifting velocity) happens to
be the left-most one; note that this is not generally the case.

regime:

x̂,ŷ =

⎧⎪⎨⎪⎩
Q − 2a,−Q unbound

0,−Q critical

0,−2(nβ + a) bound.

(43)

We will recover these formulas using the traveling-wave
equation approach in the next section and reinterpret them in
term of positions of a diffusing particle.

V. TRAVELING-WAVE EQUATION APPROACH

In this section we use the traveling-wave equation approach
to revisit certain aspects of the diagram obtained so far. Since
this approach originates from the study of the branching
Brownian motion (BBM) model, we shall review it in Sec. V A.
Section V B derives the basic analytic result, which will be then
analyzed by two methods: the real-space analysis (Sec. V C),
leads to a direct access to the leading exponents, and can
be compared to the large deviation results of Sec. IV C; the
momentum space analysis (Sec. V D) recovers all the LFT
predictions, and can be compared in detail to both precedent
approaches.

A. The branching Brownian motion (BBM) model

BBM is a representative of the hierarchical logREMs, and it
is defined by a stochastic process [2,53], illustrated in Fig. 5(a).
The random energy levels φj = φj (t) are the positions (at time
t) of an ensemble of particles on the real line. The particles
diffuse independently with dφidφj = 2δij dt , and each particle
splits into two offsprings at the same position with rate dt (the
splitting events are also independent). Initially, there is only one
particle at the origin: M(t = 0) = 1, φ1(0) = 0. As a result,
at time t , the mean particle number M(t) = et (moreover,
M(t) ∼ et typically [54,55]), and the partition function defined
by Eq. (2) satisfies Eq. (3). For this reason, the BBM at time t

is usually considered equivalent to a logREM of size M = et :
this justifies the notation used since Eq. (4). However, there are
important differences between their definitions. To compare
them, let us observe that the random positions of the BBM
particles at time t can be generated in two steps:

(1) We generate all the branching events up to time t ,
which are independent of the diffusion. This determines the

random particle number M(t) and a matrix of common lengths,
q̂ij = q̂ij (t),i,j = 1 . . . M , which is most easily defined by an
illustration; see Fig. 5(a). In particular q̂ii(t) = t for any i.
Note that the common length is closely related to the overlap,
defined by a rescaling qij = q̂ij /t ; see Eq. (30).

(2) We generate the particle positions φj = φj (t) at time t ,
as correlated Gaussian variables with the following mean and
covariance:

φj (t)
q̂ = 0, φj (t)φi(t)

q̂ = 2q̂ij (t), (44)

for i,j = 1, . . . ,M(t), where [. . . ]
q̂

denotes an average over
the diffusion process, while conditioned on a fixed realization
of the branching process. By the law of total expectation (a.k.a.,
iterated expectation), generating branching and diffusion in
two steps is equivalent to doing both simultaneously. There-
fore, the BBM can be seen as a logREM whose covariance
matrix is itself random. The total expectation over all BBM
randomness will be still denoted by [. . . ].

It follows from the above observation that BBM belongs
to the logREM class if we consider only the typical branch-
ing events. When atypical branching events make dominant
contributions to an observable, the latter may have different
behavior from general logREMs. For example, the large devi-
ation function of the free energy (without charge) everywhere
[56,57], while there is a hard wall for Euclidean logREMs; see
Sec. IV B. The difference is precisely due to the contribution of
BBM configurations with few or no branching events [56,57].
This issue affects the observables that we study as well and
will require a special treatment, as we discuss in detail below.

1. BBM with one charge and drifted BBM

After reviewing the original BBM model, as a peculiar
logREM without charge, we discuss how to define the BBM
with one charge (the following discussion is not explicitly
required to understand the rest of the paper). For this, we
note that once the covariance matrix Eq. (44) is generated,
the background potential Uj and the composite energy level
ϕj = φj + Uj can be constructed in the same way by Eq. (6).
Thus, Uj is now random and depends on the branching events.
Since the Girsanov relation Eq. (9) holds for any covariance
matrix, it is true for the BBM if [. . . ] is interpreted as an average
conditioned on any fixed branching event. By the law of total
expectation, we conclude that the Girsanov transform Eq. (9)
holds when the average is over all the BBM randomness.

It is interesting to note that the composite energy levels ϕj

can be also dynamically generated, by a BBM with one drifting
particle (drifted BBM), defined as follows:

(1) The initial particle ϕ1 is a drifting particle, doing a
biased Brownian motion: dϕ1 = −2adt + dφ1.

(2) A drifting particle branches into a drifting offspring and
a nondrifting one, so that there is always exactly one drifting
particle, whose position is denoted ϕ1.

An illustration can be found in Fig. 5(b). Let us convince
ourselves that the particle positions at time t has the same
statistical properties as ϕj = φj + Uj as defined in Eq. (6).
First, the new definition does not alter the branching events,
and thus the statistics of the particle number M(t) and the
overlaps qij ,i,j = 1, . . . ,M . Taking the latter as fixed, the
above dynamical rule implies that the drift of any particle is
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given by its common length with particle 1, so

Uj = ϕj
q̂ = −2aq̂j1 = −a φjφi

q̂

by Eq. (44). This agrees with the definition Eq. (6). By the law
of total expectation, we conclude that the positions ϕj of the
drifted BBM are statistically identical to the construction of
logREM with 1 charge ϕj = φj + Uj .

B. From KPP equation to diffusion with absorption

We first recall the fundamental relation between the KPP
equation and the BBM [2,53] (the derivation is recalled in
Appendix E). The exponential generating function

G(y,t)
def.= exp(−eβyZ0) (45)

of the BBM partition function satisfies the following Fisher-
KPP equation:

Gt = Gyy + G(G − 1), G(y,0) = exp(−eβy). (46)

It is well-known that when t → ∞, the solution of Eq. (46)
tends to a traveling wave, whose position r(t) coincides with
the universal asymptotic behavior of the logREM free energy
[compare Eq. (47b) to Eq. (3)]:

G(y + r(t),t)
t→∞−→ g(y), (47a)

where r(t) =
{

−Qt + O(1) β < 1

−Qt + 3
2 ln t + O(1) β > 1

, (47b)

and g satisfies g′′ − Qg′ + g(g − 1) = 0, (47c)

with limit conditions g(−∞) → 1, g(+∞) → 0. In Eq. (47b),
O(1) denotes some order-unity quantity. The function g(y)
describes the limit profile of the traveling-wave solution, and
it determines the limiting distribution of the free energy F0 for
BBM. Indeed, Eq. (45) implies that 1 − G(y) is the cumulative
distribution function of the convolution F0 − Gum/β, where
Gum is a standard Gumbel random variable independent of
F0. In particular,

G(y,t),g(y) ∈ [0,1] (48)

and are decreasing function of y.
G(y,t) contains only information on the free energy distri-

bution. To access the Gibbs probability weight, we introduce
the following observable:

H (y,t)
def.= exp(−a(φ1 − y) − eβyZ0). (49)

It is related to the observable of Eq. (9) by a Laplace transform:

β

�(−n)

∫
R

dyH (y,t)e−(nβ+a)y = Zn
0e−aφ1 , (50)

where the right-hand side is the main observable introduced
in Eq. (9), evaluated in the BBM model. The above integral
converges if and only if n < 0, so we shall restrict to this
domain in the following. Note that the same restriction applies
to the LFT approach in Sec. III.

One can show that the following traveling-wave equation
holds for H (y,t) [the derivation, similar to that of Eq. (46),
can be found in Appendix E]:

Ht = Hyy + (G − 1)H, H (y,0) = exp(ay − eβy). (51)

This equation is linear in H and can be interpreted in terms
of a single diffusing particle y(t) with absorption. Its starting
position y(0) is distributed with a (nonnormalized) probability
density H (y,0). Its diffusive rate is (dy)2 = 2dt , and the
absorption rate is [1 − G(y(t),t)]dt . By Eq. (50) with (nβ +
a) = 0, p

a/β

β,1 is proportional to the survival probability of the
particle at time t . More generally, we have 〈e−(nβ+a)y(t)〉 ∝
Zn

0e−aφ1 , where 〈. . . 〉 denotes the average over the diffusion
process times the survival probability.

However, for a reason that we expose in a moment, the
asymptotic behavior of Eq. (50) as t → ∞ is different from
that of Euclidean logREMs with M = et . For example, let us
consider the (nβ + a) = 0 case. Since G � 0 [Eq. (48)], we
can bound the term (G − 1)H > −H and obtain the following
estimate for

∫
H := ∫

R H (y,t)dt :

d

dt

∫
H = −

∫
(1 − G)H � −

∫
H ⇒

∫
H � e−t . (52)

By Eq. (50), this entails that the exponent �BBM(a,n =
−a/β) � 1 when (a + nβ) = 0, which disagrees with
Eq. (13), since Q2/4 > 1 for any β < 1. The origin of this dis-
crepancy is that the LFT and RSB methods apply to logREMs
with fixed and large size M , whereas the above traveling-wave
equations describe the BBM model at fixed time t , at which
the particle number M(t) fluctuates. In particular, there is
probability e−t that the initial particle never splits until time t ,
in which case M(t) = 1 and pβ,1 = 1. Therefore, we can bound

from below the annealed average p
a/β

β,1 � e−t and deduce
that �BBM(a,n = −a/β) � 1 for any a > 0. To recover the
exponents that describe logREMs with size M = et � 1, we
need to suppress by hand the anomalous events where M(t) �
et . For this, we propose a simple heuristic approach, which
consists in replacing the soft absorbing potential (1 − G) by
a hard absorbing wall at the wave-front location r(t) [see
Eq. (47b)]. The reasoning behind this is that if the maximum
value of (1 − G), i.e., the maximal absorption rate, is increased
to U > 1, then the estimate Eq. (52) will become H � e−Ut .
By letting U → +∞, we will totally suppress these undesired
events. Therefore, by analogy with Eq. (50), we consider the
observable

O def.=
∫ r(t)

−∞
h(y,t)e−(nβ+a)ydy, (53)

where h is defined by the following PDE with moving Dirichlet
boundary condition:

ht = hyy, y < r(t), hy�r(t) = 0,

ht=0(y) =
{
eay y < 0
0 y � 0 . (54)

That is, we replace the PDE Eq. (51) for H by its “hard-wall”
version. We expect that the resulting observable O reproduces
the asymptotic behaviors of Zn

0e−aφ1 for logREMs of size
M = et .

Equation (54) has a even simpler statistical interpretation: it
describes a particle that diffuses freely in the half line y < r(t),
with Dirichlet boundary condition at y = r(t). At the leading
order, r(t) ≈ −Qt by Eq. (47b). This brings us to consider the
diffusion kernel [from y(0) = x to y(t) = y] in the presence
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FIG. 6. Illustration of dominant contributions to the observable
O, Eq. (57), in terms of a single diffusive particle with an absorbing
wall. The initial and final positions correspond to the log of the Gibbs
probability weight at site 1 and the free energy of logREMs without
charges, respectively; see Eq. (59) [compare also to Eq. (43)].

of a moving wall at −Qt , which can be obtained by a mirror
image trick. We claim that the result is

D(y,x|t) = 1√
4πt

[
e− (x−y)2

4t − e−Qx− (x+y)2

4t

]
, (55)

for any x < 0 and y < −Qt . Indeed, it can be checked that
D(y,x|t) satisfies the diffusion equation Dt = Dyy and the
boundary condition D(−Qt,x|t) = 0. In terms of this kernel,
the observable is approximated as [using Eq. (53) and the initial
condition in Eq. (54)]

O ∼
∫ −Qt

−∞
dy

∫ 0

−∞
dx D(y,x|t)eax−(a+nβ)y . (56)

Since the approximation consisted in replacing r(t) by −Qt ,
by Eq. (47b), this expression is always exact to the leading
order and to the log-correction order in the β < 1 phase.
Equation (56) will be analyzed in two ways in the following
sections.

C. Real-space analysis

In this analysis we focus on the leading exponent of the ob-
servable O. For this, we write D(x,y|t) = exp[− 1

4t
(y − x)2 +

O(ln t)] (the mirror image term can be discarded, because
it is always subdominant), and we replace the integrals by
an optimization of the endpoint positions x = −x̂t < 0, y =
ŷt < r(t) = Qt + o(t):

O = exp

⎡⎢⎣−t min
ŷ � −Q

x̂ � 0

�(a,n|x̂,ŷ)

⎤⎥⎦ × corrections, (57)

where �(a,n|x̂,ŷ) = 1

4
(ŷ + x̂)2 + ax̂ + (a + nβ)ŷ. (58)

Like �(a,n|m,n0) in Eq. (33), �(a,n|x̂,ŷ) depends on the
variational parameters x̂,ŷ to be optimized. One can check that
the gradient of �(a,n|x̂,ŷ) never vanishes in the optimization
domain, provided n < 0. Hence, the minimum is always on the
boundary {ŷ = −Q} ∪ {x̂ = 0}. An explicit calculation shows
that the unbound, bound, and critical regimes are characterized
by the qualitative nature of as summarized in Fig. 6. Plugging
the optimal positions into Eq. (58) gives the same exponents
as in Eq. (11), or in Table II. Moreover, the optimal values of x̂

and ŷ are identical to the expressions of Eq. (43), obtained by
the two-variable Legendre transform of the RSB results. This
justifies the choice of the variable names and provides clear

interpretations of the initial and final positions by a comparison
to Eq. (40). Indeed, they are, respectively, the magnitude of the
Gibbs probability weight at site 1 and the free energy of the
logREM without charge:

y(0) = −x̂t = β−1 ln pβ,1 � 0, (59a)

y(t) = ŷt = F0 � −Qt + o(t). (59b)

D. Momentum-space analysis

To recover the log corrections predicted by LFT [Eq. (12)]
and further connect to the RSB and LFT methods, we analyze
Eq. (54) by a momentum-space method. As in the LFT
approach, we shall assume n < 0 and restrict to the high-
temperature phase β < 1. The latter assumption makes the
approximation r(t) ≈ −Qt leading to Eq. (56) exact to the
log-correction order, so that we can calculate correctly log
corrections (they are known to be different in the β > 1 phase
and are partially considered in Ref. [38]).

To obtain the momentum space representation of Eq. (56),
we apply the following Hubbard-Stratonovich (HS) transform
to D(y,x|t):

D(y,x|t) =
∫
C

dα

2π i
eα2t [e(y−x)α + e(y+x)α−Qx], (60)

where the integral contour can be any vertical axis in the
complex plane. Plugging Eq. (60) into Eq. (56) and integrating
over x and y gives

O =
∫
C1

dα

2π i
C1(α)e−t[�α−Q(a+nβ)], a >

Q

2
, (61a)

C1(α)
def.= (2α − Q)

(α − a)(Q − α − a)(α − a − βn)
, (61b)

where �α = α(Q − α) [Eq. (14)] and the integral contour is
vertical (oriented toward +i∞, same below) and satisfies

C1 : max(Q − a,a + nβ) < Re(α) < a. (61c)

There is another HS transform formula for D(y,x|t), which
is the same as Eq. (60), except that the term e(y+x)α−Qx is
replaced with e−(y+x+2Qt)α+Qy+Q2t . This leads to an alternative
momentum-space expression:

O =
∫
C2

dα

2π i
C2(α)e−t[�α−Q(a+nβ)], nβ + a <

Q

2
,

(62a)

C2(α)
def.= (2α − Q)

(α − a)(α − a − nβ)(Q − α − a − βn)
, (62b)

where the contour is vertical and satisfies

C2 : a + nβ < Re(α) < min(a,Q − a − nβ). (62c)

The two sets of formulas cover the entire region n < 0 and
agree with each other when they can be compared.

Now, the leading and subleading exponents of the observ-
ableO can be calculated by the saddle-point (steepest-descent)
approximation. This requires displacing the integral contour to
the saddle-point contour:

α ∈ Q

2
+ iR. (63)
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In the same manner as in LFT [29], one must examine whether
a pole of C1(α) or C2(α) is crossed in the displacement and
take into account the discrete term generated by pole-crossing.
The results are as follows:

(1) In the unbound regime (a < Q/2), the pole at α = a in
Eq. (62b) is crossed when displacing the contour to Eq. (63).
So a discrete term dominates instead of the continuous term, so
there are no log corrections (here and below, “log correction”
means a power of t , which is proportional to the log of the
leading behavior e−�t ):

O ∼ (2a − Q)et(a2+Qnβ)

nβ(Q − 2a − βn)
. (64a)

(2) Similarly, in the bound regime (nβ + a > Q/2), the
pole α = a + nβ in Eq. (61b) is crossed, giving

O ∼ (2a + 2nβ − Q)et(nβ+a)2

nβ(2a + nβ − Q)
. (64b)

In the above two equations, the prefactor vanishes when
approaching the regime boundary. This is a recurrent signature
of the log corrections in the neighboring regime (and on the
boundary), as we show below (see also Appendix C 3 and
Ref. [38]).

(3) In the critical regime (a > Q/2, a + nβ < Q/2), for
either set of formula (both can be used), the contour Eq. (63)
is inside the validity domain Eq. (61c) [and Eq. (62c)]. At
the saddle point, α = Q/2, C(α) and C ′(α) have a zero. As a
result, the saddle-point approximation gives

O ∼ et[Q(a+nβ)− Q2

4 ]t−
3
2

√
4π

(
a − Q

2

)2(
a + βn − Q

2

)2 . (65)

(4) On the U/C and U/B boundaries, Eqs. (61a) and (62a),
is a nonzero constant, so we have instead a log correction with
exponent 1

2 :

O ∼
√

πet[Q(a+nβ)− Q2

4 ]t−
1
2

n2β2
. (66)

The above results agree with the LFT predictions Eqs. (10)–
(12), provided the correspondence M = et . The prefactors
above are not universal for all logREMs, yet we believe
that their way of divergence and vanishing approaching the
transitions are universal. A test of this claim is provided in
Appendix C for an integrable Euclidean logREM, the circular
model with charge. Indeed, we will show that the analytically
continued Coulomb gas integrals have very similar pole and
zero structure compared to Eqs. (62b) and (61b).

We now compare the forgoing saddle-point analysis to
the RSB and LFT approaches. The connection with the RSB
approach is best summarized by the following correspondence
between the locus α of dominant contribution (i.e., saddle point
or pole) and the optimal value of the RSB variational parameter
n0:

α = n0β + a. (67)

This relation can be obtained by matching the exponent in
Eq. (61a) and that of Eq. (33) (with m = 1). In light of Eq. (67),
α = Q/2 corresponds to the RSB-stationary point Eq. (35).
Note that the exponent in Eq. (61a) is maximum at the α = Q/2

(compared to other values of α ∈ R), in agreement with the
RSB rule of maximizing �(n0,m) with respect to n0 if n < 0.
The validity domains Eqs. (61c) and (62c) imply also n <

n0 < 0, which is the domain of n0, imposed as another RSB
rule. Therefore, the traveling-wave equation approach provides
rationale for the new rules concerning the RSB induced by the
charge.

The similarity with the LFT approach is even more re-
markable. The momentum-space representations Eqs. (61) and
(62) are reminiscent of the conformal bootstrap formula for
general four-point correlation functions in LFT [see Eq. (B1)],
in several key aspects:

(1) A continuous integral over α ∈ Q/2 + iR, Eq. (63) is
involved. This is reminiscent of the continuous term in the
conformal bootstrap approach to LFT, which is an integral
over the LFT operator spectrum Q/2 + iR.

(2) The “structure constants” Eqs. (62b) and (61b) van-
ish at α = Q/2; this is a generic feature of the Dorn-
Otto-Zamalodchikov-Zamalodchikov (DOZZ) [35,58] struc-
ture constants of LFT [see Appendix B, Eq. (B3)].

(3) When the parameters cross a critical value, a pole of
the structure constant Eqs. (62b) and (61b) cross the spectrum
Q/2 + iR, producing a discrete term. The same mechanism is
behind the genesis of LFT discrete terms [29,36,47] (see also
Appendix B).

More specific to our problem, the dominant value α deter-
mined in the traveling-wave equation approach coincides with
the dominant conformal-bootstrap internal charge identified in
the LFT approach, see Eq. (27), with the exception of the bound
regime, where α = Q − a − nβ in LFT while α = a + nβ in
the traveling-wave approach. Nevertheless, these two charges
give rise to the same scaling dimension �α = α(Q − α) [see
Eq. (14)] and correspond in fact to the same primary field in
LFT, by the so-called reflection relation [47].

The similarity between the LFT and the traveling-wave
equation approach, as well as the diffusion-absorption inter-
pretation, suggests that the LFT features that we have linked
to the logREM Seiberg-type transitions are already present in
a (0+1)-d approximation of LFT (i.e., considering only the
imaginary-time evolution of the zero mode of the Liouville
field), also known as Liouville quantum mechanics, which
has numerous connections: the exponential and extremes of a
Brownian motion [59,60], Anderson transition [61], and more
recently holographic models [62]. It will be interesting to find
applications of the theory of Seiberg-type transitions to these
physical systems.

VI. COMMON LENGTH (OVERLAP) DISTRIBUTION

We now turn to the common length distribution of the
BBM model (and hierarchical logREMs in general), defined
by sampling independently two configurations according to a
same random realization of Gibbs probability weights:

P (q̂)
def.=

M∑
j,k=1

pβ,jpβ,kδ(q̂jk − q̂), (68)

where q̂ is a real deterministic variable that is unrelated to
the random variables q̂jk . P (q̂) is related to the leading finite-
size correction of the distribution of the overlap (q = q̂/t),

042111-13



CAO, LE DOUSSAL, ROSSO, AND SANTACHIARA PHYSICAL REVIEW E 97, 042111 (2018)

FIG. 7. Illustration of the observable Eq. (69) and the time
variables q̂ and τ = t − q̂. The trajectory of two marked particles
are drawn as red bold curves. The particles indicated by pink filled
bullets have common length �q̂ with j,k, and form the “subtree.” The
behavior of its Gibbs measure characterizes the different regimes; see
Eq. (81).

whose thermodynamic (t → ∞) limit is known to be δ(q)
for β < 1 and β−1δ(q) + (1 − β−1)δ(q − 1) [2,63]. Yet, the
limit distribution of common length is more involved, and
investigated only quite recently [3,4,29]. The purpose of this
section is deriving the predictions of LFT [29] by a traveling-
wave calculation.

For this, we adapt the initial step of Sec. V and define

I = I (y,q̂,τ )

def.=
M(t)∑
j,k=1

exp(β(2y − φj − φk) − eβyZ0)δ(q̂jk − q̂),

where φj = φj (t), q̂jk = q̂jk(t), t = τ + q̂. (69)

Here we introduced the variable τ = t − q̂ (see Fig. 7 for
illustration) and define I as a function of y,q̂, and τ (instead of
y,q̂, and t), which turns out to be more convenient for writing
the traveling-wave equations.

It is not hard to show that I (y,q̂,τ ) is related to P (q̂) by an
integral over y,

P (q̂)|t=τ+q̂ = β

∫
R

I (y,q̂,τ )dy. (70)

In Appendix E, we show that I (y,q̂,τ ) satisfies the following
traveling-wave equation:

Iq̂ = Iyy + [2G(y,τ + q̂) − 1]I, (71a)

I (y,q̂ = 0,τ ) = 2[β−1G′(y,τ )]2, (71b)

whereG(y,t) is the solution to the KPP equation, Eq. (46). Note
that τ is only a parameter of the partial differential equation,
and all partial derivatives are with respect to y or q̂, q̂ being
the temporal variable (in the place of t).

Equation (71a) is similar to Eq. (51) but has a different
quasilinear term. Since (2G − 1) ∈ [−1,1] [recall g,G ∈ [0,1]
in Eq. (48)], a direct probabilistic interpretation (as a absorption

term) is not possible. Nevertheless, let us consider

Ĩ (y,q̂,τ )
def.= e−q̂I (y,q̂,τ ), (72)

which satisfies the following transformed equation:

Ĩq̂ = Ĩyy + 2(G − 1)Ĩ , (73)

which enjoys a an interpretation in terms of diffusion with
absorption.

We now make a further simplification by taking the τ → ∞
limit with q̂ fixed. This implies t = τ + q̂ → ∞, so it is a ther-
modynamic limit. By Eq. (47), G(y,t) → g[y − r(t)], r(t) =
−Qt + O(ln t) as t → ∞, where g(y) is the limit profile of
G(y,t); see Eq. (47c). Since Eq. (70) is not affected by a
translation in the y direction of I , we may consider

I∞(y,q̂)
def.= lim

τ→∞ Ĩ [y − r(τ ),q̂,τ ]. (74)

Using Eqs. (47) and (73), we can show that I∞ satisfies the
following traveling-wave equation:

I∞
q̂ = I∞

yy + 2[g(y + Qq̂) − 1]I∞,

I∞(y,q̂ = 0) = 2[g′(y)/β]2, (75)

On the other hand, using Eqs. (70) and (72), we can relate I∞
to the τ → +∞ limit of P (q̂) as follows:

P (q̂)|τ→∞ = βeq̂
∫
R

I∞(y,q̂,τ ) dy. (76)

A nice consequence of the above equation is an exact freezing
and one-step RSB relation. Since the traveling-wave velocity
−Q and the profile g are independent of β in the whole β > 1
phase [see Eqs. (47) and (3)], we have, by linearity of Eqs. (75)
and (76),

P (q̂)|τ→∞,β>1 = β−1P (q̂)|τ→∞,β=1. (77)

In particular, the integral of the left-hand side from q̂ = 0 to
+∞ is 1/β < 1. This nonconservation of probability [viewing
P (q̂) as a probability distribution] is indeed consistent with the
fact that with a finite probability 1 − 1/β, the overlap q ∼ 1,
which is equivalent to q̂ ∼ t → ∞: these events escape “to
the infinity” and are not captured in the τ → ∞ limit of P (q̂).
Equation (77) allows us to obtain results in the β > 1 phase
automatically, as long as the P [q̂ ∼ O(1)] regime is concerned
(in contrast, the behavior near P (q̂ ∼ t) is lost in the current
setting, the only study of this regime being Refs. [3,4]).

Restricting to the β < 1 phase, we can repeat the probability
argument in Sec. V. Indeed, Eq. (75) describes a diffusing
particle, in the presence of a left-moving soft absorbing wall
near y = −Qq̂, with absorption rate 2[1 − g(y + Qq̂)]. In
contrast to the situation in Sec. V, the asymptotic behavior
will not be affected by replacing the soft wall by a hard one, so
our results will apply to the BBM as well as other logREMs.
The reason behind this is that the strategy for the particle to stay
in the region y > −Qq̂ is never optimal. This is because the
absorption rate there → 2 [Eq. (47c)], so according to Eq. (76),
such strategy gives a contribution

P (q̂) ∼ e−q̂ + other strategies. (78)

Now, it is not hard to see thatP (q̂) ∼ e−q̂ at infinite temperature
β = 0: e−q̂ is the common length distribution of two random
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particles in a BBM, chosen independently and uniformly
among all particles. At any finite temperature, sampling the
particles according to a same nontrivial Gibbs measure favors
larger common lengths. So P (q̂) decays always slower than
e−q̂. Since the soft wall is so penalizing, we will consider
strategies in which the particle stays always clear of it: y(q̂) <

−Qq̂.
The analysis of these strategies is very similar to that in

Sec. V. More precisely, we can compare P (q̂) to the observable
O, defined in Eq. (53). The initial distribution of the particle
position has an exponential tail I∞|q̂=0 = 2[g′(y)/β]2 ∼ eay

for y → −∞, where a = 2β [we recall that the left tail g(y) ∼
eβy,y → −∞ can be seen from the differential equation
(47c)]. The integral in Eq. (76) corresponds to a + nβ = 0 in
Eq. (53). The variable t in Eq. (53) corresponds to q̂ in P (q̂).
In summary, we have the correspondence

P (q̂) ∼ eq̂ O[a → 2β,n → −2,t → q̂]. (79)

This allows us to use the results of Sec. V D and find the
following regimes:

(1) Unbound: When a = 2β < Q/2 ⇒ β < 1/
√

3, we
apply Eq. (64) and obtain

P (q̂) ∼ e(2β2−1)q̂. (80a)

(2) Critical: a = 2β > Q/2 ⇒ β > 1/
√

3. Then Eq. (65)
applies, and we have

P (q̂) ∼ e−(Q2/4−1)q̂q̂−3/2. (80b)

At the transition β = 1/
√

3, by Eq. (66), the q−3/2 correction
above is replaced by q̂−1/2.

(3) When β ↗ 1, the exponent vanishes as Q2/4 − 1 ∼
(1 − β)2, leaving only the q̂−3/2 term. In the frozen β > 1
phase, by Eq. (77), this behavior remains:

P (q̂) ∼ q̂−3/2, β � 1, (80c)

in agreement with the prediction of Ref. [3].
The above results have been derived by an LFT approach

in Ref. [29]. The traveling-wave equation rederivation here
allows us to further elucidate their physical meaning. Since
we reduced the problem of common length distribution to
the same diffusion model as in Sec. V, the interpretation of
the dominant initial and terminal positions y(0) and y(q̂) are
similar to Eq. (43). More precisely, y(q̂) = −Qt + o(t) is still
the free energy of dominating configurations, whereas

e−βy(0) =
∑

j∈subtree

pβ,j (81)

is the Gibbs measure of the subtree, i.e., the sum of Gibbs
probability weight of all sites having common length �q̂ with
the marked pair in Eq. (68); see Fig. 7. This interpretation
generalizes naturally Eq. (43), which identifies e−βy(0) to the
Gibbs probability weight of a single site.

In light of the above observation, we remark that in the
unbound regime (β < 1/

√
3), the marked pair is effectively

attracted by a subtree with Gibbs measure larger than the most
typical value e−βQq̂, but much smaller than 1 [see Eq. (43) with

a = 2β]:

e−βQq̂ � e−βy(0) = e(−βQ+4β2)q̂ � 1.

In the critical regime, β ∈ (1/
√

3,1), the Gibbs measure of the
subtree becomes of order unity and cannot increase further by
normalization: this termination effect is responsible for the
unbound-critical transition. Since we are still in the β < 1
phase, such subtrees appear only in rare samples, but their
contribution dominates the observable P (q̂). Such subtrees
become typical at the freezing transition β = 1, beyond which
point q̂ becomes “scale-free”: the leading exponent in P (q̂)
vanishes, leaving only the power-law q̂− 3

2 in the whole frozen
phase [by Eq. (77)]. We believe that this is a signature of the
criticality (or marginal stability [64]) of the frozen phase.

VII. CONCLUSION

We have studied the universal scaling behavior of moments
of the partition function of logREMs in the presence of a
deterministic logarithmic potential. Although such a model
was introduced since the pioneering works on logREMs [22],
the scaling behavior of the partition function moments turns
out to be quite rich and described by a 2D diagram, in which
appear both Seiberg-type transitions: binding and termination
point (a.k.a., prefreezing). This unified framework allowed us
to better understand and generalize main results in previous
related works. As a nice corollary, we systematically studied
the rich large deviation structure of logREMs with and without
charge. Last but not least, our investigation deepened the con-
nection between LFT and universal properties of the logREM
class in an unexpected way: the binding transition provides a
statistical-physical application of the nonlocal property of the
operator product expansion (OPE) in LFT.

Let us close by discussing a couple of interesting per-
spectives for future work. Although the LFT predictions have
been abundantly corroborated, an important conceptual issue
remains: it is highly counterintuitive that the nonlocality of
LFT OPE is related to the Seiberg-type transitions, which are
local in the sense that they are induced by one log-singularity
and charge insertion. We believe this “paradox” has to do
with the fact that our main observable contains an inherently
nonlocal object: the partition function Z0. In a related note, we
recall that in the LFT calculation of Sec. III B, it is important
to consider LFT on the sphere, to product the correct power of
Z0. On a surface of higher genus, the LFT correlation function
corresponding to the observable in Eq. (10) would be different.
Yet, we expect that the topology of the surface on which we
define the logREM should not affect its scaling behaviors. How
can we understand such a universality from the point of view
of LFT on general geometries?

A deeper understanding of the above issue may also be
helpful for curing another weakness of the LFT approach
developed so far: its inability to study transitions “in the bulk,”
such as the freezing transition. Among the LFT-accessible
nontrivial regimes, the closest to the β > 1 frozen phase is
the critical regime; for example, the universal log corrections
are remarkably similar. But the critical regime describes only
rare samples or large deviations, so can be only attained by a
biased sampling, e.g., from the unbound regime by favoring
realizations in which a privileged Gibbs probability weight
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pβ,1 becomes of order unity. This procedure breaks the replica
symmetry explicitly. In contrast, the freezing transition breaks
the replica symmetry spontaneously, without being induced
by a charge: in the frozen phase, Gibbs probability weights
of order unity (atoms) emerge in multiple remote positions
of a typical large sample. While it is still not clear how
to describe such a proliferation of atoms in a solvable field
theory framework, we suspect that some nonlocal field theory
property could be involved.

To close, we point out that the physical problems (2D
localization, disordered XY model) that inspired the field
are more involved than the logREMs(which correspond to
exact zero-energy states and the one vortex simplification,
respectively). It remains to find out how the mapping to field
theory explored here can be extended to the original full-blown
contexts.
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APPENDIX A: GIRSANOV TRANSFORM

We recall briefly the Girsanov transform for Gaussian
random variables and apply it to derive Eqs. (9) and (22).

The Girsanov transform is a classic result in probability,
which can be stated in general as follows. Let φ = (φ1, . . . ,φM )
be a Gaussian vector characterized by zero mean and an
invertible covariance matrix Cij = φiφj . Let u = (u1, . . . ,uM )
be a deterministic vector and let U = Cu. Let F = F[φ] be
an arbitrary function of the vector φ. Then, for any function
F = F[φ],

e−utφF[φ] =
∫

dMφ
1

N
e− 1

2 φtC−1φ−utφF[φ]

=
∫

dMφ
1

N
e− 1

2 (φ+U )C−1(φ+U )+ 1
2 utCuF[φ + U ]

= e
1
2 utCuF[φ + U ]. (A1)

Here, N = √
2π det(C) is a normalization constant.

Now, to derive Eq. (9), we let φ be the logREM potential
[Eq. (1)], and u = (a,0, . . . ,0), so that U = Cu is the log
potential Eq. (6). We set also F[φ] = Zn

0 , so that F[φ + U ] =
Zn

a . Then Eq. (A1) implies

e−aφ1Zn
0 = e

1
2 a2φ2

1 Zn
a = Ma2

Zn
a (A2)

by Eq. (1), as desired.

To derive Eq. (22), we let F[φ] = e−a1φ(0)−a4φ(z)Zn
0 , φ

be the potential of the logREM on the sphere, and u =
(0, . . . ,0,a2,0, . . . ,0,a3,0, . . . ), where a2,a3 appear at the
indexes corresponding to z = 1,z = ∞, respectively. Then
Eq. (A1) implies

e−a1φ(0)−a4φ(z)Zn
0e−a2φ(1)−a3φ(∞)

= e
1
2 (a2

2φ(1)2+a2
3φ(∞)2)ea2a3φ(1)φ(∞)e−a1φ̃(0)−a4φ̃(z)Z̃n

0

= Ma2
2+a2

3 e−a1φ̃(0)−a4φ̃(z)Z̃n
0 × ea2a3φ(1)φ(∞)

∼ Ma2
2+a2

3 e−a1φ̃(0)−a4φ̃(z)Z̃n
0

∼ Ma2
2+a2

3 e−a1φ(0)−a4φ(z)Z̃n
0 , (A3)

where φ̃ = φ + U is the shifted potential with a log-potential
with two charges at 1 and ∞:

U (z) = a2 φ(z)φ(1) + a3 φ(z)φ(∞), (A4)

and Z̃0 = Z0|φ→φ̃ . In the second to last line of Eq. (A3), we

omitted the factor ea2a3φ(1)φ(∞), which remains of order unity
as M → ∞ and does not affect the asymptotic behavior; in the
last line, we replaced e−aj φ̃(zj ) by e−aj φ(zj ) for j = 1,4, omitting
order unity factors e−aj U (zj ). Combining Eq. (A3) with Eq. (21)
gives Eq. (22).

We now discuss the assumption made below Eq. (22); i.e.,

e−a1φ(0)−a4φ(z)Z̃n
0 ∼ e−a1φ(0)−a4φ(z)Zn

0 . (A5)

For this let us remark that in the unbound regime, the results
Eqs. (11) and (12) translate to the following by the Girsanov
transform Eq. (9):

Zn
a ∼ MQnβ ∼ Zn

0 , a < Q/2,n < 0. (A6)

In other words, adding a background log potential with a charge
that satisfies the Seiberg bound a < Q/2 does not alter the
scaling behavior of the partition function of the logREM with
charge. Apply this statement to each of the two charges a2,a3 <

Q/2 of the log potential Eq. (A4), we obtain Z̃n
0 ∼ Zn

0 . This
is weaker than Eq. (A5) that we want. However, on intuitive
grounds, we expect that the correlation between Z̃0 (or Z0) and
e−a1φ(0)−a4φ(z) is not altered by the potential Eq. (A4), which is
smooth around 0.

APPENDIX B: CONFORMAL BOOTSTRAP AND
DISCRETE TERMS IN LFT

In this Appendix, we revisit the analysis of Ref. [29], Sup-
plementary Material (SM) Eqs. (C3) and (C4), and generalize
them to take into account the remote discrete terms.

We recall the main result Eq. (C.14) therein, which is
a general conformal bootstrap formula for a general LFT
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four-point function, with discrete terms included:

K = 〈
Va1 (0)Va4 (z)Va2 (1)Va3 (∞)

〉
β

=
∫

Q

2 +iR
CDOZZ(a1,a4,α)CDOZZ(Q − α,a2,a3)

∣∣F�α
({ai},z)

∣∣2dα

− 2
∑

p∈P14,−

2π i Resα→p[CDOZZ(α,a1,a4)CDOZZ(Q − α,a2,a3)]
∣∣F�α

({ai},z)
∣∣2

− 2
∑

p∈P23,−

2π i Resα→p[CDOZZ(α,a1,a4)CDOZZ(Q − α,a2,a3)]
∣∣F�α

({ai},z)
∣∣2. (B1)

The field theory objects involved in this equation are explained
as follows.F�a

({ai},z) is the four-point conformal block. It has
the following asymptotic behavior as z → 0:

F�α

({
�ai

}
,z
) z→0∼ z�α−�a1 −�a4 , (B2)

where we recall �a = a(Q − a) is the scaling dimension of
Va; see Eq. (14).

CDOZZ is the Dorn-Otto-Zamolodchikov-Zamolodchikov
(DOZZ) structure constant of LFT [35,58]. Referring to SM
Eq. (C.4) for a detailed exposition, we recall its follow-
ing properties. For generic a1,a4, as a function of α, both
CDOZZ(a1,a4,α) and CDOZZ(Q − α,a2,a3) have a simple zero
at α = Q/2 [45,46], so that

CDOZZ(a1,a4,α)CDOZZ(Q − α,a2,a3)
α→Q/2∼ (α − Q/2)2,

(B3)

CDOZZ(a1,a4,α), and CDOZZ(Q − α,a2,a3) also have simple
poles in the pole set P14,+ ∪ P14,− and P23,+ ∪ P23,−, respec-
tively, where

Pij,−
def.= {x = ai + aj + nβ + m/β : n,m = 0,1,2, . . . ,

x ∈ (0,Q/2)},
Pij,+

def.= {x : x = Q − p,p ∈ Pij,−}. (B4)

Finally, we introduce some less standard terminology. In
Eq. (B1), we call the summed and integrated variable α the
“internal charge,” as in Sec. III C. The integral over Q

2 + iR
(which is the LFT operator spectrum) in the first line of Eq. (B1)
is called the continuous term. The residues with respect to the
poles in P14,− and P23,− are called the local and remote discrete
terms, respectively. Note that the distinction between local and
remote is arbitrary for a general four-point function (since the
fields 1,4 and 2,3 play exchangeable roles), yet it makes sense in
the situation where we analyze the asymptotic behavior when
only the fields 1,4 approach each other.

With the above information, we can analyze the asymptotic
behaviors of the different terms in Eq. (B1) as |z|2 ∼ 1/

M → 0:
(1) The local discrete term corresponding to each pole α ∈

P14,− behaves as

Dis.(α) ∼ Mδ, δ = �a1 + �a4 − �α. (B5)

Discrete terms never have log corrections. Local discrete terms
exist if P14 is not empty, which is equivalent to a1 + a4 < Q/2.

When this is the case, the dominant contribution corresponds
to the smallest δ, which is attained by α = a1 + a4.

(2) The remote discrete terms behave also as Eq. (B5), but
with α ∈ P23,−. Such discrete terms exist if a2 + a3 < Q/2.

When this is the case, the dominant contribution is that with
α = a2 + a3.

(3) The continuous term’s asymptotic behavior is evaluated
by a saddle point approximation of Eq. (B1) around α = Q/2
[see also SM Eq. (C.4), cases (b) and (c)]:

Cont. ∼ Mδ(ln M)−η, δ = �a1 + �a4 − �Q/2, (B6)

where the log correction has an exponent η = 3/2 generically,
due to the DOZZ zeros at the saddle point Q/2; see Eq. (B3).
An exception happens when a1 + a4 = Q/2 or a2 + a3 =
Q/2. In this case, η = 1/2, because the DOZZ zeros become
canceled by the DOZZ poles in Eq. (B4) approaching Q/2.

The three points above correspond to those below Eq. (27),
respectively. The asymptotic behavior of the four-point func-
tion is obtained as that of the dominant contribution among
the above candidates. This corresponds to the smallest scaling
dimension �α = α(Q − α), and thus the smallest α (since α �
Q/2 for all contributions). Summarizing the above discussion
then leads to Eqs. (24), (26), and (27) in the main text.

Note that the remote discrete terms were not considered in
Ref. [29], SM Eq. (C.4). Nevertheless, this does not invalidate
the logREM predictions in that work, because as we see from
the present work that the remote discrete terms are only present
in the bound regime, which was not studied in Ref. [29].

APPENDIX C: CIRCULAR MODEL WITH ONE CHARGE

We consider the main observable Eq. (9) for an integrable
logREM, the circular model [39]. It is a 1D Euclidean logREM
whose potential is defined by restricting the 2D GFF on the
unit circle (note that the normalization of the potential below
is adjusted to ensure compatibility with Eq. (1) with d = 1):

φj = φ(zj ), zj
def.= −e2π ij/M,

φ(z)φ(w) = −2 ln |z − w|, z �= w. (C1)

In particular, the marked site j = 1 corresponds to z = −1
(as M → ∞), so the circular model with one charge has as
background potential U (z) = 2a ln |z + 1|.

The joint moments in Eq. (9) of the circular model can be
evaluated beyond its leading behavior in the thermodynamic
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limit, by relating to an exactly solvable Coulomb gas integral.
This method is commonly used to study integrable logREMs,
and it can be understood as an extension of the RSB ap-
proach in Sec. IV beyond the leading behaviors. It relies
on the different RSB solutions in each regime or phase. In
the case of the RSB induced by the freezing transition, this
method was developed in Refs. [44,50]; see also Ref. [30],
Sec. 2.3.3. Adapting the methods therein to the RSB induced by
Seiberg-type transitions turns out to be quite delicate in some
cases. So we will treat the different regimes separately.

In particular, we will recover the exponential tail predicted
by the large deviation theory (see Sec. IV B) in Secs. C 2 and
C 5. Remarks related to Ref. [38] are made in Secs. C 3 and
C 4.

1. Morris integral

As a preparation, we recall the Morris integral [our notation
in Eqs. (C2) and (C3) below is closest to that of Ref. [38],
Eqs. (14) and (15)]:

M(ñ,α,b)
def.=

∫ 2π

0

ñ∏
μ=1

[
dθμ

2π
|1 + eiθμ |−2αb

]∏
μ<ν

|eiθμ − eiθμ |−2b2 =
ñ−1∏
j=0

�(1 − 2αb − jb2)�(1 − (j + 1)b2)

�(1 − αb − jb2)2�(1 − b2)
. (C2)

It depends on three parameters: the number of moving charges ñ, the total α attached to z = −1, and the moving charge value b.
Equation (C2) holds if and only if the integral converges, yet the � product in the right-hand side can be analytically continued
beyond its region of convergence and to ñ complex [32,40]:

M(ñ,α,b) = M̃(ñ,α,b)

�(1 − b2)ñ
, M̃(ñ,α,b) = �(1 − ñb2)

G̃b(Q − 2α)G̃b(Q − α − ñb)2

G̃b(Q − 2α − ñb)G̃b(Q − α)2

G̃b(Q)

G̃b(Q − ñb)
, Q = b + b−1, (C3)

where G̃b(x) is the generalized Barnes function. We refer to
Ref. [38], Eqs. (16)–(18) and references therein for its basic
properties. We will not need them, except the following fact:
G̃b(x) is an entire function of x that has simple zeros in the
following positions:

G̃b(x) = 0, x = −ub − v

b
, u,v = 0,1,2, . . . . (C4)

2. Unbound regime

In the unbound regime of the β < 1 phase, the RSB solution
(Table II) is n0 = 0 and m = 1, i.e., the replicas do not form
groups and are not attached to the charge. Then, one can
apply the covariance Eq. (C1) to the replica sum expression
of Zn

0e−aφ1 , Eq. (31), and replace the sums over positions
by integrals on the circle

∑
jμ

� M
∫ 2π

0
dθμ

2π
. The result is

proportional to a Coulomb gas integral, which coincides with
the Morris integral above, with the following parameters
[32,33,40]:

Zn
0e−aφ1M�(a,n) ∼ M(ñ = n,α = a,b = β), (C5)

where �(a,n) = −Qnβ − a2 is the leading exponent of the
unbound regime in (see Table II) and the continued Morris
integral provides the order-unity, model-dependent correction.
The approximative equality in Eq. (C5) is expected to be exact
in the M → ∞ limit. We remark that a special case of Eq. (C5)
with a = −nβ, see Ref, [32], and see Ref. [38], Eq. (13); a
further specialization with n = −2 appeared in Ref. [33].

To extract information on the distribution of the free energy
of the logREM with one charge Fa = −β−1 ln Za , we apply
the Girsanov transform Eqs. (9) to (C5) and obtain the moment
generating function of the shifted free energy [40]:

esfa ∼ M(−s/β,a,b = β), fa
def.= Fa + Qt. (C6)

Since esfa is the Laplace transform of the distribution P (fa),
the poles of Eq. (C6) closest to 0 correspond to dominant

exponential tails of P (fa). By Eq. (C3), we have the following
poles:

(1) s = −b−1 from �(1 − ñb2),
(2) s = −Q from G̃b(Q − ñb),
(3) s = 2a − Q from G̃b(Q − 2a − ñb).
In the two last cases we used the zero of G̃b in Eq. (C4) with

u = v = 0. Other poles are more negative. Since there are no
positive poles, the right tail P (fa → +∞) decays faster than
any exponential, which is consistent with the hard wall at Fa =
−Qt predicted in the large deviation functions Eqs. (39d) and
(39e). Concerning the left tail P (fa → −∞), the competition
between the above-listed poles results in two cases:

(i) b/2 < a < Q/2: the pole 2a − Q dominates, giving an
exponential left tail P (fa) ∼ e(Q−2a)fa , in agreement with the
large deviation function Eq. (39d) in the domain ŷ = Fa/t ∈
[2(a − Q),−Q].

(ii) a < b/2: the pole −1/b dominates and gives an ex-
ponential left tail P (fa) ∼ efa/b, in agreement with the large
deviation function Eq. (39e) in the domain ŷ ∈ (− 2

b
,−Q). The

other exponential (between LN and B regimes) in Eq. (39e) will
be confirmed in Sec. C 5 below.

The above considerations concern the high-temperature
phase. For theβ > 1 phase, we can invoke the freezing scenario
[22,31,39]:

esfa |β>1 ≈ esCβ
�(1 + s)

�(1 + s/β)
M̃(−s,a,b = 1), (C7)

which determines the free energy distribution up to a shift Cβ .
Replacing M̃ byM results also in a shift of free energy, which
is related to the log correction associated with the freezing
transition [65,66]. The right-hand side of Eq. (C7) has a new
pole s = −1. In the case case (ii) above, the new pole coincides
with −1 = −1/b. Therefore, there is a double pole at s = −1,
and the exponential tail acquires a log correction:

P (fa)
fa→−∞∼ |fa|efa , β > 1, a < 1/2. (C8)
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We call this a log correction since |fa|efa = efa+ln |fa |. The left
tail exhibited in Eq. (C8) is a universal feature of logREM
without charge in the frozen (β > 1) phase [22], and we
show here that it prevails for logREM with charge a < 1/2.
However, when a > 1/2, the new pole −1 < 2a − Q = 2a −
2 [recall Q = 2 when β > 1, see Eq. (4)] the dominant left
exponential tail is still

P (fa)
fa→−∞∼ e2(1−a)fa , β > 1, 1/2 < a < 1, (C9)

without log corrections. Equations (C8) and (C9) apply both
to the zero-temperature limit where fa becomes the shifted
minimum of the logREM with one charge. Compared to
logREMs without charge, the universal left tail has a richer
behavior, even restricted to the unbound regime.

When approaching the critical regime from the unbound
regime, a ↗ Q/2 in Eq. (C5), the analytically continued
Morris integral vanishes [because of a zero of G̃b(Q − 2a)
in Eq. (C3)]:

M(−s/β,α ↗ Q/2,b) ∼ (Q − 2α). (C10)

Applying this to Eq. (C5), we obtain the following asymptotic
behavior approaching the unbound-critical boundary from the
unbound side:

Zn
0e−aφ1 ∼ (Q − 2a)Ma2+Qnβ, a ↗ Q/2, n < 0, (C11)

which agrees with the traveling-wave prediction Eq. (64a).
Equation (C10) was already observed in Ref. [32] in the

case s = −nβ = a, and it was considered a pathology. From
the point of view of this work, this pathological zero must be
due to the termination point transition from the unbound to the
critical regime, to which we come now.

3. Critical regime

In the critical regime of the β < 1 phase, the RSB solution
becomes n0β = Q/2 − a,m = 1; see Table II. Therefore, n0

replicas are attached to z = −1, leaving ñ = (n − n0) moving
charges in the Morris integral, whereas the total charge at z =
−1 becomes α = n0β + a = Q/2. However, by Eq. (C10), the
Morris integral vanishes exactly at α = Q/2, making a formula
analogous to Eq. (C5) problematic.

We now employ a trick to provide a heuristic resolution
of the problem. For this, it is convenient to rewrite the main
observable in the following form:

Zn
0e−aφ1 = Z	

0e
−ax, (C12)

x
def.= −β−1 ln pβ,1 � 0, 	 = n + a/β, (C13)

where we recall from Eq. (9) that pβ,1 is the Gibbs probability
weight of site 1. Then, Eq. (C5) can be rewritten as

Z	
0e

−ax ≈ et(a2−Qa+Q	β)M(	 − a/β,a,β) (C14)

in the unbound regime, where t = ln M . The left-hand side, as
a function of a, is the Laplace-Fourier transform of P	(x ′) :=
Z	

0δ(x − x ′). By Eq. (C13), P	(x ′) = 0 for x ′ < 0. Therefore,
denoting by θ (x ′) the Heaviside function, we have P	(x ′) =
P	(x ′)θ (x ′). Taking the Laplace-Fourier transform of this

equation, we turn the product into a convolution, obtaining

Zn
0e−aφ1 ∼

∫
C

dα

2π i
et[α2−Qα+Q(nβ+a)]CM(α), (C15)

CM(α)
def.= M(n + (a − α)/β,α,β)

a − α
, (C16)

where the contour in vertical and satisfies Re(α) < a. The
denominator comes from the Laplace-Fourier transform of the
Heaviside function. Now Eqs. (C15) and (C16) make sense in
both unbound and continuum regimes and do not suffer from
the “problematic zero” of the Morris integral. So we propose
Eq. (C15) as an extension of Eq. (C14) into the critical regime.

Notice that Eq. (C15) is similar to Eq. (62) in the traveling-
wave approach and can be analyzed by a saddle-point ap-
proximation. In particular, the exponent in et[α2−Qα+Q(nβ+a)]

is identical to that in Eq. (62), so the saddle point is α = Q/2.
In the unbound regime, using Eq. (C3), we can check that the
pole α = a is first crossed to move the contour toward the
saddle point. The discrete term is just the right-hand side of
Eq. (C5). Thus, Eq. (C15) recovers the unbound regime result.

Now, in the critical regime, a > Q/2, a + nβ < Q/2, no
pole is crossed to move the contour to cross the saddle point,
where Eq. (C15) has a simple zero, by Eq. (C10). As a
consequence, we obtain the correct leading behavior and log
correction predicted by the traveling-wave and LFT approach:

Zn
0e−aφ1 ∼ et(Q(nβ+a)−Q2/4) t−

3
2 [−C ′′

M(Q/2)]. (C17)

We can further determine the divergence of the amplitude when
approaching the U/C or U/B phase boundary. For this, we
retain the relevant zero and poles of CM(α) as follows:

CM(α → Q/2) ∼ (Q − 2α)

(Q − a − α − nβ)(a − α)
, (C18)

where the first pole is due to a zero of G̃b(Q − 2α − ñb) (with
ñb = a + nβ − α) in the denominator of Eq. (C3). Then,

C ′′
M(Q/2) ∼ nβ(

a − Q

2

)2(
a + βn − Q

2

)2 . (C19)

These divergences are in agreement with those of the traveling-
wave prediction, Eq. (65). On the U/C (or U/B) phase
boundary, CM(Q/2) �= 0 since a pole cancels the zero in
Eq. (C18), then the saddle-point approximation yields a t−1/2

log correction, in agreement with the LFT and traveling-wave
approach.

The proposal Eq. (C15) is a heuristic suggestion indicating
how the replica approach to integrable logREMs can be
adapted to a regime or phase with broken replica symmetry.
It connects nicely the treatment of the replica-symmetric
(unbound, high-temperature) case and the discrete-continuum
aspect of the LFT and traveling-wave equation approaches of
the main text. It provides also an explanation of the following
phenomenon: the “problematic zero” of the Coulomb gas
integral is responsible for the log correction with exponent 3/2
in the critical regime, beyond the termination point transition
[38]. Note that the same phenomenon was also observed in the
frozen (β > 1) phase, and an apparently different explanation
was given in Refs. [65,66]. It will be interesting to clarify the
relation between them.
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The above being said, we believe that Eq. (C15) does not
contain all the model-dependent corrections in the critical
regime. Leaving a complete treatment to further study, we
point out one important correction that is missing. As argued in
Ref. [44], when replicas form groups of size >1, the internal
structure of the group is nontrivial and contributes a factor
depending on the short-distance details (“UV data”) of the
model, in addition to the Coulomb gas integral, which depends
only on the long-distance details (“IR data”). The short-
distance factor is known to have tangible effects, e.g., on the
distribution of the second minimum of logREMs [44], but its
analytical behavior is poorly understood. Now the right-hand
side Eq. (C15) does not contain such a short-distance factor,
CUV(α). However, we know [44] that this factor becomes trivial
when the replica symmetry is unbroken, i.e., in the unbound
regime (of the β < 1 phase): CUV(α → a) → 1, so we expect
that the asymptotic behaviors above are not affected by its
presence, at least not too far away from the U/C boundary.

4. Bound regime

In the bound regime, all the replicas are attached to the
charge in the RSB solution. Therefore, the corresponding
Morris integral will have no moving charges: ñ = 0, α =
a + nβ, so that the analog of Eq. (C5) becomes trivial in the
bound regime (of the β < 1 phase):

Zn
0e−aφ1M�(a,n) ∼ M(0,a + nβ,β) = 1, (C20)

where �(a,n) = −(a + nβ)2. Although the leading behavior
is correct, we cannot extract further corrections from integra-
bility. Such corrections can nonetheless come from a short-
distance factor describing the replica group attached to the
charge at z = −1.

In a related note, let us comment on the 2D logREM
considered in Refs. [29,38], Sec. III B. Its random potential is
the sum of 2D GFF on the complex plane (with a short-distance
cutoff ε and a large-distance cutoff L) and a deterministic
background potential with two charges: U (z) = 4a1|z/L| +
4a2|(z − 1)/L|, such that a1,a2 < Q/2 and a1 + a2 > Q/2.
In the thermodynamic limit ε → 0,L → ∞, the model has
a delicate behavior: it is in the unbound phase with respect
to each of the charges at z = 0 and z = 1, but it is in the
bound phase with respect to the background potential coarse-
grained to the scale L: U (z) ≈ 4a|z/L|, a = a1 + a2. We shall
focus on the latter point of view. Then, the results of the
main text on logREMs with one charge apply: the observable
Zn

a = exp(sFa) (s = −nβ) is governed by the bound regime if
a + nβ > Q/2 ⇔ s < a − Q/2 and by the critical regime
otherwise. Now, in the bound regime, the model-dependent
corrections of exp(sFa) can be calculated by an exactly
solvable 2D Coulomb gas integral, the Dotsenko-Fateev (DF)
integral [67] (see also Ref. [38], Eq. (37)):

exp(sFa) ∼ ε2QsM−2as+s2D(s|a1,a2), (C21)

where M = L2 and D(s|a1,a2) is the analytically continued
DF integral (it is in fact equal to CDOZZ(a1,a2,Q − a1 − a2 +
s)s/�(1 + s/β), in terms of the DOZZ structure constant of
LFT [35], see also Ref. [38]). A key property of D(s|a1,a2)
is that it vanishes when s approaches bound or critical

boundary:

D(s|a1,a2) ∼ a − Q/2 − s, s ↗ a − Q/2. (C22)

This zero would seem puzzling as it naively implies that the
moment generating function in the left-hand side of Eq. (C21)
vanishes at s = a − Q/2, which is impossible. However, by
now, we are used to this “problematic zero”: it is not patholog-
ical, but an expected signature of the transition from the bound
regime without log correction to the critical regime with log
correction. We remark that there is a striking similarity between
this phenomenon and the vanishing of the continued Coulomb
gas integral, Eq. (C10), which signals the unbound→critical
transition. This suggests that the U/C and B/C transitions
have the same nature; such an observation was also made in
Sec. IV B 1, from a large deviation theory perspective. From
the LFT point of view, this is rather expected, and we may
further speculate that the U and B regimes can be mapped to
each other by a conformal mapping such as z �→ 1/z, which
maps short and large distances.

5. Log-normal regime

In the log-normal regime, the RSB solution is n0 = 0 and
m = n; see Table II. All the n replicas form a same group, but
are not attached to the charge. Therefore, the continuum limit
of the replica sum Eq. (31) corresponds to the Morris integral
with only one moving charge of b = nβ:

Zn
0e−aφ1 ∼ M1+n2β2+a2 �(1 − 2anβ)

�(1 − anβ)2
. (C23)

Applying the Girsanov transform Eqs. (9) to (C23), we obtain

exp(sFa) ≈ M1+s2 �(1 + 2as)

�(1 + as)2
. (C24)

Now, Eq. (C24) has its least negative pole at s = −1/(2a),
which corresponds to an exponential left tail P (Fa) ∼ eFa/2a .
The exponent 1/(2a) agrees with the large deviation prediction
Eq. (39e), in the domain − 1

a
− 2a < ŷ < − 1

a
. Combined with

the results of Sec. C 2, we recovered all three exponential tails
predicted by the large deviation function Eq. (39). We recall
that the latter was obtained under the convexity assumption.
These results constitute a nontrivial test of this hypothesis.

APPENDIX D: TWO-VARIABLE LARGE-DEVIATION
FUNCTION: LOG-NORMAL AND

INTERPOLATION REGIME

We provide here the explicit expressions of the two-variable
large-deviation function f (x̂,ŷ), defined in Eq. (40), in the
interior of the parameter plane complementing Eqs. (42). The
results below are summarized in Fig. 8. We recall from Eq. (41)
that f (x̂,ŷ) and �(a,n) (in Table II) are Legendre transform
of each other, under the following duality of variables:

a = ∂x̂f, a + nβ = ∂ŷf. (D1)
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FIG. 8. The regimes of the generalized multifractal spectrum
f (x̂,ŷ) of logREM without charge, defined in Eq. (40). The expres-
sions for U, C, and B regimes are given in Eqs. (42). The other
first-order interpolation regimes are given in Eqs. (D2). The whole
triangular region corresponds via Legendre transform to the triple
point T described in Fig. 3. Note that the unbound and bound regimes
occupy the whole semiaxes ŷ = −Q and x̂ = 0, respectively. The
noted points on them are not critical. When β � 1, both the T and
U/LN interpolation regions become degenerate.

We begin by calculating f (x̂,ŷ) in the log-normal regime
by Legendre transforming � = −a2 − (nβ)2 − 1:

f (x̂,ŷ) = − x̂2

4
− x̂ŷ

2
− ŷ2

2
+ 1,

ŷ < −2b−1, x̂ > 2ŷ−1 − ŷ. (D2a)

The regime boundary in the (x̂,ŷ) plane is obtained by applying
the Legendre transform x̂ = −2a + 2nβ,ŷ = −2nβ to the log-
normal region nβ ∈ [1/b,1/(2a)]; see Table II.

The value of f in the rest of the (x̂,ŷ) plane can be
calculated by convexity interpolation. This results in four
regions, corresponding to the three first-order transitions and
their joining point (a = b/2,nβ = b−1), respectively:

(1) U/LN boundary:

f (x̂,ŷ) = ŷ + Q

b
− 1

4
(x̂ + ŷ)2

− 2/b < ŷ < −Q, x̂ > −b + ŷ. (D2b)

One can check that f (x̂,ŷ) connects continuously Eqs. (42a)
and (D2a), with continuous first derivatives for the latter, and
satisfies ∂ŷf − ∂x̂f = 1/b, which corresponds to the U/LN
boundary (a + nβ) − a = 1/b in Fig. 3 by the Legendre
duality Eq. (D1).

(2) B/U boundary:

f (x̂,ŷ) = Qx̂ − 1

4
(ŷ − x̂)2, x̂ + b − 2

b
< ŷ < −Q.

(D2c)

One can check that f connects continuously Eqs. (42a) and
(42c), and satisfies ∂xf + ∂yf = Q, which corresponds to the
B/U boundary a + (a + nβ) = Q in Fig. 3 by the Legendre

duality Eq. (D1). The boundary ŷ = x̂ + b − 2
b

corresponds to
the Triple point ∂x̂f = a = b/2, ∂ŷ = a + nβ = b/2 + 1/b

in Fig. 3.
(3) Triple point:

f (x̂,ŷ) = bx̂

2
+

(
1

b
+ b

2

)
ŷ +

(
1

b
+ b

2

)2

(D2d)

in the triangle spanned by (0,−2/b − b), (1/b,−Q), and
(2/b − b,−2/b), as depicted in Fig. 8. The spectrum is linear
with ∂x̂f = a = b/2, ∂ŷf = a + nβ = b/2 + 1/b, and con-
nects continuously to the neighboring regions.

(4) B/LN boundary:

f

[(
1

a
− 2a

)
u,2a(u − 1) − 1

a

]
= −1

4

(
2a + 1

a

)2

+ 2u.

a > b/2, 0 < u < 1. (D2e)

The first line is obtained as the solution to the nonlinear
first-order PDE ∂x̂f (∂ŷf − ∂x̂f ) = 1/2 with the boundary
condition set by matching with the B regime Eq. (42c). We
obtained it by applying the standard characteristic method
for nonlinear first-order PDEs. Indeed, u parametrizes of the
characteristic curves. u = 0 connects to the B regime (x̂ = 0)
and u = 1 connects to a boundary of LN regime x̂ = 2/ŷ − ŷ

(see Fig. 8), across which f has continuous first derivatives.
We have not found an explicit formula that is more compact
than the parametric form Eq. (D2e).

Note that both the triple point and the U/LN boundary
regions degenerate in the β � 1 phase, where the latter two
points of the triangle collapse.

APPENDIX E: DERIVATION OF
TRAVELING-WAVE EQUATIONS

In this Appendix, we outline the derivation of Eqs. (51) and
(71). As a warm-up, it is helpful to recall the derivation of the
classic KPP Eq. (46) in a broader generality [2,53]. For this,
let φj (t),j = 1, . . . ,M(t) be the particle positions of a BBM
at time t , and �(y) be any well-behaved function defined on
the real line. Then, it is well-known that the observable

G(y,t)
def.=

M(t)∏
j=1

�[y − φj (t)] (E1)

satisfies the KPP equation with initial condition

Gt = Gyy + (G − 1)G, G(y,0) = �(y). (E2)

In particular, by taking �(y) = exp(−eβy), we obtain Eq. (46).
Equation (E2) is derived as a backward master equation, by
considering what happens in t ∈ [0,dt] to the initial particle.
Its diffusion leads to the term Gyy . With probability dt , it splits
into two particles, one offspring is labeled 1 and the other 2.
Then we may bookkeep the change of G as

G(y) =
∏
j

�j �
∏
(1)

�j

∏
(2)

�j = G(y)G(y), (E3)
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where �j := �[y − φj (t)], and
∏

(1) means the product over
all offsprings of 1, and similarly for 2. The difference (G2 − G)
gives the nonlinear term in Eq. (E2).

After the above warm-up, we now come to Eq. (51). Again,
more generally, we show that any observable of type

H (y,t)
def.= �(y − φ1(t))

M(t)∏
j=2

�[y − φj (t)], (E4)

where � is any well-behaved function defined on the real line,
satisfies the KPP-type equation,

Ht = Hyy + (G − 1)H, H (y,0) = �(y), (E5)

where G is the solution of Eq. (E2). In particular, Eq. (51)
is obtained by �(y) = exp(−eβy) and �(y) = eay�(y). Equa-
tion (E5) is also derived as a backward equation as Eq. (E2).
The only difference is the nonlinear term GH − H , which can
be given by a similar consideration as Eq. (E3):

H (y) = �1

∏
j�2

�j � �1

∏
(1)

�j

∏
(2)

�j = H (y)G(y),

where �1 := �[y − φ1(t)].
We now derive Eq. (71a) used in the common length distri-

bution computation. For this we consider again the splitting of
the initial particle into 1 and 2 during the time interval [0,dt],
where dt < q̂. Then, both of the two particles j,k in Eq. (69)
are offsprings of either 1 or 2, so that the analog of Eq. (E3) is

(see Fig. 7)

I (y,q̂,τ ) � I (y,q̂,τ )G(y,q̂ + τ ) + G(y,q̂ + τ )I (y,q̂,τ ),

resulting in the nonlinear term [2G(y,q̂ + τ ) − 1]I in
Eq. (71a). The main difference from Eq. (E5) is that the
“marked” particle (here the common ancestor of j and k) is
summed over rather than fixed, hence the extra factor 2.

To obtain the initial condition Eq. (71b), we compute
directly I (y,q̂ = 0,τ ) by the definition Eq. (69). q̂ = 0 implies
that the initial particle splits initially into two particles 1 and
2. The sum over j,k in Eq. (69) is reduced, by the requirement
q̂jk = 0, to a sum of j over the offspring of 1, and of k over the
offspring of 2 (both at time τ ), or vice versa. It is then not hard
to see that I (y,q̂ = 0,τ ) is 2 times a product of two identical
factors:

I (y,q̂ = 0,τ ) = 2J (y,τ )2, where

J (y,τ ) =
∑

k

eβ[y−φk (τ )]
∏
j

exp{−eβ[y−φj (τ )]}

= − β−1∂y

⎛⎝∏
j

exp{−eβ[y−φj (τ )]}
⎞⎠

= − β−1G′(y,τ ),

where G is the solution to Eq. (46). Thus, we obtained the
initial condition Eq. (71b).
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