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The relevance of the concept of Fisher information is increasing in both statistical physics and quantum
computing. From a statistical mechanical standpoint, the application of Fisher information in the kinetic theory
of gases is characterized by its decrease along the solutions of the Boltzmann equation for Maxwellian molecules
in the two-dimensional case. From a quantum mechanical standpoint, the output state in Grover’s quantum
search algorithm follows a geodesic path obtained from the Fubini-Study metric on the manifold of Hilbert-space
rays. Additionally, Grover’s algorithm is specified by constant Fisher information. In this paper, we present an
information geometric characterization of the oscillatory or monotonic behavior of statistically parametrized
squared probability amplitudes originating from special functional forms of the Fisher information function:
constant, exponential decay, and power-law decay. Furthermore, for each case, we compute both the computational
speed and the availability loss of the corresponding physical processes by exploiting a convenient Riemannian
geometrization of useful thermodynamical concepts. Finally, we briefly comment on the possibility of using the
proposed methods of information geometry to help identify a suitable trade-off between speed and thermodynamic
efficiency in quantum search algorithms.
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I. INTRODUCTION

The importance of the concept of Fisher information is
increasing in both classical and quantum settings, ranging
from foundational aspects of theoretical physics, including
statistical physics, to quantum computing. In Ref. [1] the Fisher
information was regarded as a measure of the degree of disorder
of an isolated statistical system. In particular, it was shown
that by minimizing the Fisher information subject to suitable
physical constraints, the resulting equilibrium probability
density function satisfied the correct differential equations for
the system (including, among others, Schrödinger’s wave equa-
tion, the Klein-Gordon equation, and the Maxwell-Boltzmann
law). Interestingly, in Ref. [1] it was suggested that the Fisher
information specifies an arrow of time that points in the
direction of decreasing accuracy for the determination of the
mean value of the statistical parameter that specifies the system.
Connections between the decrease of Fisher information and
the second law of thermodynamics were, to some extent,
explored in Refs. [2,3]. In Ref. [4] the concept of Fisher
information was employed to present a systematic approach
to deriving Lagrangians of relevance in physics. Of particular
interest are the applications of the notion of Fisher information
in quantum theory. For example, in Ref. [5] the principle of
minimum Fisher information is used to derive the many-
particle time-dependent Schrödinger equation. In Ref. [6] it
was proposed that the classical Fisher information of a quantum
observable is a measure of the robustness of the observable with
respect to noise. Indeed, it was shown that Fisher information
is proportional to the rate of entropy increase of the observable
when the quantum system is subjected to a Gaussian diffusive
process. In Ref. [7], in an effort to advance the information

approach to physics by linking the classical Lagrangian ap-
proach to mechanics and the concept of Fisher information, a
general notion of kinetic energy with respect to a parameter
was introduced and its consequences were discussed. For
an extended presentation of the role of Fisher information
in physics, we refer to Ref. [8]. In addition to covering
foundational aspects of physics, the use of Fisher information
has also been extended to problems in statistical physics
from a more applied perspective. The application of Fisher
information to the kinetic theory of gases started with the
investigation carried out by McKean in Ref. [9]. In that work,
the monotonic decreasing behavior of the Fisher information
was observed while studying a one-dimensional toy model
of a Maxwellian gas. Following this line of investigation,
the decrease of Fisher information along the solutions of the
linear Fokker-Planck equation was reported by Toscani in
Ref. [10]. In Ref. [11] it was shown that Fisher information
also decreases along the Boltzmann equation for Maxwellian
molecules in two dimensions. For a generalization of this
finding extended to higher dimensions, we refer to Ref. [12].
Finally, studying the spatially homogeneous Landau equation
for Maxwellian molecules, the nonincreasing behavior of the
Fisher information was reported in Refs. [13–15].

From a quantum computing viewpoint, quantum Fisher
information can be physically interpreted by observing
that its square root is proportional to the statistical speed,
that is, the instantaneous rate of change of the absolute
statistical distance between two pure states in the Hilbert
space (or, more generally, in the space of density operators
for general mixtures) along the path parametrized by a
given statistical parameter. The absolute statistical distance,
in turn, is the maximum number of distinguishable states
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along the parametrized path, optimized over all quantum
measurements. The role played by Fisher information in
quantum information science is also becoming increasingly
important. First, we recall that variational principle driven
Riemannian geometrizations of Grover’s original quantum
search algorithms appear in both nonadiabatically [16] and
adiabatically [17,18] constrained dynamical settings. In
the latter framework, the link between the Bures metric
of two density matrices [19] and the Riemann metric tensor
underlying the adiabatic evolution is of particular significance.
Second, we observe that it is known that there are quantum
speed limits for either isolated quantum systems evolving
(both nonadiabatically [20] and adiabatically [21]) according
to a unitary dynamics or open quantum systems coupled
to an environment [22–24]. In the latter case, as mentioned
earlier, the Fisher information plays a key role in the geometric
interpretation of quantum speed limits of dynamical evolutions
in quantum computing based on the notion of statistical
distance between quantum states, either pure or mixed [25,26].
In particular, when taking into consideration open-system
dynamics where dissipative effects may occur, the temporal
behavior of the Fisher information plays a key role in the
determination of a bound to the speed of evolution of the
quantum system [23]. Third, we point out that dissipation may
have a constructive role in certain tasks of interest for quantum
information processing [27]. For example, it is known that
dissipation can be used in a constructive manner in quantum
search problems [28–31]. For instance, in Ref. [31] it was
shown that introducing dissipation into Grover’s original
quantum search algorithm has positive effects because it leads
to a more robust search where the oscillations between target
and nontarget items can be damped out.

The lack of a unifying theoretical framework for all the
fundamental issues outlined in the first, second, and third points
motivate us to pursue here an information geometric analysis
wherein Riemannian geometry, probability calculus, and the
statistical thermodynamical nature of Fisher information all si-
multaneously play a crucial role. An important finding of great
utility in our proposed information geometric investigation is
that the output state in Grover’s quantum search algorithm fol-
lows a geodesic path obtained from the Fubini-Study metric on
the manifold of Hilbert-space rays and, additionally, Grover’s
algorithm is specified by constant Fisher information [32–36].

In this paper, we use methods of information geometry
to characterize the oscillatory or monotonic behavior of sta-
tistically parametrized squared probability amplitudes that
correspond to suitably chosen functional forms of the Fisher
information function: constant, exponential decay, and power-
law decay. Moreover, for each case, we find both the compu-
tational speed and the availability loss of the corresponding
physical processes by making use of a convenient Riemannian
geometrization of useful thermodynamical concepts. Finally,
we propose the use of methods of information geometry to help
identify a suitable trade-off between speed and thermodynamic
efficiency in quantum search algorithms.

The layout of the remainder of this paper is as follows. In
Sec. II we introduce the concept of Fisher information in both
classical and quantum information theory. In Sec. III we use the
notion of Fisher information in order to quantify the concept of
quantum distinguishability for both pure and mixed quantum

states. In Sec. IV focusing on pure states and using varia-
tional calculus techniques, we present an explicit derivation
of the information geometric evolution equations of quantum
mechanical probability amplitudes for arbitrary forms of the
Fisher information function. In Sec. V we apply the main re-
sults obtained in the previous section to three special scenarios:
constant Fisher information, exponential decay and power-law
decay. In particular, the oscillatory or monotonic behaviors of
the statistically parameterized squared probability amplitudes
are reported. In Sec. VI we discuss the link among physical
systems, Fisher information functions, and geodesic paths
on Riemannian manifolds. In Sec. VII we first review some
basic material on a Riemannian geometric characterization of
thermodynamic concepts. Special attention is devoted to the
concepts of thermodynamic length and dissipated availability
(or availability loss [37]) and their link with the notion of Fisher
information. Then, for each of the three illustrative examples
considered in Sec. V, we compute both the availability loss
and the computational speed of the quantum process that
corresponds to each selected functional form of the Fisher in-
formation. Finally, our concluding remarks appear in Sec. VIII.

II. FISHER INFORMATION

In this section, we briefly introduce the concept of Fisher in-
formation in both classical and quantum information-theoretic
settings.

A. Classical framework

In the framework of classical information theory, the Fisher
information F(θ ) quantifies the amount of information that
an observable random variable X carries about an unknown
parameter θ upon which the probability distribution p(x|θ ) =
pθ (x) depends. For a continuous random variable X, the
classical Fisher information F(θ ) is defined as

Fclassical(θ )
def=
〈[

∂ log p(x|θ )

∂θ

]2
〉

=
∫

p(x|θ )

[
∂ log p(x|θ )

∂θ

]2

dx. (1)

In this paper, log denotes the natural logarithmic function. We
note that, by means of simple algebra, F(θ ) in Eq. (1) can
be rewritten in terms of the probability amplitude

√
p(x|θ ), a

fundamental quantity in quantum theory:

F(θ ) = 4
∫ [

∂
√

p(x|θ )

∂θ

]2

dx. (2)

The quantity ∂θ [log p(x|θ )] with ∂θ
def= ∂

∂θ
in Eq. (1) is known

as the score while the probability distribution p(x|θ ) is known
as the likelihood function. Observe that, exploiting the normal-
ization condition for p(x|θ ), the expectation value of the score
is zero:

〈∂θ log p(x|θ )〉 = 0. (3)

Therefore, from Eqs. (1) and (3), we conclude that the Fisher
information F(θ ) can be regarded as the variance of the score
function. For the sake of completeness, we note that for a
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discrete random variable X, the classical Fisher information
F(θ ) is defined as

F(θ )
def=

n∑
i=1

pi

(
∂ log pi

∂θ

)2

=
n∑

i=1

ṗ2
i

pi

, (4)

where pi = pi(x|θ ) and ṗi
def= ∂pi

∂θ
. In anticipation of the formal

comparison with the definition of the quantum Fisher informa-
tion to be considered in the next subsection, observe that the
score function ∂θ [log pi(x|θ )] in Eq. (4) satisfies the following
relation:

1

2

(
pi

∂ log pi

∂θ
+ ∂ log pi

∂θ
pi

)
= ∂pi

∂θ
. (5)

For a detailed discussion of the intimate link between the Fisher
information and the Shannon entropy, we refer to Ref. [38].
Finally, for an intriguing statistical mechanical interpretation
of the Fisher information, we refer to Ref. [39].

B. Quantum framework

In quantum information theory, the concept of Fisher infor-
mation can be introduced in the context of a single parameter
estimation problem. This problem concerns the inference of
the value of a coupling constant θ in the Hamiltonian Hθ ,

Hθ
def= h̄h0θ , (6)

of a probe system by observing the evolution of the probe due
toHθ . In Eq. (6), h̄ is the reduced Planck constant, θ is assumed
to have units of frequency, and h0 is a dimensionless coupling
Hamiltonian. The quantum Fisher information Fquantum(θ ) is
defined as [40]

Fquantum(θ )
def= max

{X (x)}
[F(θ )], (7)

with F(θ ) given by

F(θ )
def=
∫

p(x|θ )

[
∂ log p(x|θ )

∂θ

]2

dx. (8)

The quantity {X (x)} in Eq. (7) denotes a generalized measure-
ment where X (x) are non-negative, Hermitian operators that
satisfy the completeness relation,∫

X (x) dx = 1, (9)

with 1 denoting the unit operator. Furthermore, the probability
distribution p(x|θ ) in Eq. (8) is defined as

p(x|θ )
def= tr[X (x)ρ(θ )], (10)

where x labels the outcomes of the measurement and it need not
be a single continuous real variable. It can also be discrete or
multivariate, for instance. The symbol “tr” in Eq. (10) denotes
the usual trace operation. The quantity ρ(θ ) in Eq. (10) denotes
a curve on the space of density operators parametrized by the
parameter θ . Observe that while the classical distinguishability
metric satisfies the relation

ds2
PD = Fclassical(θ ) dθ2, (11)

the quantum distinguishability metric fulfills the condition

ds2
DO = Fquantum(θ ) dθ2. (12)

Note that PD in Eq. (11) and DO in Eq. (12) denote probability
distributions and density operators, respectively. Braunstein
and Caves showed that Fquantum(θ ) can be written as [40]

Fquantum(θ ) = 〈L2(θ )〉 def= tr[ρ(θ )L2(θ )], (13)

where L is the so-called symmetric logarithmic derivative
operator. This operator is defined implicitly in terms of the
following relation:

1

2
(ρL + Lρ) = ∂ρ

∂θ
, (14)

with
∂ρ

∂θ
= −i[T (θ ), ρ(θ )], (15)

where i is the imaginary unit. By replacing both the trace with
the integral (or summation) and the density operator with the
probability density function, we observe the formal analogies
between Eqs. (4) and (13) and Eqs. (5) and (14), respectively.
The quantity T (θ ) = Tθ in Eq. (15) is the Hermitian generator
of displacements in the parameter θ defined as

Tθ (t)
def= i

∂Uθ (t)

∂θ
U

†
θ (t). (16)

The unitary evolution operator Uθ (t) is generated by the
Hamiltonian Hθ (t)

Hθ (t)Uθ (t) = ih̄
∂Uθ (t)

∂t
, (17)

where

ρθ (0) → ρθ (t)
def= Uθ (t)ρθ (0)U †

θ (t). (18)

The dagger symbol “†” in Eq. (16) denotes the usual Hermi-
tian conjugate operation. Observe that if Hθ (t) = h̄h0θ is a
constant quantity, using Eq. (16), one finds that Tθ (t) = h0t .
Then, for pure states ρ2

θ = ρθ , it can be shown that [41]

Fquantum(θ ) = 4σ 2
Tθ (t) = 4

[〈
T 2

θ (t)
〉− 〈Tθ (t)〉2

]
. (19)

For the sake of completeness, we remark that in the case of
mixed states, the variance provides an upper bound on the
quantum Fisher information [42]. Furthermore, in the case of
time estimation, we have

θ �→ t , Tθ (t) �→ H(t), Fquantum(θ ) �→ Fquantum(t), (20)

and Eq. (19) becomes

Fquantum(t) = 4

h̄2 σ 2
H(t) = 4

h̄2 [〈H2(t)〉 − 〈H(t)〉2]. (21)

The quantum Fisher informationFquantum(θ ) can be interpreted
in an efficient manner as the square of a statistical speed vF
[22,43]:

Fquantum(θ ) = v2
F

def=
[
dl(θ )

dθ

]2

. (22)

The quantity vF in Eq. (22) denotes the rate of change with re-
spect to the parameter θ of the absolute statistical distance l(θ )
between two pure states (or, in general, density operators for
general mixtures) in the Hilbert space. The absolute statistical
distance l(θ ) equals the maximum number of distinguishable
states along the path ρ(θ ) = ρθ parametrized by θ , optimized
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over all possible generalized quantum measurements. For
further details on the quantum Fisher information, we refer
to Refs. [42,44–46].

III. INFORMATION GEOMETRY AND QUANTUM
DISTINGUISHABILITY

In this section, we briefly present suitable information
geometric measures of quantum distinguishability for both
pure and mixed states.

A. Pure states

Classical probability distributions can be distinguished by
means of the so-called classical Fisher-Rao information metric
tensor g

(FR)
ij (θ ) given by [47]

g
(FR)
ij (θ )

def=
∫

p(x|θ )
∂ log [p(x|θ )]

∂θ i

∂ log [p(x|θ )]

∂θj
dx

= 4
∫

∂
√

p(x|θ )

∂θ i

∂
√

p(x|θ )

∂θj
dx. (23)

One possible way of transitioning from the classical to the
quantum settings is to replace the integral and the probability
density function p(x|θ ) = pθ (x) = pθ in Eq. (23) with the
trace operation and the density operator ρθ , respectively. Then,
the quantum version of g

(FR)
ij (θ ) in Eq. (23) becomes the

so-called Wigner-Yanase metric g
(WY)
ij (θ ) [44,48],

g
(WY)
ij (θ ) = 4tr [(∂i

√
ρθ )(∂j

√
ρθ )] = 4tr[(∂iρθ )(∂jρθ )],

(24)

since ρθ = ρ2
θ with ρθ being a pure state. As pointed out in

Ref. [44], quantum generalizations of the Fisher information
are not unique. Observe that ∂iρθ in Eq. (24) can be written as

∂iρθ = ∂i(|ψθ 〉〈ψθ |) = |∂iψθ 〉〈ψθ | + |ψθ 〉〈∂iψθ |. (25)

Therefore, after some straightforward algebra, we find

(∂iρθ )(∂jρθ ) =〈ψθ |∂jψθ 〉|∂iψθ 〉〈ψθ | + |∂iψθ 〉〈∂jψθ |
+ 〈∂iψθ |∂jψθ 〉|ψθ 〉〈ψθ |
+ 〈∂iψθ |ψθ 〉|ψθ 〉〈∂jψθ |. (26)

Using Eq. (26), tr[(∂iρθ )(∂jρθ )] in Eq. (24) can be recast as

tr[(∂iρθ )(∂jρθ )] = 〈ψθ |(∂iρθ )(∂jρθ )|ψθ 〉
= 〈ψθ |∂jψθ 〉〈ψθ |∂iψθ 〉+〈ψθ |∂iψθ 〉〈∂jψθ |ψθ 〉

+ 〈∂iψθ |∂jψθ 〉 + 〈∂iψθ |ψθ 〉〈∂jψθ |ψθ 〉.
(27)

Using the normalization condition 〈ψθ |ψθ 〉 = 1, we have
〈∂jψθ |ψθ 〉 = −〈ψθ |∂jψθ 〉. Therefore, tr[(∂iρθ )(∂jρθ )] in
Eq. (27) becomes

tr[(∂iρθ )(∂jρθ )] = 〈∂iψθ |∂jψθ 〉 + 〈∂iψθ |ψθ 〉〈∂jψθ |ψθ 〉.
(28)

Following the line of reasoning presented in Ref. [49], we
observe that we can write the inner product 〈∂iψθ |∂jψθ 〉 as

〈∂iψθ |∂jψθ 〉 = γij + iσij , (29)

where

γij
def= Re[〈∂iψθ |∂jψθ 〉] and σij

def= Im[〈∂iψθ |∂jψθ 〉],
(30)

respectively. Note that Re (z) and Im (z) denote the real and the
imaginary part of a complex quantity z, respectively. Observe
that γij and σij are symmetric and antisymmetric quantities,
respectively. Indeed,

γji = Re[〈∂jψθ |∂iψθ 〉] = Re[〈∂iψθ |∂jψθ 〉∗]

= Re[〈∂iψθ |∂jψθ 〉] = γij (31)

and

σji = Im[〈∂jψθ |∂iψθ 〉] = Im[〈∂iψθ |∂jψθ 〉∗]

= − Im[〈∂iψθ |∂jψθ 〉] = −σij . (32)

Since σij = −σji , σij dθ idθj = 0. Finally, by using Eqs. (28),
(29), and (30), g

(WY)
ij (θ ) in Eq. (24) becomes

g
(WY)
ij (θ ) = 4{Re[〈∂iψθ |∂jψθ 〉] + 〈∂iψθ |ψθ 〉〈∂jψθ |ψθ 〉}.

(33)

For the sake of completeness, we recall that

g
(FS)
ij (θ ) = 1

4g
(WY)
ij (θ ), (34)

where g
(FS)
ij (θ ) denotes the Fubini-Study metric. The infinites-

imal line element ds2
FS corresponding to the Fubini-Study

metric tensor g
(FS)
ij (θ ) is given by

ds2
FS = g

(FS)
ij (θ ) dθi dθj . (35)

The metric tensor components g
(FS)
ij (θ ) must be such that [49]

(1) they transform properly under a change of the coordinates
θ → θ ′ = θ ′(θ ), (2) they are invariant under gauge transfor-
mations, ψ(θ ) → ψ ′(θ ) = eiα(θ)ψ(θ ), and (3) they define a
positive definite metric tensor. Imposing these conditions, it
can be shown that ds2

FS can be defined as

ds2
FS

def= ‖dψ‖2 − |〈ψ |dψ〉|2 = 〈dψ |dψ〉 − 〈dψ |ψ〉〈ψ |dψ〉
= 〈dψ⊥|dψ⊥〉 = 1 − |〈ψ ′|ψ〉|2, (36)

where |dψ〉 and |dψ⊥〉 are given by

|dψ〉 def= ∣∣ψ ′〉− |ψ〉, and |dψ⊥〉 def= |dψ〉 − |ψ〉〈ψ |dψ〉,
(37)

respectively. For the sake of clarity, we remark that |ψ〉 and
|ψ ′〉 are two neighboring normalized pure states, |dψ〉 is
the difference between them, and |dψ⊥〉 is the projection
of |dψ〉 orthogonal to |ψ〉. Expanding |ψ〉 and |ψ ′〉 with
respect to an orthonormal basis {|m〉} with m ∈ {1,…, N}, we
obtain

|ψ〉 def=
N∑

m=1

√
pm(θ )eiφm(θ)|m〉 and

|ψ ′〉 def=
N∑

m=1

√
pm + dpmei(φm+dφm)|m〉, (38)
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respectively. Substituting Eq. (38) into Eq. (36) and recalling Eq. (34), after some tedious but straightforward algebra [35], the
infinitesimal Wigner-Yanase line element ds2

WY = 4ds2
FS becomes

ds2
WY =

⎧⎨
⎩

N∑
m=1

ṗ2
m

pm

+ 4

⎡
⎣ N∑

m=1

pmφ̇2
m −

(
N∑

m=1

pmφ̇m

)2
⎤
⎦
⎫⎬
⎭dθ2, (39)

where

ṗm
def= dpm

dθ
and φ̇m

def= dφm

dθ
. (40)

In the next subsection, we move our discussion from pure states to density operators.

B. Density operators

In the case of density operators, one needs to consider the quantum analog M �ρ of the probability simplex [50,51],

M �ρ
def=
⎧⎨
⎩ �ρ ∈ L(H) : �ρ def=

N∑
i, j=1

ρij �eij , �ρ = �ρ†, tr
( �ρ) = 1, �ρ � 0

⎫⎬
⎭, (41)

where L(H) denotes the linear space of all linear operators
on a N -dimensional Hilbert space H with density operators �ρ
written as vectors in L(H). The space M �ρ in Eq. (41) is an
(N2 − 1)-dimensional real manifold with nontrivial boundary.
An arbitrary linear operator vector �V onH can be decomposed

with respect to an operator vector basis �eij
def= |i〉〈j | with i,

j = 1, . . . ,N as

�V =
N∑

i, j=1

〈i| �V |j 〉�eij =
N∑

i, j=1

V ij �eij . (42)

The tangent space at �ρ is characterized by an (N2 − 1)-
dimensional real vector space of traceless Hermitian
operators �T ,

�T =
N∑

i, j=1

T ij �eij , (43)

with tr( �T ) = 0. The action of 1-forms F̃ , expanded in terms

of the dual basis ω̃ji def= |i〉〈j |,

F̃
def=

N∑
i, j=1

Fij ω̃
ji , (44)

on density operators �ρ is defined as

F̃ ( �ρ)
def= 〈F̃ , �ρ〉 =

N∑
i, j , l, k=1

Fijρ
lk〈ω̃ji , �elk〉

=
N∑

i, j , l, k=1

Fijρ
lkδ

j

l δ
i
k =

N∑
i, j=1

Fijρ
ji = tr(F̃ �ρ)

def= 〈F̃ 〉.

(45)

Therefore, from Eq. (45), a Hermitian 1-form F̃ = F̃ † is an
ordinary quantum observable with 〈F̃ , �ρ〉 = 〈F̃ 〉. A metric
structure g �ρ(·, ·) on the manifold M �ρ can be introduced by
specifying the action of the metric on a pair of 1-forms Ã and

B̃ as

g �ρ(Ã, B̃)
def=
〈
ÃB̃ + B̃Ã

2

〉
= tr

[(
ÃB̃ + B̃Ã

2

)
�ρ
]

= tr

[
Ã

2
( �ρB̃ + B̃ �ρ)

]
= 〈Ã, R �ρ(B̃)〉, (46)

where R �ρ(B̃) is the raising operator that maps 1-forms (lower
covariant components) to vectors (upper contravariant compo-
nents) [50]:

R �ρ
(
B̃
) def= �ρB̃ + B̃ �ρ

2
. (47)

The metric g �ρ(Ã, B̃) in Eq. (46) is constructed in terms of
statistical correlations of quantum observables. By means of
the lowering operatorL �ρ( �A) that maps vectors to 1-forms [50],

L �ρ( �A)
def= R−1

�ρ ( �A), (48)

the action of the metric tensor g �ρ(·, ·) on a pair of vectors �A
and �B can be defined as

g �ρ( �A, �B)
def= 〈L �ρ( �A), �B〉 = tr[ �BL �ρ( �A)]. (49)

Finally, the quantum line element for density operators is given
by

ds2
DO

def= g �ρ
(
d �ρ, d �ρ), (50)

where d �ρ def= ( �ρ + d �ρ) − �ρ with

�ρ def=
N∑

j=1

pj |j 〉〈j | and �ρ + d �ρ def=
N∑

j=1

(pj + dpj )|j ′〉〈j ′|,

(51)
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and |j ′〉 def= eidθh|j 〉. The quantity eidθh denotes an infinitesimal unitary transformation on the orthonormal basis that diagonalizes
�ρ, while h is the Hermitian operator that generates the infinitesimal unitary basis transformations. After some algebra, d �ρ can be
rewritten as

d �ρ def=
N∑

j=1

dpj |j 〉〈j | + idθ

N∑
j , k=1

(pj − pk)hkj |k〉〈j |, (52)

where hkj
def= 〈k|h|j 〉. Finally, by substituting Eq. (52) into Eq. (50), ds2

DO becomes [50]

ds2
DO = g �ρ(d �ρ, d �ρ)

def= tr[d �ρL �ρ(d �ρ)] =
⎡
⎣ N∑

k=1

1

pk

(
dpk

dθ

)2

+ 2
∑
j =k

(pj − pk)2

(pj + pk)
|hjk|2

⎤
⎦dθ2. (53)

Notice that the quantum line element in Eq. (53) is identical
to the distinguishability metric for density operators obtained
by Braunstein and Caves in Ref. [40] by optimizing over all
generalized quantum measurements for distinguishing among
neighboring quantum states. We also point out that for pure
states, the line element in Eq. (53) becomes the usual Fubini-
Study metric, a gauge-invariant metric on the complex pro-
jective Hilbert space [49]. For the sake of completeness, we
also point out that ds2

DO in Eq. (53) was originally regarded as
the infinitesimal form of a distance between density operators
in Ref. [52] and interpreted as a generalization of transition
probabilities to mixed states in Ref. [53]. Indeed, the Bures
distance dBures(ρ1, ρ2) between two mixed density operators
ρ1 and ρ2 is given by [52]

dBures(ρ1, ρ2)
def=

√
2[1 − F(ρ1, ρ2)]

1
2 , (54)

where F(ρ1, ρ2) is the so-called Uhlmann fidelity defined as
[53]

F(ρ1, ρ2)
def= tr

√√
ρ1ρ2

√
ρ1. (55)

The infinitesimal Bures line element ds2
Bures can be expressed in

terms of the Bures distance between two infinitesimally close
density matrices as [19]

ds2
Bures

def= d2
Bures(ρ, ρ + dρ) = 1

2

∑
i,j

|〈i|dρ|j 〉|2
pi + pj

, (56)

where ρ and dρ in Eq. (56) are defined as

ρ
def=

N∑
i=1

pi |i〉〈i| and

dρ
def=

N∑
i=1

dpi |i〉〈i| +
N∑

i=1

pi |di〉〈i| +
N∑

i=1

pi |i〉〈di|, (57)

respectively. By substituting the expression for dρ in Eq. (57)
into Eq. (56), ds2

Bures becomes

ds2
Bures = 1

4

⎡
⎣ N∑

i=1

(dpi)2

pi
+ 2
∑
i =j

(pi − pj )2

pi + pj
|〈i|dj 〉|2

⎤
⎦. (58)

Observe that, modulo an irrelevant constant factor, ds2
Bures in

Eq. (58) and ds2
DO in Eq. (53) are identical. Similarly, note that

when [ρ, dρ]
def= ρdρ − dρρ = 0, the Bures metric essentially

becomes the Fisher-Rao information metric. Furthermore, for
pure states, ρ

def= |ψ〉〈ψ | with dρ
def= |dψ〉〈ψ | + |ψ〉〈dψ |, the

Bures metric becomes the Fubini-Study metric,

ds2
Bures =

∑
i∈ker(ρ)

|〈dψ |i〉|2 = 〈dψ |(1 − |ψ〉〈ψ |)|dψ〉

= 〈dψ |dψ〉 − 〈dψ |ψ〉〈ψ |dψ〉 = ds2
FS. (59)

For a more detailed presentation of this material, we refer
to Refs. [50,54]. As a final remark, we point out that the
distinguishability of mixed density operators can be quantified
in terms of several metrics within the information geometric
framework. For further details on this specific issue, we refer
to Refs. [47,55,56].

IV. GEODESIC PATHS IN THE PROJECTIVE SPACE

In this section, after pointing out our working assumptions,
we use methods of variational calculus to extremize the action
functional expressed in terms of the infinitesimal Fubini-Study
line element. The extremization procedure leads to determina-
tion of the geodesic paths followed by the quantum-mechanical
probability amplitudes of pure quantum states.

A. Variance of the phase changes

Recall that given two normalized pure states |ψ〉 and |ψ ′〉
as defined in Eq. (38), the Fubini-Study metric becomes

ds2
FS = 1

4

⎧⎨
⎩

N∑
m=1

ṗ2
m

pm

+ 4

⎡
⎣ N∑

m=1

pmφ̇2
m −

(
N∑

m=1

pmφ̇m

)2
⎤
⎦
⎫⎬
⎭dθ2.

(60)

In terms of the variance of phase changes σ 2
φ̇

,

σ 2
φ̇

def=
N∑

m=1

pmφ̇2
m −

(
N∑

m=1

pmφ̇m

)2

, (61)

with 0 � σ 2
φ̇

, the metric in Eq. (60) becomes

ds2
FS = 1

4

[
N∑

m=1

ṗ2
m

pm

+ 4σ 2
φ̇

]
dθ2. (62)

Following a remark made in Ref. [40], we point out that a
suitable choice of an orthonormal basis {|k〉} makes σ 2

φ̇
equal
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to zero. Specifically, the condition that must be satisfied by
{|k〉} is that for any 1 � k � N ,

pk

⎛
⎝dφk −

N∑
j=1

pjdφj

⎞
⎠ = 0. (63)

Indeed, after some simple algebraic manipulations, Eq. (63)
can be written as

N∑
k=1

pk(dφk)2 −
(

N∑
k=1

pkdφk

)2

= 0, (64)

that is, using Eq. (61), σ 2
φ̇

= 0. In particular, any basis {|k〉}
that satisfies Eq. (63) is such that its basis vectors also satisfy
the relation

Im (〈k|ψ〉〈k|dψ⊥〉) = 0, (65)

with |ψ〉 and |dψ⊥〉 given in Eqs. (38) and (37), respectively.

To verify the relation in Eq. (65), recall that |dψ〉 def= |ψ ′〉 −
|ψ〉, |dψ⊥〉 def= |dψ〉 − |ψ〉〈ψ |dψ〉, where |ψ〉 and |ψ ′〉 can be
written as

|ψ〉 def=
N∑

j=1

√
pje

−iφj |j 〉 (66)

and

|ψ ′〉 def=
N∑

j=1

√
pj + dpje

−i(φj +dφj )|j 〉, (67)

respectively. Using these previous four relations,
〈ψ |k〉〈k|dψ⊥〉 becomes

〈ψ |k〉〈k|dψ⊥〉 = √
pke

−iφk [〈k|ψ ′〉 − 〈k|ψ〉〈ψ |ψ ′〉]
= √

pke
−iφk 〈k|ψ ′〉 − √

pke
−iφk 〈k|ψ〉〈ψ |ψ ′〉.

(68)

Observe that 〈ψ |k〉 = √
pke

−iφk , 〈k|ψ〉 = 〈ψ |k〉∗ = √
pke

iφk

and, limiting our attention to the second order expansion of
|ψ ′〉 with respect to dφk and dpk , the expressions for 〈ψ |ψ ′〉
and 〈k|ψ ′〉 in Eq. (68) become

〈ψ |ψ ′〉 = 1 − 1

8

N∑
j=1

(dpj )2

pj

+ i

N∑
j=1

pjdφj

+ i

2

N∑
j=1

dpj dφj − 1

2

N∑
j=1

pj (dφj )2 (69)

and

〈k|ψ ′〉 = √
pke

iφk

[
1 + i(dφk) − 1

2
(dφk)2 + 1

2

dpk

pk

+ i

2

dpk dφk

pk

− 1

8

(dpk)2

p2
k

]
, (70)

respectively. Substituting Eqs. (69) and (70) into Eq. (68), after
some algebra, we obtain Eq. (65). In conclusion, it is always
possible to assume σ 2

φ̇
= 0 given an appropriate choice of basis

{|k〉}. In what follows, we assume to be working under such a
condition.

B. Extremizing the action functional

For the sake of convenience, recall that the relation between
the Wigner-Yanase and the Fubini-Study infinitesimal line
elements is ds2

WY = 4ds2
FS, where ds2

FS is given by

ds2
FS

def= 1

4

⎧⎨
⎩

N∑
k=1

ṗ2
k

pk

+ 4

⎡
⎣ N∑

k=1

φ̇2
kpk −

(
N∑

k=1

φ̇kpk

)2
⎤
⎦
⎫⎬
⎭dθ2,

(71)

with ṗk and φ̇k defined in Eq. (40). Observe that

N∑
k=1

φ̇2
kpk −

(
N∑

k=1

φ̇kpk

)2

= 〈φ̇2〉 − 〈φ̇〉2 = σ 2
φ̇

, (72)

where 〈·〉 denotes the averaging operation and φ
def=

(φ1,…, φN ). Therefore, using Eq. (72), Eq. (71) can be rewrit-
ten as

ds2
FS = 1

4

{
F(θ ) + 4σ 2

φ̇

}
dθ2, (73)

where F(θ ) denotes the Fisher information function defined as

F(θ )
def=

N∑
k=1

ṗ2
k

pk

. (74)

As pointed out earlier, we assume σ 2
φ̇

= 0. Then, the action
functional to consider is given by

S def=
∫

dsFS =
∫ √

ds2
FS = 1

2

∫
F 1

2 (θ )dθ , (75)

that is, more formally,

S[p]
def=
∫

L(ṗ, p, θ )dθ , (76)

where p
def= (p1,…, pN ) and L(ṗ, p, θ ) denotes the

Lagrangian-like function defined as

L(ṗ, p, θ )
def= 1

2F
1
2 (θ ), (77)

with F(θ ) defined in Eq. (74). We wish to determine the

probability paths p
def= (p1,…, pN ) with pk = pk(θ ) for any

1 � k � N that make the action functional S[p] in Eq. (76)
stationary subject to the conservation of the probability condi-
tion

N∑
k=1

pk = 1. (78)

Generally speaking, an action functional S[p]
def=∫

L(ṗ, p, θ )dθ has a stationary value if δS = 0. It happens
that for any k̄ with 1 � k̄ � N , we have

δS =
∫ (

∂L
∂ṗk̄

δṗk̄ + ∂L
∂pk̄

δpk̄

)
dθ

=
∫ [

∂L
∂ṗk̄

d
(
δpk̄

)
dθ

+ ∂L
∂pk̄

δpk̄

]
dθ

=
∫

∂L
∂ṗk̄

d
(
δpk̄

)
dθ

dθ +
∫

∂L
∂pk̄

δpk̄ dθ . (79)
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Integrating by parts the first term in the last line of Eq. (79),
we find

δS = ∂L
∂ṗk̄

δpk̄ −
∫

d

dθ

(
∂L
∂ṗk̄

)
δpk̄ dθ +

∫
∂L
∂pk̄

δpk̄ dθ .

(80)

We point out that, in the variational calculus scheme being
considered here, only the probability paths pk̄(θ ) are being
varied while the endpoints are being kept fix, that is, δpk̄(θi) =
δpk̄(θf) = 0. Therefore, the condition δS = 0 becomes∫ [

d

dθ

(
∂L
∂ṗk̄

)
− ∂L

∂pk̄

]
δpk̄ dθ = 0. (81)

Since Eq. (81) must be satisfied for any small change δpk̄ ,
the condition δS = 0 leads to the so-called Euler-Lagrange
differential equations:

d

dθ

(
∂L
∂ṗk̄

)
− ∂L

∂pk̄

= 0. (82)

Returning to our specific problem, we wish to find the station-
ary value of the action functional

S[p] =
∫ [

L(ṗ, p, θ ) − λ

(
N∑

k=1

pk − 1

)]
dθ , (83)

where λ in Eq. (83) is the Lagrange multiplier coefficient and
L(ṗ, p, θ ) is the Lagrangian-like function given in Eq. (77).
Consider the following change of variables [57]:

pk(θ ) → qk(θ ), with pk(θ )
def= q2

k (θ ). (84)

In terms of the probability amplitude variables qk(θ ), Eqs. (74)
and (78) become

F(θ ) = 4
N∑

k=1

q̇2
k (85)

and
N∑

k=1

q2
k = 1, (86)

respectively. Using Eqs. (85) and (86), the action functional in
Eq. (83) becomes

Snew[q] =
∫

Lnew(q̇, q, θ )dθ , (87)

where q
def= (q1,…, qN ), and

Lnew(q̇, q, θ )
def=
(

N∑
k=1

q̇2
k

) 1
2

− λ

(
N∑

k=1

q2
k − 1

)
. (88)

Following the line of reasoning outlined before, we find that

δSnew = δSnew

δqk̄

δqk̄ = 0, ∀ 1 � k̄ � N (89)

leads to the following Euler-Lagrange differential equations:

d

dθ

(
∂Lnew

∂q̇k̄

)
− ∂Lnew

∂qk̄

= 0. (90)

A straightforward computation yields the following three
equalities:

∂Lnew

∂q̇k̄

= q̇k̄(∑N
k=1 q̇2

k

) 1
2

,

d

dθ

(
∂Lnew

∂q̇k̄

)
= q̈k̄(∑N

k=1 q̇2
k

) 1
2

− q̇2
k̄
q̈k̄(∑N

k=1 q̇2
k

) 3
2

,

∂Lnew

∂qk̄

= −2λqk̄ . (91)

Employing the three relations in Eq. (91), the Euler-Lagrange
equations in Eq. (90) become

q̈k̄(∑N
k=1 q̇2

k

) 1
2

− q̇2
k̄
q̈k̄(∑N

k=1 q̇2
k

) 3
2

+ 2λqk̄ = 0, (92)

that is,

q̈k̄ − q̇2
k̄
q̈k̄∑N

k=1 q̇2
k

+ 2λ

(
N∑

k=1

q̇2
k

) 1
2

qk̄ = 0. (93)

Observe that in terms of the Lagrangian-like functionL defined
in Eq. (77) expressed in terms of the probability amplitudes qk ,
we find that L(θ ) and L̇(θ )/L(θ ) are given by

L(θ ) = 1

2
F 1

2 (θ ) =
(

N∑
k=1

q̇2
k

) 1
2

and
L̇(θ )

L(θ )
= q̇k̄ q̈k̄∑N

k=1 q̇2
k

,

(94)

respectively. Then, using the equalities in Eq. (94), the Euler-
Lagrange equations expressed in Eq. (93) become

q̈k̄ − L̇(θ )

L(θ )
q̇k̄ + 2λFSL(θ )qk̄ = 0, (95)

where λFS is the Lagrange multiplier coefficient obtained
within the framework of the Fubini-Study metric. For the
sake of completeness, we remark that if we had used the
Wigner-Yanase metric, Eq. (95) would have been written as

q̈k̄ − L̇(θ )

L(θ )
q̇k̄ + λWY

2
L(θ )qk̄ = 0. (96)

The rescaling of the Lagrange multiplier coefficient in tran-
sitioning from the Fubini-Study to the Wigner-Yanase cases
occurs in order to satisfy the conservation of probability
condition in both scenarios. Finally, recalling that

LFS = 1
2F

1
2 and LWY = F 1

2 , (97)

that is, F = 4L2
FS = L2

WY, in terms of the Fisher information
function, Eqs. (95) and (96) become

q̈k̄ − 1

2

Ḟ(θ )

F(θ )
q̇k̄ + λFSF

1
2 (θ )qk̄ = 0 (98)

and

q̈k̄ − 1

2

Ḟ(θ )

F(θ )
q̇k̄ + λWY

2
F 1

2 (θ )qk̄ = 0, (99)

respectively. In general, for each k̄ with 1 � k̄ � N , the inte-
gration of the previous second-order N ordinary differential
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equations (ODEs) leads to a formal expression of qk̄(θ ).
Specifically, each qk̄(θ ) is the superposition of two linearly
independent solutions of the ODEs expressed in terms of
two real constants of integration c

(1)
k̄

and c
(2)
k̄

. In particular,
the formal expressions of such independent solutions appear
in terms of the Lagrange multiplier λFS and depend on the
particular functional dependence of the Fisher information
function on the parameter θ . Therefore, in principle, the exact
expression of these independent solutions requires one to
express the Lagrange multiplier in terms of the characteristic
parameters that specify the Fisher information function by
imposing that 1

4F (θ ) equals the sum of q̇2
k̄
(θ ) with 1 � k̄ �

N . Finally, since q2
k̄
(θ ) are probabilities, the 2N integration

constants c
(1)
k̄

and c
(2)
k̄

have to be chosen in such a manner that
q2

k̄
(θ ) add up to unity and 0 � q2

k̄
(θ ) � 1 for any 1 � k̄ � N . In

what follows, we shall take into consideration the integration of
Eq. (98) for various functional forms of the Fisher information
function.

V. ILLUSTRATIVE EXAMPLES

In this section we determine the geodesic paths followed
by the quantum-mechanical probability amplitudes of pure
quantum states for three distinct functional forms of the Fisher
information function: constant Fisher information, exponential
decay, and power-law decay.

A. Example one: Constant Fisher information

In the working assumption that F(θ ) takes a constant value
F0, Eq. (98) describes a simple harmonic oscillator:

q̈k̄ + λFSF
1
2

0 qk̄ = 0. (100)

Integration of Eq. (100) leads to the following general solution
for the geodesic path of quantum-mechanical probability
amplitudes qk̄(θ ),

qk̄(θ ) = c
(1)
k̄

cos
(
F

1
4

0

√
λFSθ

)+ c
(2)
k̄

sin
(
F

1
4

0

√
λFSθ

)
,

(101)

where c
(1)
k̄

and c
(2)
k̄

are two integration constants. Therefore,
assuming for the sake of clarity that k̄ = 1, 2, probabilities

p1(θ ) and p2(θ )
def= 1 − p1(θ ) can be written as

p1(θ ) = cos2 (F 1
4

0

√
λFSθ

)
, and

p2(θ ) = sin2
(
F

1
4

0

√
λFSθ

)
, (102)

respectively. The value of the Lagrange multiplier coefficient
λFS in Eq. (102) can be explicitly obtained by requiring that

ṗ2
1(θ )

p1(θ )
+ ṗ2

2(θ )

p2(θ )
= F0. (103)

By substituting Eq. (102) into Eq. (103), we obtain

λFS = 1
4F

1
2

0 . (104)

Observe that in the case of the analog counterpart of Grover’s
quantum search algorithm F0 = 4 and, thus, λFS = 1/2 and
λWY = 1. Therefore, the failure and success probabilities are

0 2 4 6 8 10
Θ

p
Θ

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1. Oscillatory behavior of the success (dotted) and failure
(solid) probabilities in the case of constant Fisher information.

given by p1(θ ) = cos2 (θ ) and p2(θ ) = sin2 (θ ), respectively.
In Fig. 1 we observe an oscillatory behavior of the success
(dotted) and failure (solid) probabilities in the case of constant
Fisher information.

B. Example two: Exponential decay

In this subsection, we assume that the Fisher information
function is a monotonically decreasing function that exhibits
exponentially decaying behavior,

F(θ )
def= F0e

−ξθ , (105)

with F0 and ξ being positive real constant coefficients. In this
working assumption, Eq. (98) describes the equation of an
aging spring in the presence of damping,

q̈k̄ + ξ

2
q̇k̄ + λFSF

1
2

0 e− ξ

2 θqk̄ = 0, (106)

where q̇k̄
def= dqk̄/dθ . Equation (106) can be analytically inte-

grated, and a closed form solution can be found.
In what follows, we consider the classical second order

ordinary differential equation that describes an aging spring
with damping,

mẍ + bẋ + ke−ηtx = 0, (107)

that is,

ẍ + b

m
ẋ + k

m
e−ηtx = 0. (108)

In Eq. (108), m > 0 is the mass, k > 0 is the value of the spring
constant at t = 0, b > 0 is the constant damping coefficient,

η
def= − 1

k(t)
d[k(t)]

dt
∈ R+\{0}, and ẋ

def= dx/dt . Equations (106)
and (108) are essentially identical once we impose that

θ = t , ξ = 2b

m
= 2η and λFSF

1
2

0 = k

m
. (109)

To integrate Eq. (107), we employ two convenient mathemat-
ical tricks. First, we make a change of variables,

x(t) → y(t) : x(t)
def= y(t)e− b

2m
t . (110)
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From Eq. (110), we get

ẋ = ẏe− b
2m

t − b

2m
ye− b

2m
t and

ẍ = ÿe− b
2m

t − b

m
ẏe− b

2m
t + b2

4m2
ye− b

2m
t . (111)

Using the two relations in Eqs. (111), Eq. (107) becomes

m

(
ÿ − b

m
ẏ + b2

4m2
y

)
+ b

(
ẏ − b

2m
y

)
+ ke−ηty = 0,

(112)

that is,

mÿ +
(

ke−ηt − b2

4m

)
y = 0. (113)

At this point, let us consider the change of the independent
variable

t → s(t) : s(t)
def= αeβt , (114)

that is,

t = 1

β
log
( s

α

)
, (115)

with α and β being real coefficients. From Eq. (114), we obtain
after some algebra,

d

dt

def= βs
d

ds
, and

d2

dt2

def= β2s

(
d

ds
+ s

d2

ds2

)
. (116)

Using the relations in Eq. (116), Eq. (113) becomes

s2y ′′ + sy ′ + 1

mβ2

[
k
( s

α

)− η

β − b2

4m

]
y = 0, (117)

where y ′ def= dy/ds. At this point, we impose that

− η

β

def= 2, and
k

mβ2α
− η

β

def= 1, (118)

that is,

α
def= 2

η

√
k

m
and β

def= −1

2
η, (119)

and, consequently,

s(t) = 2

η

√
k

m
e− 1

2 ηt . (120)

Using the relations in Eq. (119), the linear second-order
differential equation in Eq. (117) becomes

s2y ′′ + sy ′ +
[

1 −
(

b

mη

)2
]
y = 0. (121)

Equation (121) is Bessel’s equation of order b
mη

� 0, and its
integration leads to the following general solution [58]:

y(s) = c1J+ b
mη

(s) + c2J− b
mη

(s), (122)

that is, using Eqs. (110), (114), and (119),

x(t) = c1e
− b

2m
tJ+ b

mη

(
2

η

√
k

m
e− η

2 t

)
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FIG. 2. Monotonic behavior of the success (dotted) and failure
(solid) probabilities in the case of exponential decay of the Fisher
information.

+ c2e
− b

2m
tJ− b

mη

(
2

η

√
k

m
e− η

2 t

)
, (123)

where c1 and c2 are two real integration constants, and Jυ(x)
denotes the Bessel function of the first kind of order ν � 0 [58].
Finally, using Eqs. (109) and (123), the geodesic path of the
quantum-mechanical probability amplitudes qk̄(θ ) becomes

qk̄(θ ) = c
(1)
k̄

e− ξ

4 θJ+1

(
4

ξ

√
λFSF

1
4

0 e− ξ

4 θ

)

+ c
(2)
k̄

e− ξ

4 θJ−1

(
4

ξ

√
λFSF

1
4

0 e− ξ

4 θ

)
, (124)

where c
(1)
k̄

and c
(2)
k̄

are two real integration constants. In
Fig. 2, setting F0 = 1, ξ = 2 and preserving the normalization
constraint, we observe a monotonic behavior of the success
(dotted) and failure (solid) probabilities in the case of expo-
nential decay of the Fisher information.

C. Example three: Power-law decay

In this subsection, we assume that the Fisher information
function is a monotonically decreasing function that exhibits
power-law decay behavior,

F(θ )
def= F0

(1 + �θ )n
, (125)

where F0, �, and n � 0 are real constant coefficients. Using
Eq. (125), Eq. (98) becomes

q̈k̄ + n�

2

1

1 + �θ
q̇k̄ + λFSF

1
2

0

(1 + �θ )
n
2
qk̄ = 0, (126)

where q̇k̄
def= dqk̄/dθ . Equation (126) is a linear second-order

ordinary differential equation with varying coefficients. Its
analytical integration is nontrivial for arbitrary values of n � 0.
However, in what follows, we use a mathematical trick that
allows to deduce a closed form solution for Eq. (126) for a
specific choice of the constants � and n in Eq. (125). We
proceed as follows.
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Consider the second order linear differential equation with
time-dependent coefficients,

ẍ + p(t)ẋ + q(t)x = 0, (127)

where ẋ
def= dx/dt . Next, consider the following change of

independent variable:

t → s : s
def= f (t). (128)

After some algebra, we obtain

dx

dt
= ds

dt

dx

ds
(129)

and

d2x

dt2
= d

dt

(
dx

dt

)
= d

dt

(
ds

dt

dx

ds

)
= ds

dt

d

ds

(
ds

dt

dx

ds

)

= ds

dt

d

ds

(
ds

dt

)
dx

ds
+ ds

dt

ds

dt

d

ds

(
dx

ds

)

= ds

dt

d

dt

(
ds

dt

)
dt

ds

dx

ds
+ d2x

ds2

(
ds

dt

)2

, (130)

that is,

d2x

dt2
= d2s

dt2

dx

ds
+
(

ds

dt

)2
d2x

ds2
. (131)

Substituting Eqs. (129) and (131) into Eq. (127), we obtain(
ds

dt

)2
d2x

ds2
+ d2s

dt2

dx

ds
+ p(t)

ds

dt

dx

ds
+ q(t)x = 0, (132)

that is, after some algebraic manipulations,

d2x

ds2
+

d2s
dt2 + p(t) ds

dt(
ds
dt

)2 dx

ds
+ q(t)(

ds
dt

)2 x = 0, (133)

where x = x(s). Let us define the quantities A and B as

A
def= q(t)(

ds
dt

)2 , and B
def=

d2s
dt2 + p(t) ds

dt(
ds
dt

)2 , (134)

respectively. If we are able to select a suitable change of

independent variables t → s
def= f (t) such that both A and B

are constant quantities, integration of Eq. (127) reduces to
integration of the following second-order linear differential
equation with constant coefficients:

d2x

ds2
+ B

dx

ds
+ Ax = 0. (135)

We recall that for B2 < 4A, the system that evolves according
to Eq. (135) exhibits an underdamped oscillatory motion.
Instead, when B2 > 4A, the system manifests over-damped
motion. Finally, when B2 = 4A, the system is characterized by
a critically damped motion. We can now return to our problem
of integrating Eq. (126) and exploit the above mentioned
mathematical reasoning. From Eqs. (98) and (127), replacing
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FIG. 3. Monotonic behavior of the success (dotted) and failure
(solid) probabilities in the case of power-law decay of the Fisher
information.

the independent variable t with θ , we have

p(θ )
def= −1

2

Ḟ
F , and q(θ )

def= λFSF
1
2 . (136)

Substituting Eq. (136) into Eq. (134) and imposing that A and
B are constant coefficients, we obtain, after some algebra, the
following suitable change of independent variables:

θ → s : s(θ )
def= 1

B
log

[
1 + B√

A

√
λFSF

1
4

0 θ

]
, (137)

together with the following two-parameter functional form for
the Fisher information function F(θ ; A, B):

F(θ ; A, B)
def= F0[

1 + B√
A

√
λFSF

1
4

0 θ
]4 . (138)

In summary, we have shown that if n = 4 and � in Eq. (125)
is defined as

� = �(A, B)
def= B√

A

√
λFSF

1
4

0 , (139)

there is a suitable change of independent variables defined
in Eq. (137) that makes Eq. (126) a linear second-order
differential equation with constant coefficients. Thus, it can
now be integrated in a straightforward manner. For instance,
in the case of critical damping where B2 = 4A in Eq. (135), the
general solution for the geodesic path of quantum-mechanical
probability amplitudes qk̄(θ ) becomes

qk̄(θ )
def=

c
(1)
k̄

+ c
(2)
k̄

1
B

log
(
1 + B√

A

√
λFSF

1
4

0 θ
)

[
1 + B√

A

√
λFSF

1
4

0 θ
] 1

2

, (140)

where c
(1)
k̄

and c
(2)
k̄

are two real integration constants. In
Fig. 3, setting A = 1

4 , B = 1, F0 = 1, and preserving the
normalization constraint, we observe a monotonic behavior
of the success (dotted) and failure (solid) probabilities in the
case of power-law decay of the Fisher information.
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VI. ON PHYSICAL SYSTEMS, FISHER INFORMATION,
AND GEODESIC PATHS

In this section, we present some clarifying remarks on the
link among physical systems, Fisher information functions,
and geodesic paths on Riemannian manifolds.

A. General remarks

We point out that classical Fisher information can be
computed by considering parametric probability distributions

pθ (x)
def= |ψθ (x)|2 that emerge from the absolute square of

parametric quantum mechanical wave functions ψθ (x). Sim-
ilarly, quantum Fisher information can be defined by means
of parametric rank-one projections that can be regarded as
density operators ρθ (x) constructed from the above mentioned
wave functions ψθ (x). The functional form of such parametric
quantum mechanical wave functions ψθ (x) depends on the
particular choice of the unitary evolution operator Uθ (t).
The operator Uθ (t) is generated by the parameter-dependent
Hamiltonian Hθ (t) that specifies the physical system under
consideration. Furthermore, Hθ (t) acts as the Hermitian gen-
erator of temporal displacements and satisfies the relation

Hθ (t)Uθ (t) = ih̄∂tUθ (t) with ∂t
def= ∂/∂t . The value of the

parameter of interest θ that specifies the Hamiltonian Hθ (t)
is inferred by observing the evolution of the probe system
due to Hθ (t). More specifically, the observation of the probe
system requires finding measurements that are capable of op-
timally resolving parameter-dependent neighboring quantum
states. Such an optimal resolution is achieved by employing
statistical distinguishability in order to define a Riemannian
metric on the manifold of quantum mechanical density oper-
ators. Then, the Fisher information appears in the infinitesi-

mal line element ds2
FS on such a manifold, namely, ds2

FS
def=

(1/4){F(θ ) + 4σ 2
φ̇
}dθ2. Finally, by integrating the geodesic

equations on this Riemannian manifold, one can obtain the
geodesic paths for the probability amplitude variables qθ (x)

with pθ (x)
def= q2

θ (x).
For pure states, the Fisher information Fθ (t) reduces to

a multiple of the variance σ 2
Tθ

of the Hermitian genera-

tor Tθ of displacements in θ . Specifically, Fθ (t) = 4σ 2
Tθ

def=
4〈(Tθ − 〈Tθ 〉)2〉 with Tθ (t)

def= i[∂θUθ (t)]U †
θ (t), ∂θ

def= ∂/∂θ , and

〈Tθ 〉 def= tr(ρθTθ ). To simplify the discussion throughout, we re-
fer to a single parameter of interest θ . However, our analysis can
be generalized in principle to multiple parameters of interest. In
general, the selected parameters of interest are experimentally
controllable quantities. For instance, external magnetic field
intensity, phase difference, temperature, spin-spin coupling
constant, volume per particle, reciprocal temperature, and
computing time are all suitable examples of experimentally
controllable parameters of interest. In particular, for probe
systems such as Bose-Einstein condensates and nanomagnetic
bits, the external magnetic field is usually used as a parameter
of interest. For a quantum oscillator in the presence of dephas-
ing noise, the phase difference plays the role of the parameter of
interest. Moreover, temperature, spin-spin coupling constant,
and external magnetic field intensity are three convenient
parameters of interest for Ising spin models. For both a

classical ideal gas and a van der Waals gas, the volume per

particle and the reciprocal temperature β
def= (kBT )−1 with

kB denoting the Boltzmann constant are convenient control
parameters. Finally, for probe systems described by quantum
search Hamiltonians, the computing time can play the role of
the parameter of interest.

B. From thermodynamics to quantum metrology

The Fisher information can assume a variety of functional
forms with respect to the parameter of interest. For instance,
within the Fisher information approach to thermodynamics
via the Schrödinger equation [59–61], it can be shown that
the Fisher information FHO(θ ) that emerges from the thermal
description of the one-dimensional quantum mechanical har-
monic oscillator is proportional to the harmonic oscillator’s
specific heat CV [61]:

FHO(θ ) = CV

e−h̄ωθ

θ2
. (141)

In Eq. (141) the parameter θ denotes the reciprocal temperature
β while ω is the frequency of the oscillator.

In the framework of quantum metrology for a general
Hamiltonian parameter Hθ [62,63], it happens that the maxi-
mum quantum Fisher information is given by

Fmax(θ )
def= [λmax(hθ ) − λmin(hθ )]2. (142)

The quantities λmax(hθ ) and λmin(hθ ) denote the maximal and
the minimal eigenvalues of the generator hθ of parameter
translation with respect to θ ,

hθ
def= i(∂θUθ )U †

θ , (143)

with Uθ
def= e−iHθ t in Eq. (143). For instance, for a spin-1/2

particle in an external magnetic field �B def= Bn̂θ with n̂θ
def=

(cos(θ ), 0, sin(θ )), the interaction Hamiltonian Hθ can be
written as

Hθ
def= B[cos(θ )σx + sin(θ )σz]. (144)

The Hamiltonian in Eq. (144) was written by setting the electric
charge e, the mass m, and the speed of light c equal to one.
Furthermore, σx and σz are Pauli operators. The parameter θ is
the angle between the z axis and the magnetic field �B. In this
case, it can be shown that Fmax(θ ) in Eq. (142) is constant in
θ and equals

Fmax = 4B2 sin2 (Bt). (145)

Therefore, Fmax oscillates with respect to time t and exhibits

a period T
def= π/B.

For the sake of completeness, we point out that the definition
of the Fisher information is not limited to Hamiltonian systems.
For instance, in the context of an information geometric
approach to complex systems in the presence of limited infor-
mation [64,65], the Fisher information of Gaussian statistical
models is such that FGaussian(θ ) ∝ 1/θ2 with θ denoting the
standard deviation of the zero mean one-dimensional Gaussian
random variable that specifies the statistical model being
considered.
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C. Analog quantum search

The information geometric analysis performed in this paper
can be especially relevant to the quantum search problem [66].
We recall that Grover’s original quantum search algorithm can
be viewed as a definite discrete-time sequence of elementary
unitary transformations acting on qubits from a digital quantum
computing perspective. In particular, given an initial input
state, the output of the algorithm becomes the input state
after the action of the sequence of unitary transformations.
Furthermore, the length of the algorithm is equal to the num-
ber of unitary transformations that characterize the quantum
computational software. Finally, the failure probability after
k iterations of Grover’s original search algorithm periodically
oscillates as k increases. In Ref. [67], an analog counterpart
of Grover’s algorithm was proposed. The search problem was
recast in terms of finding the normalized target eigenstate |w〉
corresponding to the only nonzero eigenvalue E of an Hamil-

tonian Hw
def= E|w〉〈w| acting on a complex N -dimensional

Hilbert space. The search ends when the system evolves from
the initial state |s〉 into the state |w〉 with quantum overlap

x = cos (θ )
def= 〈s|w〉. Such evolution is the continuous-time

quantum mechanical Schrödinger evolution under the time-
independent Hamiltonian [67]:

HFarhi-Gutmann
def= E|w〉〈w| + E|s〉〈s|. (146)

From a physics standpoint, the Hamiltonian formulation of
Grover’s search Hamiltonian can be understood in terms of
Rabi oscillations between the source and the target states [68].
We emphasize that it is possible to consider a generalized
version ofHFarhi-Gutmann in Eq. (146) in terms of a more general
time-independent quantum search Hamiltonian Hoscillation that
describes an oscillation between the two states |s〉 and |w〉 [69],

Hoscillation
def= E[α|w〉〈w| + β|w〉〈s| + γ |s〉〈w| + δ|s〉〈s|],

(147)

where α, β, γ , δ are complex expansion coefficients. We also
remark that once the digital-to-analog transition is completed,
information geometry can be employed to view Grover’s
iterative procedure as a geodesic path on the manifold of
parametric density operators of pure quantum states built
from the continuous approximation of the parametric quantum
output state in Grover’s algorithm. In particular, the Fisher in-
formation is computed from the probability distribution vector
with oscillating components that characterize the Groverian
geodesic paths and happens to be constant.

An alternative to Grover’s original quantum search al-
gorithm is Grover’s fixed-point search algorithm [70]. In
particular, the failure probability after k recursive steps of such
algorithm decreases monotonically and converges to zero as k

increases. An analog counterpart of a fixed-point search algo-
rithm can be recovered by considering time-dependent Hamil-
tonians for both fixed-point nonadiabatic [71] and adiabatic
[72] quantum search. These time-dependent Hamiltonians can
be recast as

Hfixed-point(t)
def= f1(t)[I − |s〉〈s|] + f2(t)[I − |w〉〈w|],

(148)

where |s〉 is the initial state of the quantum system, |w〉 is
the target state and I denotes the identity operator. In the

framework of adiabatic quantum search, f1(t)
def= 1 − s(t) and

f2(t)
def= s(t) with s(t) being the so-called schedule of the search

algorithm. It was shown in Ref. [72] that for a suitable choice of
parameters that parametrize the schedule s(t), the Hamiltonian
H(t) can exhibit both a Grover-like scaling and the fixed-point
property. In particular, such Hamiltonian can drive the system
toward a fixed point. Once the digital-to-analog transition
is performed, information geometry could be exploited to
regard Grover’s fixed-point algorithm recursive procedure as a
geodesic path on the manifold of parametric density operators
of pure quantum states built from the continuous approxi-
mation of the parametric quantum output state in Grover’s
fixed point algorithm. In particular, the Fisher information
is computed from the probability distribution vector with
nonoscillating components that characterize the fixed-point
Groverian geodesic paths and happens to be monotonically
decreasing with respect to the parameter of interest chosen to
parametrize the geodesic paths on the underlying manifold.
For a recent preliminary investigation of these ideas, we refer
to Ref. [36].

In view of these considerations, we have considered in this
paper functional forms of the Fisher information that could
be of relevance in the framework of analog quantum search
with search Hamiltonians given in Eqs. (146), (147), and
(148). More specifically, the quantum mechanical evolution
under the Grover-like search Hamiltonians (GSH) in Eqs. (146)
and (147) generate wave functions that lead to periodically
oscillating probability distributions with constant Fisher in-
formation. Instead, the quantum mechanical evolution under
the fixed-point search Hamiltonian (FPSH) in Eqs. (148) can
generate wavefunctions that lead to monotonically convergent
probability distributions with decreasing Fisher information.
Clearly, a deeper understanding of the connection between the
Fisher information and the schedule of the quantum algorithm
remains to be uncovered in order to provide a rigorous mapping
between our geometric analysis and the Hamiltonian formula-
tion of the problem. In particular, it remains to be understood
how to exactly quantify the speed at which the Hamiltonian
can drive the system toward the target state (that is, the soft
or strong nature of monotonic convergence toward the target
state) is related to both the functional forms of the schedule
and the Fisher information.

Despite these unresolved issues, we believe that our work
represents a nontrivial step forward towards the accomplish-
ment of such challenging goals. We also remark that our
information geometric analysis can be extended in a number
of ways. For instance, we limited our analysis to a single
parameter of interest and, in addition, we considered only spe-
cial monotonically decreasing Fisher information functions.
However, the extension of our work to arbitrary functional
forms of the Fisher information, depending or not on more
than one parameter of interest, seems to be outside the reach
of analytical treatment. In this regard, it may be helpful to
familiarize with recent numerical strategies to find optimal
protocols as geodesics on a Riemannian manifold [73]. In
particular, an oscillating Fisher information F(θ ) would re-
quire the integration of a differential equation that describes
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a damped harmonic oscillator with θ -dependent damping

coefficient given in terms of Ḟ/F with Ḟ def= dF/dθ . In this
respect, it may be useful to better understand the very recent
asymptotic stability property for such a type of differential
equation [74].

For the time being, we remark that in the case of constant
Fisher information, one deals with geodesic paths that satisfy
a differential equation that formally resembles that of a simple
harmonic oscillator and obtains oscillatory output probabili-
ties. In the case of exponential decay of the Fisher information,
one observes geodesic paths that satisfy a differential equation
that formally resembles that of an aging spring in the presence
of damping together with monotonic output probabilities. Fi-
nally, when the Fisher information exhibits a power-law decay,
geodesic paths satisfying an ordinary differential equation
that resembles that of a critically damped harmonic oscillator
and leads to monotonic output probabilities. The presence of
damping effects seems to lead to the characteristic monotonic
behavior of the quantum mechanical probability amplitude
squared. Therefore, it is reasonable to further investigate
this plausible connection between Fisher information and
dissipative effects in an effort to render any such connection
more rigorous. This latter point shall be addressed in the next
section by exploiting a Riemannian geometric characterization
of thermodynamic concepts.

VII. RIEMANNIAN GEOMETRIC VIEWPOINT
OF THERMODYNAMIC CONCEPTS

An efficient thermodynamic process occurs by minimum
dissipation or maximum power. In particular, dissipation can
be quantified in terms of the amount of work lost in the
process [37]. Availability loss (that is, dissipated availability
or irreversibility) and entropy production are the two most
common measures of dissipation in thermodynamics [75]. In
a Riemannian approach to thermodynamics, both availability
loss and entropy production are related to the concept of
thermodynamic length. However, while in the former case one
deals with the so-called energy version of the thermodynamic
length, in the latter case the so-called entropy version of
the thermodynamic length is taken into consideration [76].
Specifically, optimum paths that minimize entropy production
are commonly referred to as optimum cooling paths (that is,
maximum reversibility paths) and characterize a thermody-
namic process that occurs at constant thermodynamic speed
[77–80]. The notions of thermodynamic length and dissipated
availability will be discussed in the next subsection.

A. Preliminaries

Consider a physical system, small in mass and extent,
surrounded by an (infinite) environment with temperature
T0 and pressure p0 which are unaffected by any process
experienced by the system. An arbitrary process can be viewed
as an interaction between the system and the environment, once
one includes in the system as much material or machinery
that is affected by the process itself. Under these working
assumptions, Gibbs introduced a quantity � (that is, the Gibbs

free energy [81]) defined as

�
def= E + p0V − T0S, (149)

where E is the energy of the system, V is its volume, S denotes
its entropy, and Gibbs showed that (for further details, see
Ref. [82])

�� � 0, (150)

where �� is the increase in the quantity �. The availability
(or available energy) � of the system and the environment is
defined as [83]

�
def= � − �min, (151)

where �min is the minimum possible value of � attained when
the system is in a state from which no spontaneous changes
can happen. Such a state of the system is the state of stable
equilibrium (or, more generally, maximum stability) and is
characterized by a pressure p0 and a temperature T0. The
availability � in Eq. (151) represents the maximum value of the
useful work, that is to say, work in excess of that done against
the environment that could be obtained from the system and the
environment via any arbitrary process, without intervention of
other bodies:

� = Wexcess. (152)

We point out that for the most stable state of the system, � = 0.
Furthermore, for any state of any system immersed in a stable
environment, � � 0.

Transitioning from a conventional to a geometrical setting,
the so-called thermodynamic length Lth. of a curve θμ = θμ(t)
parametrized by t with 0 � t � τ is defined as [37]

Lth.
def=
∫ τ

0

√
gμν(θ )

dθμ

dt

dθν

dt
dt , (153)

where gμν(θ ) in Eq. (153) denotes the so-called thermody-
namic metric tensor given by [84,85]

gμν(θ )
def= ∂2ψ

∂θμ∂θν
= −∂〈Xμ〉

∂θν

= 〈(Xμ − 〈Xμ〉)(Xν − 〈Xν〉)〉. (154)

The quantity ψ in Eq. (154) denotes the free entropy,

ψ
def= log(Z) = −β� = S−θμ〈Xμ〉, (155)

whereZ , �,S , β
def= 1

kBT
, and kB are the partition function, free

energy, entropy, reciprocal temperature (T ), and Boltzmann
constant, respectively. The variables {Xμ(x)} are thermody-
namic variables that specify the Hamiltonian of the system
(for instance, internal energy and volume) while x belongs
to the configuration space. Furthermore, the time-dependent
θ ’s are experimentally controllable parameters of the system
that specify the accessible thermodynamic state space of the
system. Expectation values in Eqs. (154) and (155) are defined
with respect to the probability distribution p(x|θ ) (Gibbs
ensemble),

p(x|θ )
def= 1

Z e−βH(x, θ) = 1

Z e−θμ(t)Xμ(x), (156)
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where, adopting the Einstein convention, repeated lower and
upper indices are summed over. We point out that, using
Eqs. (154), (155), and (156), the thermodynamic metric tensor
can be shown to be equal to the Fisher-Rao information metric
tensor:

gμν(θ )
def= ∂2ψ

∂θμ∂θν
=
∫

p(x|θ )
∂ log p(x|θ )

∂θμ

∂ log p(x|θ )

∂θν
dx.

(157)

The quantity gμν(θ ) in Eq. (157) is a Riemannian metric on
the manifold of thermodynamic states. The thermodynamic
length in Eq. (153) has dimensions of speed and its physical
interpretation is related to the concept of availability loss (or,
dissipated availability) �dissipated in a thermodynamic process
[37,75]:

�dissipated
def=
∫ τ

0
gμν(θ )

dθμ

dt

dθν

dt
dt . (158)

The quantity �dissipated can be expressed in terms of the so-
called thermodynamic divergence of the path D [86,87],

D def= τ · �dissipated, (159)

where, in the context of Riemannian geometry, D/2τ is also
known as the energy of the path parametrized with t where
0 � t � τ . Indeed, considering Eqs. (153) and (158), the
application of the Cauchy-Schwarz inequality leads to the
following inequality:

�dissipated � L2
th.

τ
, (160)

that is, D � L2
th. (the divergence-length inequality expresses

the fact that the minimum divergence of the path is the square
of the thermodynamic length). The equality in Eq. (160) is
obtained only for the most favorable time parametrization,
which occurs when

‖θ̇ (t)‖ def=
(

gμν(θ )
dθμ

dt

dθν

dt

) 1
2

= const, (161)

with the constant equal to Lth./τ . Therefore, a thermodynamic
process dissipates minimum availability when it proceeds at
constant speed.

B. Illustrative examples

Given the equivalence between the Fisher-Rao information
metric and the thermodynamic metric tensor, we can apply the
concepts of thermodynamic length and availability loss to our
selected illustrative examples discussed in Sec. V. We recall
that our output probability paths pk̄(θ ) are parametrized by a
single statistical parameter θ that denotes the computational
time of a quantum process.

In general, the geodesic equations satisfied by the statistical
parameters θμ = θμ(t) with 1 � μ � |�|, where |�| denotes
the cardinality of the set � of statistical parameters, are given
by

d2θμ

dt2
+ �μ

νρ

dθν

dt

dθρ

dt
= 0. (162)

The quantities �μ
νρ in Eq. (162) are the connection coefficients

defined as

�μ
νρ

def= 1
2gμα(∂νgαρ + ∂ρgνα − ∂αgνρ), (163)

where ∂ν
def= ∂

∂θν . In our analysis, we have

ds2
FS = gθθ (θ )dθ2, with gθθ (θ )

def= 1
4F(θ ). (164)

Using Eqs. (164) and (163), the geodesic equation in Eq. (162)
becomes

d2θ

dt2
+ 1

2F
dF
dθ

(
dθ

dt

)2

= 0. (165)

From the integration of Eq. (165), we can also consider the
so-called computational speed defined as

v(t)
def=
[
gθθ (θ )

(
dθ

dt

)2
] 1

2

= 1

2

√
F[θ (t])

dθ

dt
. (166)

In what follows, we compute the availability loss �dissipated

in Eq. (158) and the computational speed v in Eq. (166) after
integrating the nonlinear ordinary differential equation in (165)
whose structure clearly depends on the functional form of the
Fisher information function F . Below, we consider the three
cases considered in Sec. V.

1. Example one: Constant Fisher information

In this case, since F(θ )
def= F0, Eq. (165) becomes

d2θ

dt2
= 0. (167)

Assuming as initial conditions θ (t0) = θ0 and θ̇ (t0) = θ̇0, we
obtain

θ (t) = θ0 + θ̇0(t − t0). (168)

Furthermore, the availability loss �dissipated in Eq. (158) be-
comes

�dissipated(τ ) = F0

4
θ̇2

0 τ . (169)

Finally, the computational speed v in Eq. (166) is given by

v = 1

2

√
F0θ̇0. (170)

We notice that the quantum process proceeds at constant
speed and, thus, dissipates minimum availability. Moreover,
the dissipated availability grows linearly with τ (that is, the
length of the parametrization interval).

2. Example two: Exponential decay

In this case, since F(θ )
def= F0e

−ξθ , Eq. (165) becomes

d2θ

dt2
− ξ

2

(
dθ

dt

)2

= 0. (171)

Assuming initial conditions θ (t0) = θ0 and θ̇(t0) = θ̇0, integra-
tion of Eq. (171) yields

θ (t) = θ0 − 2

ξ
log

[
1 − ξ

θ̇0

2
(t − t0)

]
. (172)
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TABLE I. Behavior of availability losses, computational speeds, and geodesic paths for different physical scenarios that can arise from
different functional forms of the Fisher information. GSH and FPSH denote Grover-like search Hamiltonians and fixed-point-like search
Hamiltonians, respectively.

Fisher information Geodesic paths Physical system Probability Availability loss Speed

Constant Simple harmonic oscillator GSH Oscillatory Higher Higher
Exponential decay Aging spring with damping Strong convergence FPSH Monotonic Lower Lower
Power law decay Critically damped harmonic oscillator Soft convergence FPSH Monotonic Lower Lower

Furthermore, the availability loss �dissipated in Eq. (158) be-
comes

�dissipated(τ ) = F0

4
θ̇2

0 e−ξθ0τ . (173)

Finally, the computational speed v in Eq. (166) is given by

v = 1

2

√
F0e

− ξ

2 θ0 θ̇0. (174)

In analogy to the first example, the quantum process proceeds
at constant speed and, thus, dissipates minimum availability.
Moreover, the dissipated availability grows linearly with τ .
However, comparing Eqs. (169) and (170) with Eqs. (173) and
(174), we observe that while the computational speed of the
process is smaller in this second case, the availability loss is
also smaller.

3. Example three: Power-law decay

In this case, since F(θ )
def= F0

(1+�θ)4 , Eq. (165) becomes

d2θ

dt2
− 2�

1 + �θ

(
dθ

dt

)2

= 0. (175)

Assuming initial conditions θ (t0) = θ0 and θ̇ (t0) = θ̇0, inte-
grating Eq. (175), we obtain

θ (t) =
(1 + �θ0)2 + �θ̇0

[
(t − t0) − 1+�θ0

�θ̇0

]
�2θ̇0

[ 1+�θ0

�θ̇0
− (t − t0)

] . (176)

Furthermore, the availability loss �dissipated in Eq. (158) be-
comes

�dissipated(τ ) = F0

4

θ̇2
0

(1 + �θ0)2 τ . (177)

Finally, the computational speed v in Eq. (166) is given by

v = 1

2

√
F0

1

1 + �θ0
θ̇0. (178)

In analogy to the first and second examples, the quantum
process proceeds at constant speed and, thus, dissipates mini-
mum availability. In addition, the dissipated availability grows
linearly with τ . However, comparing Eqs. (169) and (170) with
Eqs. (177) and (178), we observe that while the computational
speed of the process is smaller in this third case, the availability
loss is also smaller. In Table I we report the observed behavior
of availability losses, computational speeds, and geodesic paths
for different physical scenarios that can arise from different
functional forms of the Fisher information.

VIII. CONCLUDING REMARKS

In this paper, we presented an information geometric
characterization of the oscillatory or monotonic behavior of
statistically parametrized squared probability amplitudes orig-
inating from special functional forms of the Fisher information
function: constant, exponential decay, and power-law decay.
Furthermore, for each case, we computed both the compu-
tational speed and the availability loss of the corresponding
physical processes by employing a convenient Riemannian
geometrization of thermodynamical concepts. In what follows,
we outline our main findings in a more detailed fashion:

(1) We provided a dynamical information geometric char-
acterization of the Fisher information function via an explicit
derivation of the Euler-Lagrange equations satisfied by the
quantum-mechanical probability amplitudes of pure states
using variational calculus techniques applied to an action
functional defined in terms of either the Fubini-Study [see
Eq. (98)] or the Wigner-Yanase [see Eq. (99)] metric tensors.

(2) We analyzed the parametric behavior of the squared
probability amplitudes arising from three different classes
of Fisher information functions: constant Fisher information,
exponential decay, and power-law decay. In the first case,
we observed oscillatory behavior of the output probabilities
(Fig. 1) that arises from the integration of a differential equation
describing a simple harmonic oscillator [see Eq. (100)]. In the
second case, we reported monotonic behavior of the output
probabilities (Fig. 2) that originates from the integration of
a differential equation characterizing an aging spring in the
presence of damping [see Eq. (106)]. Finally, in the third case,
we observed monotonic behavior of the output probabilities
(Fig. 3). In particular, upon a suitable change of variables,
the reported behavior of the output probabilities can be ex-
plained as emerging from the integration of a differential
equation describing a critically damped harmonic oscillator
[see Eqs. (126), (135), and (137)]. The overall picture emerging
from the analysis of these three cases inspired us to further
investigate the connection between the Fisher information and
dissipative effects.

(3) We used the Riemannian geometrization of thermody-
namical concepts, including thermodynamic speed and dissi-
pated availability, to study the behavior of both the availability
loss [see Eq. (158)] and the computational speed [see Eq. (166)]
of the quantum processes specified in terms of the previously
mentioned output probability paths. Specifically, after finding
the optimal parametrization of the statistical variable θ that
specifies our output probabilities pk̄(θ ), we evaluated both the
availability loss and the computational speed along the optimal
geodesic paths corresponding to the above mentioned three
scenarios [see Table I together with Eqs. (169), (170), (173),
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(174), (177), and (178)]. Our main finding here is that a greater
computational speed comes necessarily at the expense of a
greater availability loss.

As a final remark, we recall that from a quantum me-
chanical standpoint, the output state in Grover’s quantum
search algorithm follows a geodesic path obtained from the
Fubini-Study metric on the manifold of Hilbert-space rays. In
addition, Grover’s algorithm is specified by a constant Fisher
information. A topic of great interest in quantum computing
is the investigation of constructive uses of dissipation. For
instance, in Ref. [31] it was shown that it is possible to
modify Grover’s algorithm by introducing a suitable amount of
dissipation in such a manner that the newly obtained algorithm,
while preserving the typical number of queries O(

√
N/M)

(where N is the number of items and M is the number of
target items), gains robustness by damping out the oscillations
between the target and nontarget states. Furthermore, the
problem of designing quantum algorithms that are both fast and
thermodynamically efficient is a very challenging and relevant
problem [88]. To the best of our knowledge, there does not exist
any conclusive investigation that concerns this type of issue. In
Ref. [89] however, it was shown there that the faster one seeks
to implement a shortcut, the higher is the thermodynamic cost
of realizing the associated quantum process.

Despite the limits of our investigation, we are confident that
our information geometric analysis of the evolution of quantum
systems combined with thermodynamical considerations can

be especially relevant to information physicists and, more
specifically, quantum information theorists with particular
interest in thermodynamical aspects of quantum information.
We also strongly believe that the significance of our work
runs far deeper than what is presently understood. However,
significant further exploration is needed to make a precise
formal connection among parameter-dependent probe Hamil-
tonians, Fisher information, and optimal cooling paths on the
underlying parameter manifold. In conclusion, based also on
our recent findings in quantum computing [36], statistical
mechanics [90,91], and information geometry [92,93], we
have reason to believe that our information geometric analysis
presented in this paper will pave the way to further quantitative
investigations on the role played by the Fisher information
function in the trade-off between speed and thermodynamic
efficiency in quantum search algorithms.
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