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We investigate the effect of a time-reversal-breaking impurity term (of strength A,) on both the equilibrium and
nonequilibrium critical properties of entanglement entropy (EE) in a three-spin-interacting transverse Ising model,
which can be mapped to a p-wave superconducting chain with next-nearest-neighbor hopping and interaction.
Importantly, we find that the logarithmic scaling of the EE with block size remains unaffected by the application of
the impurity term, although, the coefficient (i.e., central charge) varies logarithmically with the impurity strength
for a lower range of A, and eventually saturates with an exponential damping factor [~ exp(—X4)] for the phase
boundaries shared with the phase containing two Majorana edge modes. On the other hand, it receives a linear
correction in term of A, for an another phase boundary. Finally, we focus to study the effect of the impurity
in the time evolution of the EE for the critical quenching case where the impurity term is applied only to the
final Hamiltonian. Interestingly, it has been shown that for all the phase boundaries, contrary to the equilibrium
case, the saturation value of the EE increases logarithmically with the strength of impurity in a certain regime of
Aq and finally, for higher values of A,, it increases very slowly dictated by an exponential damping factor. The

impurity-induced behavior of EE might bear some deep underlying connection to thermalization.
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I. INTRODUCTION

Study of various quantum information theoretic measures,
such as fidelity [1], decoherence [2,3], concurrence [4,5],
quantum discord [6], and entanglement entropy (EE) [7],
has grabbed immense attention as it connects the quantum
information science [8—14], statistical physics, and condensed
matter physics [15-18] in a concrete way. All of the above
quantities are able to capture the ground-state singularity and
thus are used as indicators of quantum phase transition (QPT).
For example, the EE of a block of length / quantified by von
Neumann entropy is given by

S(l) = =Tr(p; In pr), (D

where the reduced density matrix p; = Tr;_;(p) is obtained
after tracing over the block of length L —/ from the com-
posite system of length L with pure state density matrix p.
For a one-dimensional homogeneous critical spin chain with
open boundary conditions, the EE scales with the shortest
length scale (/) of the system as S = ¢ Inl + y, where c is
a universal quantity and given by the central charge of the
underlying conformal field theory, whereas y is a nonuniversal
constant [7,19]. In the context of disordered spin chain (i.e.,
inhomogeneous case), for the critical case, it has been shown
that the EE still varies logarithmically with block size but it
acquires an effective central charge different from the bare
central charge derived in the clean limit [20]. It has been shown
that the effective central charge also appears for the interface
defects in a spin chain [21].

At the same time, the study of entanglement spectrum and
EE in quantum many-body systems has initiated a plethora of
intensive research to characterize a topological system, through

2470-0045/2018/97(4)/042108(10)

042108-1

the concept of quantum entanglement [22—26]. The topological
phases are characterized by a topological invariant number
(Chern number or Z, invariant or zero-energy Majorana
modes) and this phase supports edge modes [27,28]. In the
connection of EE and edge state, it is noteworthy that the
equilibrium EE receives a finite contribution from the localized
boundary states in addition to the contribution from the bulk
energy spectrum. The finite contribution from boundaries is
associated to the nonzero value of the Berry phase [29]. A
nonextensive correction to the area law of EE, named as
topological EE, has been proposed as a tool to characterize
the topological phases of the system [30]. Interestingly, it
has been shown for a two-dimensional spin-orbit coupled
superconductor that the derivatives of the EE with respect to
model parameters are sharply peaked at the point of topological
phase transitions [31].

In parallel, the behavior of the EE in quantum systems con-
sidering a nonequilibrium situation has received an enormous
amount of attention in recent years [32-38]. The upsurge of
such studies is motivated by the experimental demonstration
in optical lattice [39]. In particular, an out-of-equilibrium
one-dimensional Bose gases has been prepared experimentally
using the combination of a two-dimensional optical lattice
and a crossed dipole trap [40,41]. It has been shown that a
global sudden quench leads to an initial linear rise of the
EE with time followed by a saturation [32]. Moreover, the
dynamics of EE in the random transverse-field Ising chain
after a sudden critical quench becomes ultraslow and has a
double-logarithmic time dependence [42]. Also, the robustness
of the Majorana zero mode in the infinite time limit following
a sudden quench of a one-dimensional p-wave supercon-
ductor has been investigated by examining the one-particle
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entanglement spectrum [43]. The quench dynamics in optical
lattice with Rb% atoms is experimentally investigated in the
context of quantum information namely, the signature of Lieb-
Robinson bound of light-cone-like spreading of correlations is
studied [44]. Moreover, optical interferometry is directly used
to measure entanglement entropy in a quantum many-body
system composed of ultracold bosonic atoms in optical lattices
[45].

In recent years, a considerable amount of work has been
carried out to investigate the topological properties of one-
dimensional p-wave Majorana chain [46—-56]. Our main aim
here is to study the effect of a single impurity, located at one
of the boundaries, on the critical behavior of the EE in this
model with an additional next-nearest-neighbor hopping term.
This single impurity indeed breaks the time-reversal invariance
of the system. We show that in the equilibrium case, the
derivative of EE can be used as an indicator of QPTs. We
find that the scaling relation of the EE with the subsystem
size remains same as obtained in the inhomogeneous case
with an effective central charge. This effective central charge
here shows a logarithmic scaling relation with X, for an initial
window of A, and eventually saturates for large value of A,.
This phenomena is observed at the phase boundaries shared
with the phase containing two Majorana modes sitting at each
end of the chain. On the other hand, for the phase boundary
separating topological phase with one Majorana mode from
nontopological one, the effective central charge acquires a
linear correction due to this impurity term. Additionally, for
the nonequilibrium time evolution of EE obtained by adding
a boundary impurity term to the critical quenched chain,
irrespective of the nature of phase boundaries the logarithmic
behavior and the subsequent exponential scaling show up only
in the saturation value of the EE but not in the initial rise
of EE.

This paper is organized as follows. In Sec. II we introduce
the three-spin-interacting transverse field Ising model and
discuss its phase diagram. We also mention the effect of
an impurity term on the different phases of the model. In
Sec. III, we present the method to compute EE and extend
it to calculate the time evolution of the EE numerically. In
Sec. IV, we illustrate our results for equilibrium as well as
for nonequilibrium case. Finally, we provide our concluding
remarks in Sec. V.

II. MODEL

The Hamiltonian we consider here is given by a three-spin-
interacting transverse Ising model with N spins [57]

H = _Z(ho’rf —|—)L10';G;+1 —|—)L20';_1O';0_:+1)’ @)

n

where A, A1, and X, are transverse magnetic field, cooperative
interaction and three-spin interaction, respectively, and, o
(¢ = x,y,z) are the standard Pauli matrices. Using Jordan-
Wigner transformation the model can be written in terms of
spinless fermions with a next-nearest-neighbor hopping and
superconducting pairing terms. At the same time, one can
rewrite the Hamiltonian in terms of Majorana fermions with
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FIG. 1. Zero-temperature phase diagram of the model Hamil-
tonian (2) for 4 = 1. The line A, = 1+ A; represents the phase
boundary between upper three-spin dominated phase (with two zero-
energy Majorana end modes at each edge) and ferromagnetic phase
with one Majorana at each end. There are two more phase boundaries,
given by A, =1 —A; (a-e-d line) and X, = —1 (b-d line). The
paramagnetic region denoted by n = 0 does not have any zero-energy
Majorana mode. In terms of topology both the three-spin dominated
phases have two zero-energy Majorana modes at each end.

open boundary condition (OBC), given by

N N—-1 N—-1
H=-i |:_h Z bnan +)\1 Z bnan-H +)"2 Z bn—latl+1:| s
n=1 n=1 n=2

3

where, a, = c,Tl +cp,b, = —i (cjZ —c¢,) are Majorana
fermions. The system discussed above has time-reversal
symmetry (T2 = 1). This transformation T is defined as the
complex conjugation of all the objects in the Hamiltonian (3).
As a result, T leads to a, — a, and b, — —b,, and hence,
Eq. (3) is invariant under time reversal [53].

We now briefly discuss the phase diagram of the model
with & = 1 (see Fig. 1). This model has three phases: (i) the
ferromagnetic phase, which is topologically nontrivial hosting
one unpaired Majorana at each end, i.e., a; and by; (ii) the
paramagnetic phase, a nontopological phase, with no Majorana
edge modes; and (iii) three-spin-dominated topological phase
with two unpaired Majorana modes at each edge, i.e., a; and
a, are at the left boundary with by and by_; exist at the right
boundary. The details of the model and phase diagram are
discussed in Refs. [58,59].

Itis noteworthy that a similar kind of model, namely, cluster-
Ising model, has been studied before in the context of locating
its QPTs between cluster and antiferromagnetic phases using
geometric [60] and multipartite [61] entanglement. Although,
the three-spin-dominated phase of the model (2) is analogous
to the cluster phase of the cluster-Ising model, there are a
few differences between these two models: (i) model given
in Eq. (2) contains an extra transverse field term; (ii) it
has ZI symmetry (an antiunitary Z, symmetry, o, — —ao,)
[62], whereas the cluster-Ising model is symmetric under is
symmetric under Z, x Z;; and (iii) the dual model of (2) is a
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transverse XY spin chain, on the other hand, the cluster-Ising
model is its self-dual.

Our main goal is to find the effect of an impurity term
in the critical behavior of the EE for both equilibrium and
nonequilibrium cases. To achieve this goal, we introduce an
additional term in the Hamiltonian (3) of the form [59]

Himp = _i)‘dajaq’q =j+m. “4)

The impurity term (4) affects the phase with two Majorana
modes at one end (three-spin-dominated phase). We here take
into account the impurity term (4), located in the left edge of the
system, that results in the annihilation of the a-type Majorana
modes, however, the b-type Majorana modes residing at the
right edge remain intact [58,59]. In contrast, the phase with
one Majorana mode at each end remains unaffected. This term
breaks the time-reversal symmetry of the system as T reverses
the sign of Hinyp. The annihilation of the edge Majorana mode
is related to this symmetry breaking.

In the spin representation, the impurity Hamiltonian is
expressed as Himp = )\doj“.v Hg?;ll(—a,f)aﬁm, which is a
string operator. Therefore, in the spin language, the breaking
of time-reversal symmetry of the model in Eq. (3) is related to
the breaking of ZJ symmetry as the impurity term explicitly
breaks this symmetry. Similarly for the cluster-Ising model, we
note that if one considers an additional impurity term, breaking
Z, x Z, symmetry of the cluster phase, the existence of the
edge Majorana modes might get affected in a similar fashion
there also.

As mentioned already, the impurity term is a nonlocal string
operator, though, in the Majorana language we can say it is
quasilocal [see Eq. (4)]. We hence stress that the impurity is
purely quantum in nature. In parallel, the effect of a classical
impurity, the zero transverse field at the first site of an otherwise
homogeneous chain, has been investigated in a quantum Ising
chain by studying the finite-size scaling of the magnetizations
[63]. The nature of this impurity is classical due to the fact that
the leftmost spin can not flip; in contrast, the impurity term
considered in Eq. (4) is able to flip the spins. Simultaneously,
transverse Ising model with multi-impurities gives rise to many
nontrivial changes in deformation energy and specific heat
[64].

Connecting to experimental realization, the impurity termin
Eq. (4) can be prepared by experiments on entangled atoms in
optical lattice. The array of parallel spin chains are created from
two-dimensional degenerate gas of 8’Rb atoms by applying
two horizontal optical lattice beams. The atoms are initially
prepared in a hyperfine state and then impurity is introduced
by changing the hyperfine structure of one of the atoms [65].

III. ENTANGLEMENT ENTROPY

We will here present our numerical method to calculate EE
in the Majorana basis under the sudden quenching of a pa-
rameter of the chain. In order to formulate the nonequilibrium
EE, we first briefly discuss the equilibrium EE in the Majorana
basis [66]. Let us consider a general quadratic form of Eq. (3)

in terms of Majorana operators

; 2N
H = Z Z emAmnem (5)

m,n=1

where e;,,_; = a,, and e;,, = b,,. The matrix elements for A

are givenby Ay py1 = —Aug10 = 1, Aoy ong1 = —Aopyion =
—A1 and Ay 2n43 = —A2n43.20 = —X2. The impurity Hamil-
tonian (4) generates two extra elements in the matrix A:
Azj—12j+2m—1 = —Azjtam—1.2j-1 = —A4.

Let W € SO(2N) be a special orthogonal matrix that makes
A block diagonal of the form,

N
o Y R
k=1

where D = WAWT. Now, a new set of Majorana operators is
defined as

2N
d,,:ZW,,mem, where p=1,...,2N. (7

m=1

Here, d), satisfies the relations d,t =d,{dy,d;} =26, The
Hamiltonian in Eq. (5) in terms of the new Majorana operators
is given by

Y
l ~
H = 1 kX_I:Gk(de—lek — dydp—1). ®)

We can now define the ground-state correlation matrix
(dpdy) = 8,4 +iTh, where I'¥ is given by

N
B _ 0 1
=@ o) ®
k=1
Finally, we obtain the correlation matrix {(e,,e,) = §un + iF,ﬁn

in terms of initial Majorana operators e. The matrix ' is found
from I'8 using the relation

r“=wfiréw. (10)
As shown in Appendix A, the EE for a block of length [ is

given by
LT+, L+,
=-S5 (52)

n=1

1_7771 1_7711
() ow

where 7, are the imaginary part of the purely imaginary
eigenvalues of the 2/ x 2/ skew-symmetric matrix I'4. We note
that the eigenvalues come in pairs.

Now, we will extend the above equilibrium technique
for calculating the EE in a situation when the system is
suddenly driven out of equilibrium. We consider the Majorana
Hamiltonian H that instantaneously changes from H = H;
to H = Hy at time ¢t = 0. We therefore have two sets of W,
namely, W; and W, which can transform two Hamiltonians H;
and H into two block diagonal form as mentioned in Eq. (6).
Similar to Eq. (7), we can now define two new set of Majorana
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operators corresponding to the Hamiltonians H; and Hy given
by
2N 2N
dy=> (Wpmew and d, = (Wp)pmen.  (12)

m=1 m=1

Let us assume that |;) is the ground state (in the Ma-
jorana basis) of the initial Hamiltonian H;. Using the rela-
tion (Vi lenen| Vi) = 8mn + iFﬁn, the correlation matrix looks

like (Y ld,dy|¥i) = 8pq + iF;f;,where e = WfFAW;.The
point to note here is that the matrix I'* is calculated using
the parameters of the initial Hamiltonian H; given by I'4 =
W;FB W; where the expression of I'? is shown in Eq. (9).
Under the nonequilibrium dynamics, the time dependence
of the above-mentioned correlation matrix can be deter-
mined as (V;|d,(1)d, ()i) = 8pq + iF;,lfl(t) where TV3(t) =
exp(iH ft)F’B exp(—i Hyt). Finally, in order to calculate the
time-evolved EE, we compute the time-dependent correlation
matrix after a sudden quench given by (V;|e,,(t)e,(t)|Y;) =
8mn +iTA (1), where

[TA()]arxu = [W}]ZIXZN[F,B(t)]ZNx2N[Wf]2Nx21~ (13)

For each time instant the matrix in Eq. (13) is diagonalized and
then the EE can be calculated using Eq. (11) as a function of
time.

IV. RESULTS

We here investigate the effect of the impurity term Hp, =
—iMgaia, in the critical behavior of EE under both equilibrium
and nonequilibrium cases where the H;p,, is only applied to the
final quenched Hamiltonian.

A. Equilibrium

The quantum information theoretic measures such as the
fidelity [1], the Loschmidt echo [2,67,68], the quantum discord
[69,70], and the entanglement entropy are currently being
studied intensively in the context of characterizing QPTs in
various condensed matter systems. In this section, we will
first show the EE as an indicator of the QPTs of the model
(2). We open our study by calculating the derivative of the
EE, and plot as a function of A, to get the phase transition
points as shown in Fig. 2. The derivative of EE shows dip,
peak, or kink at the QCPs. It is noteworthy that the impurity
has a noticeable effect on the derivative AS/AM, over the
phase boundaries separating a topological or a nontopological
phase from n = 2 topological phase, since it destroys two
Majorana modes of the left end of the chain. In the inset
of Fig. 2, we have plotted the EE as a function of A, for
various values of A, by fixing | = 1. It shows that the peak
value of the EE decreases atn =2—n =1andn =2—n =0
phase boundaries with increasing A;, on the other hand, it
indeed increases for n = 1—n = 0 boundary. This feature gets
reflected in the derivative where the dip heightinn = 2—n =1
and n = 2—n = 0 phase boundaries reduces with A, and peak
height in n = 1—n = 0 boundary enhances.

The noteworthy feature observed in the derivative at these
phase boundary points is that the peak or dip for A, =0
changes to dip or peak for any finite A; and the height

) \
6 -2

FIG. 2. The derivative of EE with X, shows peak, dip or kink
at the phase boundaries pointing toward the fact that it can be used
as an indicator of QPTs. For A, = 0, the derivative shows a dip at
n = 2—n = 0 phase boundary while the peaks are observed for n =
1—n = 0and n = 1—n = 2 phase boundaries. These dip and peak in
the derivative of EE that appear in the phase boundaries separating
n = 2 phase with others change to a kink like structure for finite
Aq. This qualitative change in behavior of the derivative is clearly
evident from the variation of EE with A, as shown in the inset (we
set Ay = 1); the value of EE reduces inside the n = 2 phase when A,
becomes finite. The dip or peak height of the derivative at these kinks
is maximum for an infinitesimal impurity strength and decreases with
increasing A,; inset suggests similar feature thatatn = 2—n = 0 and
n = 1—n = 2 phase boundaries the EE shows a peak that decreases
with A,. In contrast, atn = 0—n = 1 phase boundary, the peak height
of the derivative enhances with A, as peak height of EE increases. We
choose the system size to be N = 100 and block length to be I = 30.

associated with them decreases with increasing A;. These
behavior are observed over the phase boundaries that separates
n = 2 phase from others. For, 1; = 0, the EE decreases when
the system enters from n = 2 phase to n = 0 phase, whereas
for finite 1,4, the reverse occurs. Hence, the dip observed in the
derivative turns into a peak for a finite A;. On the other hand,
the peak structure remains unaffected over the n = 0—n = 1
phase boundary as the impurity term is introduced.

We will now analyze the behavior of EE in three phases
extensively as shown in the inset of Fig. 2. For A; = 0, the EE
remains almost constant inside lower n = 2 phase and then
after it starts decreasing around A, = —1; it reaches minimum
value in the n = 0 phase. Afterwards it starts increasing up
to A, = 2, in between, showing a kink around n = 0—n =1
boundary (where A, = 0). Finally, it saturates inside the upper
n = 2 phase to the same value as of the lower one. Furthermore,
the value of EE reduces in both the n = 2 phases in the presence
of the impurity, whereas it remains almost unchanged inside
n = 0 and n = 1 phases.

We can explain this phenomena qualitatively by considering
that the EE in Eq. (11) consists three contributions, given by

S(l) = Spy + S& + SK, (14)
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FIG. 3. Plot shows that peak or dip, observed in the derivative
of EE for a clean system with A, = 0.1, becomes more sharper with
block size [. We choose n = 1—n = 2 phase boundary. We see that
232222 matches well with (m/1)log! + b (depicted by blue dashed
lines) where m and b is found to be 13.31 and —2.36. Inset shows the
variation of the derivative with / by varying A, and X, is kept fixed at
unity.

where the contributions Sgy, S é, and S g come from bulk, left,
and right boundary modes of the system, respectively. The EE
inside the n = 2 phases has all three contributions of Eq. (14),
since there exists two Majorana modes in each end. On the other
hand, the n = 0 phase does not host any Majorana edge mode
that results only bulk contribution in the EE. Again, since the
n = 1 phase has one Majorana mode at each end, the EE has all
three contributions but the value will be less than that of the n =
2 phase. Now, once the impurity term is applied, the constant
value of EE obtained for A; = 0 case inside the n = 2 phases
decreases, but it does not depend on the impurity strength. This
is due to the fact that the application of the impurity term, the
left end Majorana modes of n = 2 phases vanish, although the
right end modes remain intact. As a result, the left end modes
donot contribute in the EE [see Eq. (14)], which reduces the EE
compared to the A4 = 0 case. On the other hand, inside n = 0
and n = 1 phases the EE for 1; = 0 and # 0 coincides with
each other. This phenomena can be explained using the fact
that the Majorana mode of n = 1 phase remains unaffected
by the impurity term. Therefore, the EE has all three terms
as described in Eq. (14) even after the application of 1;. As
mentioned already, since the n = 0 phase does not have any
zero mode it remains unaffected by the impurity. This explains
the behavior of the EE inside the » = 0 and n = 1 phases in
the presence of the impurity.

In parallel, we investigate the height of the singularities in
derivative of the EE as a function of block size [ for A; = 0.1.
It can be noted that dip or peak in Fig. 3 becomes sharper
with increasing block length /. Here we have studied height
of dips at n = 2—n = 1 boundary and found that it varies as
[='log . Our result for derivative of the EE is in accordance
with the study of the finite-size effect of EE in one dimensional
topological system [71]. Similar to scaling function associated
with free energy [72], here also the finite-size scaling of EE is
sensitive to the topological character of the model.

Our aim is now to study the variation of S; with / for different
values of impurity strength over various phase boundaries (see

= 0.082, 0:=-0.008

1 Pk
B=0.074, a=0.01 0.06
| 23 45 6 Lar

B=0.074, 0=0.016

1234567\?k

FIG. 4. The equilibrium EE, §; as function of block length / for
different values of A, is plotted for (a) n = 2—n = 0 (with 1, = —1),
b)n=1-n=0 (with A, =0), (c) n =2—n =1 (with X, = =2),
and (d) n = 2—n = 1 (with A, = 2.1) phase boundaries. For (a) and
(b), the EE becomes maximum for A, = 4.8 as shown by the solid
brown line appeared at the top of the plots. The dotted long-dashed sky
line with A, = 3.2, long-dashed red line with A, = 2.4, short-dashed
blue line with A, = 1.6, dotted green line with A, = 0.8, and solid
black line with A, = 0 appear in a decreasing order. The order is
reversed for (c) and (d) compared to (a) and (b). The value of EE with
the impurity strength X, increases for (a) and (b), whereas decreases
for (c) and (d). The inset shows the variation of the effective central
charge c; as a function of A,. The behavior exhibited by c;, is opposite
to that of the EE in all the above cases. Additionally, insets of (a), (c),
and (d) show that ¢, varies logarithmically with A, for /\’d < Ag < A%
¢, = alogX,; + B (indicated by blue solid lines). On the other hand,
for (b) it is linear throughout the range of A;; ¢; = aiy + B (drawn
using blue solid lines). In this case, B equals to the central charge
(co = 1/12) for the clean system. Numerically, the extrapolated value
of ¢; at A, =01is B = ¢y = 0.082 (close to 1/12).

Fig. 4). As mentioned before, the critical EE shows a scaling
relation S; = ¢plog! + y with the block size [, where ¢y = ¢/6
and ¢ being the central charge and y is a nonuniversal constant.
As shown in Fig. 4, in the presence of the impurity term
the EE follows similar scaling relation as in the clean case
with an effective ¢y (namely, c;) and nonuniversal constant
v, which depend on 1;: S; = ¢ logl + y,. The EE on the
anisotropic critical line n = 0—n = 2 is minimally increased
by A4 [see Fig. 4(a)], whereas the EE increases substantially
for Ising critical line with A, = O [see Fig. 4(b)]. In contrast,
for n = 1—n = 2 phase boundaries the value of EE reduces
considerably compared to A, = 0 once a finite A, is applied
[see Figs. 4(c) and 4(d)]. However, it does not change so much
for two different values of A;. We have plotted c;, which
essentially captures the signatures of the effective central
charge, as a function of A, for all cases in the insets of Fig. 4.
Interestingly, for all phase boundaries the central charge as
a function of A; exhibits exactly an opposite behavior as
compared to the EE in terms of decreasing or increasing nature.
It seems that these two behaviors contradict each other, i.e.,
when EE decreases with A4, central charge increases. However,
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FIG. 5. (a) and (b) show the variation of ¢; with A; as shown in
Figs. 4(a) and 4(d), respectively. Here, it has been seen that both the
plots can be fitted with ¢, = a + b exp(—dA,) for A, > A as shown
by blue solid lines. It indeed indicates that the effective central charge
eventually saturates for strong impurity limit with an exponential
damping. The values of fitting parameters are provided inside the
plots.

this is indeed easy to explain using y;, which also changes with
A4 in an opposite way compared to c;,.

Let us now extensively investigate the behavior of central
charge as reflected in ¢, with A4. A clean spin chain (i.e., with
Aq = 0) with open boundary condition in one dimension has
the central charge ¢ = 1/2 and 1 (with ¢ = 1/12 and ¢y =
1/6) for Ising and anisotropic critical lines respectively. We
note that for Figs. 4(b), 4(c) and 4(d) with 1; = 0, ¢( close
to 1/12, which correspond to Ising critical line, whereas for
Fig. 4(a), cp ~ 0.161, which represents the anisotropic critical
line.

For the phase boundaries separating n = 2 phase from
others [see inset of Figs. 4(a), 4(c) and 4(d)], a careful
analysis suggests that effective central charge contained in
¢, that follows the relation: ¢, =~ o log(Ay) + B for a range
AZ < Ag < A%, where the values of )»fi and 1!, depend on the
strengths of 1| and A,. Afterwards, it eventually saturates with
an additional exponential damping term given by exp(—Ai,)
(see Fig. 5). The saturation characteristics of ¢, for strong
impurity limit can be explained by the mathematical form given
by ¢, = a + bexp(—dXy); hence Ly — o0, c; — a.

In contrast, on the n = 1 — n = 0 phase boundary (with
A2 = 0) the effective central charge shows a linear relation
with A4, ¢, = B + a)y. Interestingly, in this case, the value
of B is close to cg = 1/12, which is the central charge on
that boundary with A; = 0. Therefore, the term oA, can be
considered as the correction over the bare central charge due
to the application of the impurity. It is noteworthy that over the
complete phase boundary with A, ## 0 and even in the strong
impurity limit this linear behavior remains unaffected. Hence it
can be inferred that the impurity term indeed plays a distinctly
different role in the phase boundaries shared with n = 2 phase
compared to others.

In this connection, we would like to mention that for a
disordered quantum spin chain, an effective central charge
comes into play instead of the bare central charge obtained
in the clean limit [20]. We here show that even a single
impurity term can also lead to an effective central charge. At
the same time, this effective central charge has distinct scaling
relations with the strength of the impurity over different phase
boundaries.

5 L
4t
3 L
S»0
2 L
Ly 0 40 80120 160 200 4.0 ]
6.0
0 50 100 t 150 200

FIG. 6. Evolution of the EE as a function of time for different
values of the impurity strength (A,). It can be observed that the EE
gets affected by the A, after a certain value of A, when the system is
quenched ton = 0—n = 1 phase boundary (with A; = 1 and X, = 0)
from n = 0 phase with A; = 0.5. The different curves from bottom
to top are given by, solid red line (A, = 0.8), dashed black line (A, =
1.2), long-dashed-dotted pink line (A, = 1.6), double-dotted gray line
(Ay = 2.0), dashed red line (A, = 2.4), long-dashed black line (A, =
2.8), dashed green line (A, = 4.0), dashed orange line (A, = 6.0).
Inset: Shows that saturation value of the EE is almost independent X,
upto some value, say A};. At the same time, main plot depicts that the
saturation value of the EE increases logarithmically with A, after 1.
Here, block length, / = 20 and N = 300.

B. Nonequilibrium

In the previous section, we have discussed the influence of
the impurity term on both critical and off-critical EE when the
system is in equilibrium. Provided the general formalism for
calculating the time evolution of the EE with a complex term
in the Hamiltonian in Eq. (3) as presented in Sec. III, here we
will now investigate the effect of the impurity term Hip, =
—iMgaia; on the evolution of the EE when the Majorana chain
is suddenly quenched to various critical points.

Let us first assume a situation where A is suddenly changed
from n = 0 phase ton = 1 — n = 0 phase boundary by fixing
Az at 0. The EE after the sudden quench increases linearly
up to a time * =1[/v where v is the group velocity of the
quasiparticles generated due to the sudden quench (see Fig. 6)
and / being the length of subsystem. This phenomena has been
explained in the earlier related literature using the picture of
quasiparticle propagation through the system after the quench
[19]. We find that the group velocity v, numerically calculated
from the final real-space Hamiltonian, is almost independent
of A, and it remains at nearly equal to 0.5 in this case. This
also can be observed from Fig. 6 where the EE for a block of
length / = 20 shows a linear rise with time up to #* ~ 40 with
different values of A;. After time ¢ = t*, the EE saturates at
some finite values that depend on the strength of 1. The inset
of Fig. 6 shows that the EE curves almost overlap with each
other even in the saturation region up to a threshold value of A4,
denoted by A’. At the same time, for A; > A}, the saturation
value increases with 1. It has been observed from the plot that
the value of A}, depends only on the final values of parameters
A1 and Ajp.
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FIG. 7. Variation of the EE with time after quenching the system
ton = 0—n = 2 boundary (A; = 1 and A, = —1) from n = 0 phase
with A, = —0.5 and A; = 1. The various curves from bottom to top
are given as solid red line (A, = 2.0), dashed black line (.; = 2.4),
long-dashed-dotted green line (A, = 2.8), double-dotted gray line
(Aq = 3.4), dashed red line (A, = 3.8), solid blue line (A, = 5.0),
long-dashed black line (A, = 6.0). Here, block length, / = 20 and
N = 300. Inset plot shows that saturation value of the EE is weakly
dependent on A, and decreases by a small amount with increasing
the value of A, up to a certain value, say 1. On the other hand, the
main plot depicts that the saturation value of EE increases with 1, in
a nonlinear fashion after 1.

One can see from Fig. 7 that the linear behavior of the
EE persists up to t = [ for the n = 0 — n = 2 boundary as v
becomes unity there. In contrast to the previous case, here the
saturation value of the EE indeed decreases by a small amount
with increasing A; when A; < A};. Here also the saturation
value of the EE increases with A4 after A; > 1. On the other
hand, the EE increases linearly up tot = 2/ /3 as v >~ 3/2 over
then = 2 — n = 1 phase boundary (see the Fig. 8). In this case,
the decrease of the saturation value of the EE with increasing 1.4
(up to 1) is more prominent thanthen = 0 — n = 2 boundary.
However, the behavior of the EE for A; > A} seems to be
similar to the previous cases.

We are now interested to determine the relation between the
saturation value of the EE and . It can be observed from Fig. 9
that the variation of the saturation value of EE with A4 (> 1)
is given by Sg o log A, for all three cases discussed above.
The logarithmic behavior of EE suggests the fact that A4 affects
the EE in an identical manner irrespective of the nature of the
phase boundary, i.e., whether the phase boundary separates a
topological phase from a nontopological phase or two different
topological phases. The semiclassical theory of the EE [73]
suggests that the more number of quasiparticles is generated as
one increases the strength of impurity and as a result saturation
value of the EE increases with A;. However, the logarithmic
dependence of saturation value of EE for A; > A} can not be
explained by this theory of quasiparticle generation.

Similar to the variation of ¢, on the phase boundary
shared with n = 2 phase as shown in Fig. 5, we find that
the saturation value of EE eventually approaches to a fixed
value with A; for strong impurity limit [see Fig. 10(a)]. In

24t ‘ A=2.0 — -
Sy | fﬁ g
[T o — ] 24T
[ Sy | 04 — 2.8
2t 2 98— 1 34—
“” 1.6 38 -
| ol 18 S0
1.6 0 40 80 120 160 6.0 g

i s
0 50 t 100 150

FIG. 8. Time evolution of the EE is affected by the impurity
strength as the system is quenched to n = 1—n = 2 boundary (with
Ar =1 and A, = 2) from n = 2 phase with A; = 0.5 and A, = 2.
The different curves from bottom to top are denoted by solid black
line (A, = 2.0), solid pink line (A, = 2.4), solid gray line (A, = 2.8),
long-dashed red line (A, = 3.4), long-dashed blue line (A, = 3.8),
long-dashed black line (A, = 5.0), long-dashed green line (A; = 6.0).
Here, block length, / = 20 and N = 300. Inset: It can be seen that the
saturation value of the EE decreases slowly when X, increases up to a
certain value A;. Main plot: Similar to the previous cases, after A, the
saturation value of the EE increases with A, in a nonlinear fashion.

contrast to the equilibrium case, the saturation in Sgy is also
observed forn = 1—n = 0 boundary [see Fig. 10(b)], whereas
¢, shows linear variation for whole range of A, there. The
strong impurity limit here is meant to be above the range
of L4 within which logarithmic rise of Sy is observed. As
described earlier, it might be the case that after a cutoff value
of A, the rate of quasiparticle generation decreases with an

3.8 >
01 hot RS = n=1-n=0 boundary e
=0-n=2 bound p
49 [ n=0-n=2boun ar_ii/.r. 1 e
+ A
a8 b : o
3,6 L //,:PI -Jr‘/,,, 1
4.7 p£'S,=0.554InAt4.277
sat 0809 1 11 1'%,,:‘" 2.9 [ n=1-n=2boundary ,+x+,
’ LA
28 1
34 A + 1
A 26 F A ;
o 25 ,,,x-’(-ssaf 0.813 InA+1.98
& S, 0413 InAgt3.335
) A eSS 06 08 1 . 12
-0.3 0

0.3 1, kd0.6 0.9

FIG. 9. We have plotted the saturation value of the EE as a
function of In A, for three different cases studied in Figs. 6, 7, and
8. This plot shows that saturation value of the EE increases linearly
with In A, after 1. The blue dashed lines represent the fitted curve:
St = alniy + B.
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FIG. 10. Variation of S, as a function of 1; when the quenching
is performed up to (a) n = 1—n =2 and (b) n = 1—n = 0 phase
boundaries. After alogarithmic increase, S, follows the relation ¢; =
a + b exp(—A,) (depicted by blue solid lines).

exponential damping factor resulting Sgx = a + b exp(—Xiy)
for strong impurity limit. It can be noted that the ranges of
Aq within which the logarithmic rise in ¢; and Sy occurs
following saturation are different from each other.

For a global quench to a critical point it has been shown that
the EE follows the relations S; ~ ¢t for t < [/v and §; ~ cl
for t > /v [32]; therefore, the central charge plays a crucial
role in both the temporal regions. In our case, interestingly, the
linear rise of EE with ¢ remains almost unaltered even if c;
(i.e., essentially the effective central charge) depends on A4,
although, some minor changes occur in a small time window
where the linear rise terminates and the saturation starts. On
the other hand, saturation values of EE behave in an identical
manner as exhibited by ¢, for boundaries shared with n =
2 phase. Therefore, the upshot of A; on the effective central
charge gets imprinted on the saturation characteristics of EE.
Considering the complete nonequilibrium evolution over all
the phase boundaries, one can say that the outcome of the
effective central charge seems to behave differently with A, as
compared to the static limit.

In the present context, one can easily note the differ-
ence between equilibrium and nonequilibrium scenarios. The
nonequilibrium case that we consider can be illustrated as
two simultaneous quenches comprising of a global and a
local quench. The global quench is performed by changing
a parameter of the Hamiltonian up to a critical point, whereas
addition of an impurity term at one end of the chain can be
considered as a local quench. Therefore the behavior of the
EE with time is determined by both the quenches unlike the
situation to the equilibrium case where one impurity term is
added in the critical chain. This might be one of the reasons why
the linear rise of the EE with time is not noticeably affected
by the impurity term. In other words, for linear rise of the
EE global quench dominates and effectively central charge
remains unaffected by the impurity term. In addition, this
anomalous behavior may be due to the fact that the EE in static
limit is governed by low-energy properties of the ground state
only, whereas, due to the sudden quench, the behavior of EE in
nonequilibrium case is substantially determined by the excited
energy levels. In this connection, we would like to mention that
the contribution from higher excited state is extensively studied

using the spectral function following a sudden quench between
two different phases in the Lipkin-Meshkov-Glick model [74].

V. CONCLUSIONS

We investigate the critical characteristics of EE in both
equilibrium and nonequilibrium situations by considering the
effect of the impurity in a three-spin-interacting model. We
show that the topological phase transitions can be detected by
the derivative of EE that shows cusps in the vicinity of the phase
boundaries. By applying the impurity term we can probe that
the edge modes do contribute in the EE. Additionally, our study
suggests that the equilibrium EE satisfies a finite-size scaling
relation /! In /. Interestingly, similar to disordered systems,
the application of a single impurity in the system leads to
the effective central charge while keeping the critical scaling
relation (i.e., log [) of the EE unchanged. For phase boundaries
connected with n = 2 phase, we find that the effective central
charge shows a logarithmic scaling relation with A, in a certain
range of A, following the saturation with an exponentially
damping factor at large A;. At the same time, the central
charge acquires a linear correction as a function of A; over
the bare value at the phase boundary separating n = 0 and
n = 1 phases.

Furthermore, we extend our study to the time evolution of
the EE following the a critical quench where the impurity
term is only added to the boundary of the quenched critical
chain. In this case, we focus on the effect of the impurity
Hamiltonian on the saturation value of the EE as the linear rise
remains unaffected. Our study indicates that irrespective of the
phase boundaries there exists a threshold value of the impurity
strength after which the saturation value of the EE increases
logarithmically with impurity strength. The threshold value of
the impurity depends on the final parameters of the critical
Hamiltonian. In the strong impurity limit, the increase of
saturation value of EE with A, is suppressed by an exponential
damping factor.

It has been observed that the effect of the impurity term
shows up differently in the EE under equilibrium and nonequi-
librium situations, i.e., change in the effective central charge
due to impurity, as probed in the equilibrium analysis of EE, is
substantially visible in the later temporal saturation of EE not
in the initial rise with time. We provide two probable reasons
for this anomalous behavior. One is related to the competitive
effects of two simultaneous quenches. The another one is due
to the fact that the higher excited energy levels contribute in
the dynamics of EE, whereas, equilibrium behavior of EE is
completely governed by the ground state. However, in both the
equilibrium and nonequilibrium cases, the range of A; within
which the effects are appreciably visible depends on the phase
boundary and the values of the other parameters.

In recent years entanglement entropy serves as an indicator
of thermalization and many-body localization. We would like
to mention a few comments in that direction. General belief
says that the ballistic growth (i.e., linear in time) of EE is
a signature of thermalization for nonintegrable systems [75].
Although in our case the impurity term, being quadratic in
fermionic operator, is not able to break the integrability of the
system, we find a linear rise of EE followed by a saturation. On
the other hand, logarithmic growth of EE for the many-body
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localized state is clearly distinguished from the dynamical
evolution of EE in the thermalized phase [76].
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APPENDIX: ENTANGLEMENT ENTROPY

To calculate the EE in Eq. (1), we first have to determine
the reduced density matrix p;. The nonlocal nature of the
underlying Jordan-Wigner fermion allows us to construct a
2] x 2l correlation matrix, given by

[Ty = (W laron [T lon o [W o xai- (AD)

The matrix FZA is a skew-symmetric matrix, which can be
represented in the block-diagonal form I'C = VIV by an
orthogonal transformation with V. Then the matrix I'C can be
written as

1
rf =P [_(3” ’Z)f] (A2)

j=1

This defines a new set of Majorana fermion operators

21
cp=Y Vpey. (A3)
g=1

In this basis, the new correlation matrix is given by
(CpCq) = 8pq + i(F,C)pq. (A4)

Equation (A2) indicates that the ¢ Majorana fermions are
correlated when their site indices are separated by 1. We use
this fact in our next steps of calculations.

Finally, we express the Majorana fermions in terms of
usual complex fermions. We define / fermionic modes from
2] Majorana operators

Crj—1 +icy;
fi=—"—F— (AS)
By definition the fermionic modes satisfy the relations
14+ n;
(Fifi) =0, (S fi) = 8= (A6)

It signifies that there has no correlation among the / fermionic
modes. Using this fact the density matrix of the / fermionic
modes can be written as a direct product of / uncorrelated
modes p; = ®L=1Qn with each g, having eigenvalues (1 &
n,)/2. Now, from definition of the EE in Eq. (1), it is given

by
ZI 1+ 7, 1+ 7,

n=I1

1—n, 1—n,
(5] w
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