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Relations between heat exchange and Rényi divergences
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In this work, we establish an exact relation which connects the heat exchange between two systems initialized
in their thermodynamic equilibrium states at different temperatures and the Rényi divergences between the initial
thermodynamic equilibrium state and the final nonequilibrium state of the total system. The relation tells us that
the various moments of the heat statistics are determined by the Renyi divergences between the initial equilibrium
state and the final nonequilibrium state of the global system. In particular the average heat exchange is quantified
by the relative entropy between the initial equilibrium state and the final nonequilibrium state of the global system.
The relation is applicable to both finite classical systems and finite quantum systems.
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I. INTRODUCTION

Work and heat are two central themes of equilibrium
thermodynamics [1]. However, for finite systems, the work
and the heat exchange are random numbers and both of them
have a distribution. In an intriguing development Jarzynski
[2] found that for a finite classical system prepared in the
thermodynamic equilibrium state the work in a nonequilibrium
process is related to the equilibrium free energy differences
between the thermodynamic equilibrium states for the final
and initial control parameters. The Jarzynski equality estab-
lishes deep connections between the equilibrium free energy
differences and the work in a nonequilibrium process [3–9].
Afterward, the Jarzynski equality has been demonstrated to
hold in finite quantum mechanical systems based on the two
projective measurements [10–14]. Since the discovery of the
Jarzynski equality, the investigation of various fluctuation
relations in nonequilibrium thermodynamics has become an
active research field [15–17]. Recently we found [18–20] that
the dissipated work which is defined as the work minus the free
energy difference is related to the Rényi divergences between
two microscopic states in the forward and reversed dynamics.
This relation links the dissipation in nonequilibrium thermo-
dynamics to the Rényi divergences in information theory and
has recently been verified experimentally in a superconducting
qubit system [21].

In 2004, Jarzynski and Wójcik discovered that the heat
exchange between two systems A and B which are initialized in
the thermodynamic equilibrium states at different temperatures
TA and TB respectively satisfies the following fluctuation
relation [22]:

〈e−�βQ〉 = 1. (1)

Here �β = βB − βA with β = 1/T being the inverse tem-
perature. For more developments on the exchange fluctuation
relations, one may refer to [17]. The central result of this paper
is the following exact relation about the heat exchange between
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two systems A and B:

〈(e−�βQ)z〉 = e(z−1)Sz[ρ(0)||ρ(τ )], (2)

where z is an arbitrary real number, Q is the heat exchange
between A and B, the angular bracket on the left side denotes
an ensemble average over all realizations of the heat exchange
process, and Sz[ρ(0)||ρ(τ )] ≡ 1

z−1 ln{Tr[ρ(0)zρ(τ )1−z]} is the
order-z Rényi divergence [23–26] between the initial equilib-
rium state of the total system ρ(0) and the final nonequilibrium
state of the total system at time τ, ρ(τ ). Equation (2) is
applicable for both finite classical mechanical systems and
finite quantum mechanical systems. For classical systems, the
ρ(0) and ρ(τ ) that appeared in Eq. (2) should be understood
as the corresponding phase-space density, and the trace is
replaced by an integral over the entire phase space of the
total system. While for quantum mechanical system, ρ(0)
and ρ(τ ) in Eq. (2) should be understood as the quantum
density matrices of the total system. Equation (2) connects a
macroscopic quantity, the heat exchange between two systems,
and a microscopic quantity, the Rényi divergences of two
microscopic states.

Because the definitions of heat exchange in classical sys-
tems and in quantum systems are different [17], we shall
discuss the derivation of Eq. (2) for classical systems and
quantum systems individually.

II. HEAT EXCHANGE FOR CLASSICAL SYSTEMS

First of all, we discuss the heat exchange between two
classical systems which are initialized in their thermodynamic
equilibrium state at different temperatures.

A. Distribution of heat exchange in classical systems

Consider two classical systems A and B and their Hamilto-
nians are given by HA(XA) and HB(XB), respectively. Here
XA denotes a phase-space point in system A, XB denotes
a phase-space point in system B, and X = (XA,XB) labels
a point in the phase space of the global system. Now let us
describe the heat-exchange process in the classical system.
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(1) At t = 0, we initialize two classical systems in the
thermodynamic equilibrium states at temperatures TA and TB .
For simplicity, we assume TA > TB . Then the initial state of
the whole system is given by

ρ(X0; 0) = e−[βAHA(XA
0 )+βBHB (XB

0 )]

ZAZB

. (3)

Here X0 = (XA
0 ; XB

0 ) is a phase-space point in the global
system, βA = 1/TA, βB = 1/TB , and ZA = ∫

dXA
0 e−βAHA(XA

0 )

is the partition function of the system A and the partition
function of system B is ZB = ∫

dXB
0 e−βBHB (XB

0 ).
(2) We measure energies of the two systems A and B and

the outcomes are HA(XA
0 ) and HB(XB

0 ) with the corresponding
probability ρ(X0; 0).

(3) Let the two systems in thermal contact with each
other for a time duration τ which is arbitrary and the total
Hamiltonian including the interactions is

H = HA(XA) + HB(XB) + HAB(XA; XB). (4)

(4) We separate the systems A and B and then measure
energies of the two systems respectively and the results are
HA(XA

1 ) and HB(XB
1 ). Here X1 = (XA

1 ,XB
1 ) is the phase-space

point of the global system at time τ under the dynamics
governed by the total Hamiltonian H when the initial phase-
space point is X0 = (XA

0 ,XB
0 ). We assume the interaction

HAB is weak such that the energy of the global system is
approximately conserved and thus the heat exchange is given
by [22]

Q = HB

(
XB

1

) − HB

(
XB

0

) = HA

(
XA

0

) − HB

(
XB

1

)
. (5)

Thus the probability distribution for heat exchange is given by

P (Q) =
∫

dX0ρ(X0; 0)δ
(
Q − HB

(
XB

1

) + HB

(
XB

0

))
. (6)

B. Heat exchange and Rényi divergences in classical systems

Now we are ready to evaluate the generating function of
heat exchange,

〈(e−�βQ)z〉
=

∫
dX0ρ(X0; 0)e−z�β[HB (XB

1 )−HB (XB
0 )], (7)

= 1

ZAZB

∫
dX0e

−[βAHA(XA
0 )+βBHB (XB

0 )]e−zβB [HB (XB
1 )−HB (XB

0 )]

×e−zβA[HB (XA
0 )−HB (XA

1 )], (8)

= 1

ZAZB

∫
dX0(e−[βAHA(XA

0 )+βBHB (XB
0 )])1−z

×(e−[βAHA(XA
1 )+βBHB (XB

1 )])z, (9)

=
∫

dX0ρ(X0; 0)1−zρ(X1; 0)z, (10)

=
∫

dX1ρ(X1; τ )1−zρ(X1; 0)z, (11)

= exp {(z − 1)Sz[ρ(X; 0)||ρ(X; τ )]}. (12)

Here �β = βB − βA > 0 and z is an arbitrary real number.
From Eq. (10) to (11), we have made use of the Liouville

theorem in Hamilton dynamics, which states that the phase-
space density along a trajectory of the classical system is
invariant, which means that ρ(X0,0) = ρ(X1,τ ) and also the
phase-space volume is invariant under Hamilton dynamics
dX0 = dX1. From Eq. (11) to (12), we made use of the
definition of Rényi divergences or Rényi relative entropy
[23–26], Sz(ρ1||ρ2) = 1

z−1 ln
∫

dXρ1(X)ρ2(X), which is the
order-z Rényi divergence between two probability distribu-
tions ρ1 and ρ2. We thus derived the relation between heat
exchange and the Renyi divergences in classical systems,

〈(e−�βQ)z〉 = exp{(z − 1)Sz[ρ(X; 0)||ρ(X; τ )]}. (13)

Now we make several remarks on the above equality:
(1) In Eq. (13), z is a free parameter and it can take any real

values. In the case of z = 1, we recover

〈e−�βQ〉 = 1. (14)

This is the fluctuation relation for heat exchange first derived
by Jarzynski in 2004 [22].

(2) The generating function of heat exchange shall give us
the various moments of heat statistics. In particular, the average
heat exchange is given by

(βB − βA)〈Q〉 = D[ρ(X,τ )||ρ(X,0)], (15)

where the right-hand side is the relative entropy [27] between
the final nonequilibrium phase-space density of the global
system ρ(X,τ ) and the initial equilibrium phase-space density
of the global system ρ(X,0). Furthermore, the higher order
moments of the heat exchange are given by

〈Qn〉 = (βB − βA)−n

∫
dXρ(X,τ )

(
ln

ρ(X,τ )

ρ(X,0)

)n

. (16)

Here n = 1,2,3, . . . .
(3) The Renyi divergence is a valid measure of the distin-

guishability [23–26] and thus the Renyi divergence that appears
in Eq. (13) means that heat exchange is a consequence of
nonequilibrium dynamics.

(4) Equation (13) is valid for any interaction time τ which is
a consequence of the Liouville theorem in Hamilton dynamics.

III. HEAT EXCHANGE FOR QUANTUM SYSTEMS

In this section, we consider the heat exchange between two
quantum systems A and B.

A. Distribution of heat exchange in quantum systems

The heat exchange between two systems A and B is defined
by the following steps:

(1) The two systems A and B are separately prepared
at their own thermodynamic equilibrium states at different
temperatures TA and TB . For simplicity, we assume that TA >

TB . Then the initial state of the whole system is

ρ(0) = e−βAHA

ZA

⊗ e−βBHB

ZB

, (17)

where β = 1/T , ZA = Tr[e−βAHA ] is the equilibrium partition
function of system A, and the partition function of the system
B is defined by ZB = Tr[e−βBHB ].
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(2) We perform the first projective measurement of the
energy HA and HB and we assume the outcomes are En,A

and En,B , respectively, with the corresponding probability

pn(0) = e−(βAEn,A+βBEn,B )

ZAZB

. (18)

Here HA|n,A〉 = En,A|n,A〉 and HB |n,B〉 = En,B |n,B〉. At
the same time the states of the two systems are projected into
the corresponding eigenstates |n〉 = |nA,nB〉.

(3) We allow the systems A and B to interact for some time
τ and the total Hamiltonian including the interactions is

H = HA + HB + HAB. (19)

After interactions, the state of the global system is U0,τ |n〉.
Here the time development operator is given by

U0,τ = exp (−itH) = exp [−it(HA + HB + HAB)]. (20)

(4) After interactions for time interval τ , we then separate
the systems A and B.

(5) Finally we perform the second projective measurement
of the energy HA and HB , and we assume the outcomes are
Em,A and Em,B , respectively, and the conditional probability
for obtaining Em,A and Em,B is

pn→m = |〈m|U0,τ |n〉|2. (21)

Here |m〉 = |mA,mB〉 and they satisfy the Schrödinger equa-
tion, HA|mA〉 = Em,A|m,A〉 and HB |mB〉 = Em,B |m,B〉. We
assume the interactions is so weak that approximately the
energy of the total system is conserved. Thus the heat exchange

between the two systems A and B is

Q = En,A − Em,A ≈ Em,B − En,B. (22)

Thus the quantum heat-exchange distribution is [22]

P (Q) =
∑
m,n

pn(0)pn→mδ(Q − Em,B + En,B ), (23)

=
∑
m,n

pn(0)|〈m|U0,τ |n〉|2δ(Q − Em,B + En,B), (24)

=
∑
m,n

e−(βAEn,A+βBEn,B )

ZAZB

|〈m|U0,τ |n〉|2δ

× (Q − Em,B + En,B). (25)

The characteristic function of quantum heat exchange is given
by the Fourier transform of the distribution of heat exchange,

G(u) =
∫

dQP (Q)eiuQ,

= Tr[e−(βAHA+βBHB )e−iuHBU†
0,τ e

iuHBU0,τ ]. (26)

It should be noted that the characteristic function for heat ex-
change in Eq. (26) has an expression analogous to the quantum
decoherence of a probe spin coupled to a bath [28] which has
been demonstrated to connect to the partition function of the
bath in the complex plane of physical parameters [29–35].

B. Heat exchange and Rényi divergences in quantum systems

The generating function of heat exchange between A and
B are

〈(e−�βQ)z〉 =
∫

dQP (Q)e−z�βQ, (27)

=
∑
m,n

e−(βAEn,A+βBEn,B )

ZAZB

|〈m|U0,τ |n〉|2e−z(βB−βA)(Em,B−En,B ), (28)

=
∑
m,n

e−(βAEn,A+βBEn,B )

ZAZB

〈m|U0,τ |n〉〈n|U†
0,τ |m〉e−z(βB−βA)(Em,B−En,B ), (29)

= 1

ZAZB

∑
m,n

〈m|U0,τ e
−(1−z)(βAHA+βBHB )|n〉〈n|U†

0,τ e
−z(βAHA+βBHB )|m〉, (30)

= 1

ZAZB

Tr[U0,τ e
−(1−z)(βAHA+βBHB )U†

0,τ e
−z(βAHA+βBHB )], (31)

= 1

ZAZB

Tr[(U0,τ e
−(βAHA+βBHB )U†

0,τ )1−z(e−(βAHA+βBHB ))z], (32)

= Tr[(U0,τ ρ(0)U†
0,τ )1−zρ(0)z], (33)

= Tr[ρ(τ )1−zρ(0)z], (34)

= exp{(z − 1)Sz[ρ(0)||ρ(τ )]}. (35)

Here ρ(τ ) = U0,τ ρ(0)U†
0,τ . Thus we have derived the relation between heat exchange and the Renyi divergences in quantum

mechanical systems,

〈(e−�βQ)z〉 = exp{(z − 1)Sz[ρ(0)||ρ(τ )]}. (36)
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We make several remarks on the above relation:
(1) In Eq. (36), z is an arbitrary real number and if z = 1

we get

〈e−�βQ〉 = 1. (37)

This is the exchange fluctuation theorem in quantum mechan-
ical systems first derived by Jarzynksi in 2004 [22].

(2) The average heat exchange is given by

(βB − βA)〈Q〉 = D[ρ(τ )||ρ(0)]. (38)

Here the right-hand side is the relative entropy [27] between
the final nonequilibrium state ρ(τ ) and the initial equilibrium
state of the global system ρ(0). Moveover, the higher order
moments of the heat exchange is given by

〈Qn〉 = (βB − βA)−nTr(ρ(τ )Tn{ln[ρ(τ )] − ln[ρ(0)]}n). (39)

Here n = 1,2,3, . . . , and Tn is an ordering operator
which sorts that in each term of the binomial expansion
{ln[ρ(τ )] − ln[ρ(0)]}n, ln[ρ(τ )] always lies on the left of
ln[ρ(0)].

(3) The Renyi divergences is a valid measure of the distin-
guishability [23–26] and thus the Renyi divergence appearance
in Eq. (36) for quantum system means that the heat exchange
comes from the nonequilibrium quantum dynamics of the
systems due to interactions.

(4) Equation (36) is valid for any interaction time τ which
is a consequence of unitarity in quantum dynamics.

(5) It was proposed that the quantum heat exchange could
be measured from the Ramsey interference of a single spin
[36]. Thus our relation (36) means that we can also measure the
family of quantum Rényi divergences between the equilibrium
state and an out-of-equilibrium state of a quantum system by
the Ramsey interference experiment.

Lastly we would like to stress the difference between the
present work and Ref. [18]. In Ref. [18], we considered a
system which is initialized in a thermal equilibrium state
under nonequilibrium driving. In the driving process, work
is performed on the system and we found the dissipated work
(work minus the free energy difference) and Rényi divergences

between the quantum states in the driving process and its time-
reversed process are deeply related. While in the present work
we found the heat exchange between two systems initialized
in their thermal equilibrium states with different temperatures
is also quantified by the Rényi divergences between the initial
state of the total system and the final state of the total system.
Reference [18] and the present work provide links between the
fundamental concepts in nonequilibrium thermodynamics and
information theory.

IV. SUMMARY

In summary, we have derived an exact equality which
relates the heat exchange between two systems initialized in
the thermodynamic equilibrium states at different temperatures
and the Rényi divergences between the initial thermodynamic
equilibrium state and the final nonequilibrium state of the
global system. Because the Renyi divergence is a valid mea-
sure of distinguishability, the relation implies that heat ex-
change comes from the nonequilibrium dynamics of two
systems. The relation implies that the various moments of
the heat statistics are determined by the Rényi divergences.
In particular, the average heat exchange between two systems
initially prepared at different temperatures is quantified by the
relative entropy of the initial equilibrium state and the final
nonequilibrium state of the global system. Our results are con-
sequences of two assumptions, namely, the initial states of the
two systems are described by the Gibbs ensemble and the inter-
action energy in the process of contact is negligible compared
to the energy of both systems. The relation is applicable to both
finite classical systems and finite quantum systems. Finally it is
conceivable that similar relations could be derived for particle
exchange between two systems initialized in the thermody-
namic equilibrium states with different chemical potentials.
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