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Here we study the relaxation of a chain consisting of three masses joined by nonlinear springs and periodic
conditions when the stiffness is weakened. This system, when expressed in their normal coordinates, yields
a softened Henon-Heiles system. By reducing the stiffness of one low-frequency vibrational mode, a faster
relaxation is enabled. This is due to a reduction of the energy barrier heights along the softened normal mode as
well as for a widening of the opening channels of the energy landscape in configurational space. The relaxation
is for the most part exponential, and can be explained by a simple flux equation. Yet, for some initial conditions
the relaxation follows as a power law, and in many cases there is a regime change from exponential to power-law
decay. We pinpoint the initial conditions for the power-law decay, finding two regions of sticky states. For such
states, quasiperiodic orbits are found since almost for all components of the initial momentum orientation, the
system is trapped inside two pockets of configurational space. The softened Henon-Heiles model presented here
is intended as the simplest model in order to understand the interplay of rigidity, nonlinear interactions and
relaxation for nonequilibrium systems such as glass-forming melts or soft matter. Our softened system can be
applied to model β relaxation in glasses and suggest that local reorientational jumps can have an exponential and
a nonexponential contribution for relaxation, the latter due to asymmetric molecules sticking in cages for certain
orientations.
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I. INTRODUCTION

Relaxation processes are abundant in the universe. In fact,
if one were to take a snapshot of the universe, one would
see that only a small number of physical systems are in
equilibrium, while the rest are either in steady states or relaxing
towards equilibrium. All the same, it is not clear how relaxation
processes depend upon the energy landscape [1–6]. It is of
common knowledge that this is due to mainly two contribu-
tions, one being the energy landscape complexity itself, and the
other being the interaction with the surroundings of the system.
However, even if we only consider the complexity of the energy
landscape, one would find that the system has an intermittent
chaotic behavior. In this way, the deterministic feature lacks
meaning, similar to what happens in stochastic processes [7].
Furthermore, what we call stochastic behavior and chaotic
behavior seems to be two faces of the same coin [8]. In this
sense, Alvaro et al. in Ref. [9] are able to establish this sort
of correspondence for two particular well-known stochastic
models.

In order to guarantee that a given system under study will
tend to an equilibrium state, one usually imposes detailed bal-
ance or assumes the conditions are fulfilled for the fluctuation-
dissipation theorem or the equipartition theorem. However, this
is not obvious when going from a classical mechanical ap-
proach to a statistical mechanical one. As it is well known, this
is what Fermi, Pasta, and Ulam investigated back in 1954, by
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considering a chain of nonlinear oscillators. What they found is
quite long to summarize here (see Ref. [10]). However, as one
would expect, this relaxation depends strongly on the mode
coupling, i.e., the nonlinear terms. In fact, Ponno in Ref. [11]
presents some estimates on how the energy is transferred from
one mode to another, as well as the characteristic relaxation
time, which is proportional to the number of oscillators. What
is even more interesting is that this energy sharing starts in
the low vibrational modes due to resonances, which was first
pointed out in Ref. [12]. This is because the dispersion relation
for the low vibrational modes is linear and the frequencies
are linearly dependent. Then each mode will resonate with
their mode-coupling term. Here lies the importance of the low
vibrational modes.

Nonetheless, the relaxation mechanism, in particular, in
supercooled liquids has proven to be a very complex one.
In fact, the general features of supercooled liquids still lack
of a scientific explanation, because of the complex nature
of it. On the one hand, the problem is difficult because the
harmonic approximation breaks down for the Hamiltonian at
long-time scales, which are relevant to describe the relaxation
and viscosity properties of glassy melts [1]. On the other hand,
the glass transition is a nonequilibrium transition problem
where the system does not have long-range order. These
arguments are just the tip of the iceberg that give foundation to
why this problem is a very complex one. Despite the amount of
research focused on it (see Refs. [13–20] and in particular [21]
and references therein), there is not too much of a consensus
and rather different points of view. To spice things up a little,
experiments and simulations have not yet met in the sense that it
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takes too much computational time to drive the system toward
a region near the glass transition temperature. Yet attention
should be paid to recent simulations [22].

One of the questions that arise in this phenomenon is
how the glass transition temperature, Tg , is related to the
composition of the glass former [23,24]. Rigidity theory [25–
29] gives some insight on this aspect in a qualitative manner,
and works quite well in the case of chalcogenide glasses.
Another rather interesting feature in supercooled liquids is
the viscosity behavior during a quench. As is well known,
viscosity is a property that depends upon relaxation, i.e., the
time that the system takes in order to leave a basin of the energy
landscape and produce a structural relaxation. Depending on
this behavior, the supercooled liquid is classified as a strong
one if it follows the Arrhenius equation and as a fragile one
if it follows the Vogel-Fulcher-Tamman equation [3,21]. The
fragility or nonfragility of a supercooled liquid is related with
the glass forming tendency in the sense that strong supercooled
liquids have a strong glass forming tendency such that do not
require large quenches in comparison with fragile ones, which
are poor glass formers. Thus, the glass-forming tendency is
clearly related with the time relaxation of the system.

It is well known that there is a correlation between the glass
transition temperature, Tg , and the cooling rate. Quite recently,
Lerner et al. in Refs. [30,31] have shown that the statistics and
localization of low-frequency vibrational modes depend upon
the cooling rate. Thus, there lies a trichotomy, namely, glass
transition, relaxation, and low-frequency vibrational modes. In
a series of previous papers, we have discussed how these are
related in a very natural way [32–37]. In fact, rigidity theory
has allowed us to rationalize how they are interrelated [38].
In their rigidity theory, Phillips, and later Thorpe, consider
covalent bonding as a mechanical constraint [25,26]. In this
sense, one may summarize the main feature of this theory
as follows. When the number of bond constraints equals the
number of degrees of freedom, the glass forming ability is
optimized, i.e., producing glass requires the slowest cooling
rate. In this situation, the mean coordination number equals
the critical percolation coordination number, i.e., domains
of floppy modes (zero-frequency modes) and rigid modes
coexist. As the mean coordination number decreases, which
may be tuned by varying the chemical composition, floppy
mode domains grow while rigid mode domains disappear. As
floppy modes increase in number, the glass formation is more
difficult. It is important to remark that at the rigidity percolation
threshold, the fragility has a minimum, hence not only the
increase of floppy modes leads to a more fragile glass [32,39–
42]. In addition, at the rigidity threshold not always floppy
modes and rigid modes coexist, for instance, for jamming
transition the low fluctuation on coordination suppresses the
formation of localized floppy modes. For chalcogenide glasses,
it is believed that the increase of fragility is due to the explosive
elastic energy of overconstrained stressed bonds, which helps
crystallization [25,32].

However, there are no general models to deal with the
nonlinear regime, which is the one that is interesting for glass
transition. With these ideas in mind, here we study and present
our findings on the relaxation behavior when we decrease
the frequency of the normal modes toward zero, i.e., floppy
modes, in the case of a chain formed by three nonlinear

oscillators, which when expressed in the coordinates that
diagonalize the linear part yields the Henon-Heiles potential.
This potential is a particular case of the Fermi-Pasta-Ulam
(FPU) model, in which it is known that low-frequency modes
are responsible for relaxation [43–46]. This has been made
by adding second neighbors, disorder, and quasiperiodicity
[44,45,47,48]. The advantage of the Henon-Heiles model is
that it contains the minimal ingredients to understand the
effects of nonlinearity. In that sense, here we provide a minimal
model to understand how low-frequency modes impact the
escape time and relaxation of the system.

It is worthwhile mentioning that the Henon-Heiles potential
has been widely studied [49–54]. Concerning the escape
dynamics, it has been observed that the phase space escape flow
follows an exponential law connected to chaotic dynamics,
whereas in nonchaotic dynamics the phase space escape
follows a power law. Using simple arguments, Zhao et al.
[54] obtain the exponential law, which they then compare
successfully with their simulations in the case of chaotic
dynamics, with a small threshold energy. Bauer and Bertsch
[55] also obtained the exponential law before Zhao et al.
Furthermore, from a heuristic and retrospective approach they
obtain the power law. However, one of the results in the present
work is the crossover between exponentially decaying law and
power law, which is not seen in Ref. [54] because they consider
smaller threshold energies and short times.

The paper is organized as follows. In the following section
we present the model and its features. In Sec. III we present the
results obtained from the simulations and how the exponential
relaxation is affected by low-frequency vibrational modes. In
Sec. IV we study special states that are sticky, which instead
present a power-law relaxation. In Sec. V we apply the model
to relaxation in glasses. Finally, in Sec. VI we discuss these
results.

II. SOFTENED HENON-HEILES MODEL

Let us consider a chain consisting of three masses joined
by nonlinear springs and periodic conditions. Thus, the
Hamiltonian is

H =
3∑

i=1

1

2m
�P 2
i + 1

2
ki+1,i(�Qi+1,i)

2 + γ

3
(�Qi+1,i)

3, (1)

where �Qi+1,i = Qi+1 − Qi and ki+1,i is the spring stiffness
between masses i and i + 1. Furthermore, let us introduce the
control parameters α and β in the stiffness such that k21 =
k, k21β = k13, and k32 = αk21.

One of the eigenvalues of dynamic matrix D is always zero
and corresponds to the center of mass motion, while the other
two depend upon α and β [56]. However, as was stated in Sec. I,
we are interested in studying the low vibrational dynamics
relaxation process. In this sense, it happens that ωx becomes
zero only when α = β = 0 while ωy becomes

√
2. Thus, here

we consider α = β and without loss in generality we assume
k = 1. Therefore, the eigenvalues become

ω2
x = 3β, ω2

y = 2 + β, ω2
z = 0. (2)
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Finally, by expressing the nonlinear term in terms of the
normal coordinates and momenta we obtain

H = 1

2

(
p2

x + p2
y

) + 1

2

(
ω2

xx
2 + ω2

yy
2
)

− 3γ

21/2

(
1

3
y3 − x2y

)
, (3)

which corresponds to two particles interacting via a Henon-
Heiles-type potential [53].

Furthermore, let us do the following rescalings:

y → 21/2

γ
y, x → 21/2

γ
x,

t → t/31/2, H → 6

γ 2
H. (4)

This gives the scaled Hamiltonian:

H = 1
2

(
p2

x + p2
y

) + 1
6

(
ω2

xx
2 + ω2

yy
2
)

− (
1
3y3 − x2y

)
, (5)

and the Hamilton equations are

ẋi(t) = pi(t), xi = {x,y,z}
ṗx(t) = −x(t)[β + 2y(t)], (6)

ṗy(t) = − 1
3 (2 + β)y(t) + [y(t)]2 − [x(t)]2.

The resulting model is a softened Henon-Heiles system,
since by making β → 0, ωx goes to zero, resulting in a floppy
mode. Thus, β is a control parameter that allows us to reduce
the stiffness of the low-frequency vibrational modes. This
results in a lowering of two saddle points height. In the top
panel of Fig. 1 we have depicted the isopotential for a fixed β

and different energies. We also show the three saddle points
(red dots) and the local minimum for the potential (black dot)
where the potential energy is zero. In the bottom panel of Fig. 1
we may appreciate how the height of the saddle points P1 and
P2 are the same and smaller than P3. Moreover, in Fig. 2 we
have plotted the saddle points height vs β. When β = 0 the
potential barriers located at P1 and P2 drop to zero, while the
other barrier drops to �0.05 (see Fig. 2).

In the case for which β = 1, all saddle points have the same
height. This Hamiltonian corresponds to the model used by
Hénon and Heiles to study the motion of a star in a galaxy with
cylindrical symmetry [49]. For a certain choice of parameters
it has been proven to be an integrable problem [50], but it is not
in general. Moreover, numerical results suggest that when the
energy of the system is E < 1/12, the system is nonchaotic
and nonergodic, yet above this energy the region with chaotic
behavior in phase space increases with the energy up until
E = 1/6 where the whole phase space is chaotic and which is
also saddle point’s height [53,54].

In this way, it seems that as the energy increases the dynam-
ics become chaotic and ergodicity is established. However, in
this work we show that this is not always the case for the
softened model. Actually, as the energy increases, there are
certain islets in the phase space for which quasiperiodicity is
established. This is done in the following section.

FIG. 1. Energy landscape showing an isopotential with β = 0.4.
(Top) The dashed line correspond to the isopotential with energy,
�E = 0.07, above the lower saddle points height (yellow) while
the inner softened triangle corresponds to �E = 0. Each line of the
red triangle goes through a saddle point and has the direction of the
eigenvector corresponding to the positive eigenvalue of the Hessian
matrix in the corresponding saddle point. (Bottom) Here we show a
three-dimensional (3D) plot of the potential. The transversal plane
corresponds to �E = 0.07.

III. RELAXATION PROPERTIES OF THE SOFTENED
HENON-HEILES MODEL

In this section we present the results obtained from solving
numerically the Hamiltonian equations [Eqs. (6)]. We first
fixed β and the energy, �E, above the lower saddle points
height (see Fig. 1), then we took N = 16000 randomly chosen
initial conditions, i.e., linear moment orientation and position,
given the fixed energy. Then we let them evolve and we studied
the distribution of their escape time, i.e., the time taken to
escape the well through any of the exit channels denoted as
P1,P2, and P3 (see Fig. 1). We did this for different values of
the parameters β and �E, which we present in Fig. 3 (the blue
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FIG. 2. Plot of the saddle-point heights as a function of β. The
blue dashed curve corresponds to the saddle-point height at P1 and
P2, while the red continuous curve corresponds to the saddle-point
height at P3 (see Fig. 1).

line in Fig. 3 corresponds to the energy difference between the
upper saddle point and the lower saddle points, i.e., for a given
fixed β when �E is under the blue curve there are two exit
channels, namely, P1 and P2; while when �E is above the blue
curve, there are three exit channels).

In Figs. 4, 5, 6, and 7 we present the population N (t) inside
the well as a function of time in linear-log and log-log plots.
We also present the potential contour corresponding to each
of the values for �E for a fixed β. Rather than using legends
in each of the plots, we used instead the same colors, i.e., the
red curves in the potential contour plot and in the N (t) vs t

correspond to the same value of �E, which we show in Fig. 3.
The first thing one may notice is that, in general, the escape
flow at a given time follows an exponential decay. However,
there are some values of β and �E for which the escape flow
at a given time has a crossover unto a power-law decay and
sticky states appear, but we will come back to this later.

Notice that for small t it seems that N (t) ∼ exp(−αt). In
Fig. 8 we present the values of α as a function of β and �E,
obtained by fitting the curves in Figs. 4, 5, 6, and 7 in the
short-time regime [56]. The dashed line divides the scenario

FIG. 3. Sets of parameters (β,�E) used in our simulations to
study relaxation. Points of the same color have the same energy �E

above the lowest saddle points. The blue curve corresponds to the
energy difference between the high and low saddle points, i.e., for
�E under the blue curve there are two exit channels, namely, P1 and
P2 and for �E above the blue curve, there are three exit channels.

FIG. 4. For β = 0.8: (Top) The population in the potential at time
t in a log-linear plot, for different energies as indicated in the color
code of Fig. 3. (Bottom) The population in the potential at time t

in log-log. (Inset) The isopotential for different values of �E (see
Fig. 3).

in which there are only two exit channels (which correspond
to the two lower saddle points) from the scenario where there
are three exit channels (see Fig. 1).

To understand this exponential decay behavior for the un-
softened Henon-Heiles model (β = 1), first Bauer and Bertsch
and then Zhao et al. (see Refs. [54,55]) used simple rather
clever arguments. They considered that all initial conditions
contained in the energy landscape well would flow out and
assumed that the population change rate equals the flux with
momentum orientation between −π/2 and π/2 relative to the
normals of the exit channels line. Hence

dN(t)

dt
= −N (t)ρ

∫ π/2

−π/2
dθ

∫ r1

r0

dl|�v(x,y)| cos θ, (7)

where ρ = 1/2πS(�E) is the distribution of the variables
(x,y,θ ) and S(�E) is the area of the well. The integral goes
over the opened exit channel lines and, the points r0 and
r1 correspond to the classical return points at these opened
exit channel lines. In the case where β = 1, all exit channels
are identical. Then, integrating over the exit channel P3 and
multiplying by three yields

dN(t)

dt
= −

√
3�E

S(�E)
N (t). (8)

Hence, N (t) ∼ e−αt , with α = √
3�E/S(�E).
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FIG. 5. For β = 0.6: (Top) The population in the potential at time
t in log-linear, for different energies as indicated in the color code of
Fig. 3. (Bottom) The population in the potential at time t in log-log.
(Inset) The isopotential for different values of �E (see Fig. 3).

In the softened Henon-Heiles model, the exit channels P1

and P2 are identical and different from P3. Following this same
idea, we determined α(β,�E) by estimating the escaping flux
numerically from Eq. (7), but evaluated for the open channels
for a given energy where

|v(x,y)| = {
2
[
�E + 1

12β2(1 + β)

− 1
6 (3βx2 + (2 + β)y2) + (

1
3y3 − x2y

)]}1/2
.

(9)

The first two terms on the right-hand side of Eq. (9) are simply
the energy above the lower saddle points and the lower saddle
points energy height. The third term in the right-hand side of
Eq. (9) is the softened Henon-Heiles potential. The classical
returning points as well as the area of the wells, S(�E), were
also determined numerically for different values of �E.

These results can be compared with the actual fitting of
α obtained from the numerical results of log N (t) for small
t , as obtained in Figs. 4, 5, 6, and 7. In Fig. 9 we compare
both methods, namely, the blue points correspond to the fitting
methods while the orange curves correspond to the numerical
flux estimation method. The discontinuity around �E ≈ 0.05
corresponds to the threshold energy where the exit channel
P3 is available. We should clarify that the orange curves were
obtained by interpolating numerical results, i.e., no analytical
equation was obtained. One may appreciate how this heuristic

FIG. 6. For β = 0.4: (Top) The population in the potential at time
t in log-linear, for different energies as indicated in the color code of
Fig. 3. (Bottom) The population in the potential at time t in log-log.
(Inset) The isopotential for different values of �E (see Fig. 3).

approach works quite well for small �E, not so much for
when the flow may come out through the upper channel, i.e.,
P3. This has to do with the fact that in this regime, not all initial
conditions in configurational space flow out of the basin, as we
will show later.

From Figs. 8 and 9 is clear that the relaxation time is
decreased as the stiffness of the model is reduced, since in
general α grows as β is reduced for a fixed energy. This is
explained in general by two effects. The first is a reduction of
the energy barrier heights along the softened normal modes
(see Fig. 2), and the second is a widening of the opening
channels.

IV. POWER LAW RELAXATION AND STICKY STATES

To have a better grip and to qualitatively differentiate which
conditions flow out following an exponential decay from the
region, which flows out following a power law, we fixed
β = 0.4 and �E = 0.02 and solved numerically the Hamilton
Eqs. (6) for N � 5 × 104 different initial conditions, i.e.,
(x,y,θ ). In the top panel of Fig. 10 we have plotted ∼50%
of the studied initial positions that flow out first, i.e., we
plot the configurational space region that corresponds to the
exponential decay regime of N (t), and we have colored each
point according to their initial moment orientation. We also
did this for the initial conditions that flow out the slowest,
corresponding to the power-law regime of N (t), and we show
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FIG. 7. For β = 0.2: (Top) The population in the potential at time
t in log-linear, for different energies as indicated in the code of Fig. 3.
(Bottom) The population in the potential at time t in log-log. (Inset)
The isopotential for different values of �E (see Fig. 3).

this in the bottom panel of Fig. 10. There are several features
we may extract from this. First, notice that the conditions
that flow out first are those with an initial moment orien-
tated toward the exits. Yet, there are some initial positions
that define two regions, namely, region I and region II (see
top panel in Fig. 10), which does not flow out during the

FIG. 8. α(β,�E) obtained numerically by solving the Hamilton
equations (6). The dashed line separates the region where the exit
channel corresponding to the saddle point P3 is forbidden (left) and
the region where it is accessible (right).

FIG. 9. α(β,�E) obtained from numerically solving the Hamil-
ton Eqs. (6) (blue dots) and by considering the initial conditions
escape flux [see Eq. (7)] (yellow lines). The regime change around
�E ≈ 0.05 corresponds to the threshold where the exit channel P3 is
available.

exponential decay regime no matter what their initial moment
orientation is. This is further verified in the bottom panel of
Fig. 10 from which we may qualitatively appreciate a density
gradient in the y direction for y > 0 and in the −y direction
for y < 0.

Also notice that the bulk of the initial positions that flow out
slowly is concentrated in a vicinity of x � 0. However, there
is clearly an overlap in this vicinity with the initial positions
that exit quite fast. For this reason, in Fig. 11 we have plotted
in the top panel the initial condition coordinate x and the
initial moment orientation θ for 50% for the initial conditions
that flows out first, while in the bottom panel of Fig. 11 we
plotted the initial condition coordinate y and the initial moment
orientation θ of the slowest flowing initial conditions. In both
plots the color is a function of the exit time, i.e., red corresponds
to the smallest exiting time while navy blue corresponds to the
largest exiting time. Notice that from the top panel of Fig. 11
one may appreciate fairly well that the configurational space
region that flows out first is the one next to the left (right) exit
channel and have initial moment orientation between 2.3 and
3π/2 (4.5 and 2π + 1), then the initial conditions region that
follows has an initial moment orientation contained in these
intervals but with smaller absolute value of the initial position
coordinate x, in other words, the initial moment orientation still
corresponds to that directed toward one of the exits channels.
Now, the initial conditions region that follows has an initial
moment orientation in the vicinity of π/2 and is distributed
around x ± 0.3. This means that this initial conditions re-
gion collides with the potential barrier before being able to
flow out.

Now, from the bottom panel in Fig. 11 we may appreciate
that the initial conditions region that takes the longest to flow
out is distributed all over the classically permitted interval in
the y axis but with either π/2 or 3π/2 as the value of the initial
moment orientation. All this suggests that the region that takes
the longest to flow out corresponds to oscillating trajectories
in the y direction and in a quasiperiodic manner with x(t) � 0,
i.e., sticky orbits appear.
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FIG. 10. Escape decay regimen as a function of the initial position
for β = 0.4 and �E = 0.02. The coloring corresponds to the initial
moment orientation with respect to the horizontal (see legend). (Top)
Particles that escape under the exponential decay regime. The black
dashed lines are an eye guideline to indicate the conelike regions
of particles with initial moment orientation directed towards one of
the exits, and also indicate the regions I and II were particles there
take longer to escape no matter what their initial moment orientation
is. (Bottom) Particles that escape under the power-law regime as a
function of the initial positions. The isopotential curve is indicated in
blue while the exits of the potential basin is indicated by lines.

Going one step further, in Fig. 12 we show a Poincaré
section for one of the initial conditions that takes a long time
to flow out, obtained in the case of β = 0.4 and �E = 0.02.
Clearly, this type of section corresponds to a quasiperiodic
trajectory. Eventually, the small deviations amplify and the
trajectory escapes the well.

FIG. 11. Decay regime as a function of the initial position x and
initial moment orientation θ in the case of β = 0.4 and �E = 0.02.
(Top) Particles that escape under the exponential decay regime.
(Bottom) Particles that escape under the power-law regime. The
coloring corresponds to the time taken to escape, such that red is
short exit times and navy blue is for large exit times (see legend).

V. APPLICATION TO GLASSES

The previous results can be put in many ways into the
context of glasses. First, the softening of the energy barriers
due to flexible modes observed in the previous model can

FIG. 12. Poincaré map for β = 0.2,�E = 0.04, and some initial
condition for which the particle takes a long time to exit the basin,
corresponding to a sticky state.
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be generalized for glasses. To this end, consider N atoms
described by a pairwise potential, say, V ({xi}) where {xi} is
the set of generalized normal coordinates expanded around a
meta-stable state with i = 1, . . . ,3N and let us assume that
V ({0}) = 0, hence

V ({xi}) = 1

2

3N∑
i=1

ω2
i x

2
i + VNL({xi}). (10)

Here VNL({xi}) denotes the nonlinear part of the potential. In
general, floppy modes occur by lowering interactions, usually
by more than an order of magnitude. For example, in pure Se
glass 1/3 of the modes are floppy since there are almost no
energy cost in changing the dihedral angle of the Se-Se-Se
bonds [25,57]. Yet weaker Van der Waals forces produce a
blue shift of the floppy mode from zero frequency [38,57].
Stiffness can be increased by adding cross-linking modifiers
such as Ge, which add stronger interactions [25]. Floppy modes
can also be produced by reducing sizes of some atoms when
using Lennard-Jones potentials [34,35]. Thus, if we were to
loosen the stiffness of a fraction f of the normal modes,
i.e., decrease ωj with j = 1, . . . ,3Nf , in general, one would
expect a variation in the no-linear part of the potential in the
sense that it will ultimately depend on the kind of potential that
describes a given supercooled liquid and the physical way in
which one modifies the stiffness of the normal modes. Since
the details depend upon the particular potential, here we adopt
a worst-case scenario, i.e., we may assume that the nonlinear
part of the potential is kept fixed when the stiffness is loosened.
Therefore, we denote the potential with a fraction f of floppy
modes as VF ({xi}), such that

VF ({xi}) = 1

2

3N(1−f )∑
i=1

ω2
i x

2
i + 1

2

3Nf∑
j=1

λjω
2
j x

2
j + VNL({xj }),

(11)

where we have denoted the fraction of floppy normal modes
as

√
λjωj and 0 < λj < 1. Then, notice that

VF ({xi}) = V ({xi}) − 1

2

3Nf∑
j=1

(1 − λj )ω2
j x

2
j , (12)

which implies that

VF ({xi}) � V ({xi}), (13)

since the second term in Eq. (12) is always positive. Thus, in
general the energy barrier height decreases in the direction of
floppy modes in comparison to rigid modes, and one expects
relaxation in the direction of floppy modes. It is clear that this
general behavior is what lies in our soft Henon-Heiles model,
which is the extreme case of two degrees of freedom (fixing the
center of mass). Yet even this two degrees of freedom model
can be used to understand some features of glass relaxation.

For example, recently there has been a lot of theoretical
interest in the β relaxation (not to be mistaken with the β

parameter in our model) or Johari-Goldstein relaxation for
glass-forming materials, since it has been revealed its connec-
tion with the glass transition [58]. This phenomenon becomes
visible below the melting temperature. Yet, the origin of this
has generated controversy [59–61], but it seems quite likely

that this relaxation is concerned with the small-amplitude
rotational jump motion of molecules [62–64]. In Ref. [60],
Tanaka proposed a two-order parameter phenomenological
model for rigidity and glass relaxation, which is based on
local fluctuations of reorientational jumps, identified with the
β relaxation. These fluctuations are observed within rigid
metastable islands. The relaxation of these rigid islands is
also known as the α-relaxation process (not to be confused
with the α parameter in our model), which slows down when
reaching the glass transition temperature upon cooling. This
is why the β relaxation becomes visible below the melting
temperature where the α-relaxation time starts to pick up, and
molecules start being caged. The origin of the α relaxation
has also generated controversy in glass-forming liquids and it
seems to be one of the key ingredients of the glass transition.
Both, α and β relaxations seems to be important in the glass
transition, since the first one is associated with a long-range
ordering while the second one with a short-range ordering,
and the competition between these two creates an energetic
frustration causing the glass transition. Now, in most glasses,
there happens to be an overlap between the α relaxation and the
β relaxation. Much dissent has caused the fact that it is not clear
whether this overlap is for the most part the α-relaxation mode
excess wing or the so-called slow-β-relaxation mode. Here lies
the main purpose of Tanaka’s two-order parameter mode [60].

In this sense, our model may be applied to the Tanaka’s
rigidity relaxation model. Within this model, there are local
fluctuations with reorientational jumps [60]. Consider three-
dimensional asymmetrical molecules caged by a rigid sur-
rounding metastable island. For each molecule, the rotational
state can be described by two Euler angles coordinates, the
polar angle η and the azimuthal angle φ. We associate the
coordinates x and y of our softened Henon-Heiles model
to these angles. Due to the asymmetry of the molecule, the
interactions with the rigid cage will lead to different elastic
constants for each Euler angle, and thus Eq. (3) can be used
as a model. A reorientational jump will be associated with an
exit of the model’s central basin. Since in our model any given
initial condition exits the basin once the momentum orientation
θ points outwards through any of the available exit channels,
then the characteristic β-relaxation time τ is proportional to the
mean exit time in our model. In the case where the flux method
applies, the mean time for a reorientational jump is simply
the inverse of α, thus τ ∼ 1/α. The exponential law decay is
in agreement with the experimental observed Arrhenius law
for relaxation [60]. Yet our results imply that the nonlinear
part can lead to a complex dynamics since for some states
and glasses, the relaxation can be slowed down in a power-law
fashion for an important number of cages, where the molecules
stick for certain orientations. It is also known that this kind of
power law also occurs in glasses [60]. The regime where this
happens for the softened model and for real glasses is an open
problem. Notice that when many rotational traps are present
with different relaxation times, stretched exponential laws with
special magic exponents are obtained [6,65].

VI. CONCLUSION

In this work we have studied the relaxation process of a
chain consisting of three masses joined by nonlinear springs,
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periodic conditions, and weakened stiffness. The idea was
to explore how relaxation is modified by changes in the
low-frequency vibrational mode region. We found that the
relaxation time is, for the most part, exponential, which is
in agreement with the idea of using an ergodic description.
This was confirmed by using a simple flux balance that relates
the accessible area of the basin, the initial conditions, and the
size of the basin apertures above the saddle points. However,
we must stress that the parameter α obtained from the fitting
method almost always goes over the α obtained by the flux
method (see Fig. 9). Thus, if one were to improve the fit by
choosing a smaller time interval, the discrepancies between
both methods would increase. In this sense, the flux method
is quite useful because it gives a strong insight on what is
happening when the initial conditions are evolved. We have
shown that by reducing the rigidity of the model, i.e., by
softening one of the normal modes, the system relaxes faster.
There are two reasons for this. One is the decreasing of the
energy barriers since two of the saddle points of the landscape
are reduced in energy. The other is related to the shape of
the basin. This leads to the conclusion that relaxation occurs
mainly into directions of soft or floppy modes [32].

However, we also found some energies and regions in phase
space where sticky states appear. For these states, the relaxation
decay follows a power law. In these sticky states, the trajectory
is quasiperiodic in the sense that, given the isopotential curva-
ture, small deviations occur. Eventually, these deviations are
amplified in such a way that the quasiperiodicity is lost and the
trajectory goes out of the well. This can also be understood as
energy transfer from one normal mode to another. It is believed
that the sticky states phase region diminish as the energy
increases. However, we have shown that is not always the case

and, in fact, there are certain islets in the phase space for which
sticky states appear as energy increases (see Fig. 7) and, in fact,
it seems nontrivial to understand the relation between energy
and sticky states. Having said that, one may not assume that as
the energy increases, the sticky states disappear. Furthermore,
as the control parameter β, which measures the stiffness of the
model decreases, the sticky-states region in phase space dimin-
ishes. This is expected since energy sharing (transfer) starts in
the low vibrational modes due to resonances. The sticky-states
regions were clearly identified with initial conditions for which
the assumptions made for the simple flux balance are broken,
i.e., regions in which a kind of cavity exist. Therein, for most
particles is impossible to leave the energy landscape basin
without having many reflections, since their momenta do not
have components on the direction of the normal to the lines,
which are the gates of the energy landscape basin.

Lastly, we have applied our softened system to model the
β relaxation in glasses. We have found that local reorienta-
tional jumps can have an exponential and a nonexponential
contribution for relaxation, since asymmetric molecules stick
in cages for certain orientations. This can help to explain the
wide variability observed in the kind of β relaxation [60].

ACKNOWLEDGMENTS

This work was partially supported by Dirección General
de Asuntos del Personal Académico-Programa de Apoyo
a Proyectos de Investigación e Innovación Tecnológica
(DGAPA-PAPIIT) Project No. 102717. J.Q.T.M. acknowl-
edges a doctoral fellowship from Consejo Nacional de Ciencia
y Tecnología (México). The authors would like to thank the
referees for their comments and inquiries.

[1] K. Trachenko, C. Roland, and R. Casalini, J. Phys. Chem. B 112,
5111 (2008).

[2] R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford
University Press, New York, 2001).

[3] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
[4] P. G. Wolynes and V. Lubchenko, Structural Glasses and Su-

percooled Liquids: Theory, Experiment, and Applications (John
Wiley & Sons, New York, 2012).

[5] K. Binder and W. Kob, Glassy Materials and Disordered Solids:
An Introduction to their Statistical Mechanics (World Scientific,
Singapore, 2011).

[6] G. Naumis and J. Phillips, J. Non-Cryst. Solids 358, 893
(2012).

[7] M. Born, Is classical mechanics in fact deterministic? in Physics
in My Generation (Springer New York, 1968), pp. 78–83.

[8] M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter, Nature
(London) 363, 31 (1993).

[9] A. Diaz-Ruelas, H. J. Jensen, D. Piovani, and A. Robledo,
Europhys. J. Special Topics 226, 341 (2017).

[10] I. Fermi, P. Pasta, S. Ulam, and M. Tsingou, Studies of the
nonlinear problems, Technical Report, Los Alamos Scientific
Laboratory, New Mexico, 1955.

[11] A. Ponno, in Chaotic Dynamics and Transport in Classical and
Quantum Systems (Springer, Berlin, 2005), pp. 431–440.

[12] J. Ford, J. Math. Phys. 2, 387 (1961).
[13] U. R. Pedersen, L. Costigliola, N. P. Bailey, T. B. Schrøder, and

J. C. Dyre, Nature Commun. 7, 12386 (2016).
[14] S. Albert, T. Bauer, M. Michl, G. Biroli, J.-P. Bouchaud, A.

Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, and F.
Ladieu, Science 352, 1308 (2016).

[15] H. W. Hansen, B. Frick, T. Hecksher, J. C. Dyre, and K. Niss,
Phys. Rev. B 95, 104202 (2017).

[16] T. Gleim and W. Kob, Europhys. J. B 13, 83 (2000).
[17] M. Mezard and G. Parisi, in Structural Glasses and Supercooled

Liquids: Theory, Experiment, and Applications (Wiley, New
York, 2012), pp. 151–191.

[18] K. Trachenko and V. V. Brazhkin, Phys. Rev. B 83, 014201
(2011).

[19] M. Micoulaut and G. Naumis, Europhys. Lett. 47, 568 (1999).
[20] J. C. Mauro, D. C. Allan, and M. Potuzak, Phys. Rev. B 80,

094204 (2009).
[21] J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
[22] A. Ninarello, L. Berthier, and D. Coslovich, Phys. Rev. X 7,

021039 (2017).
[23] G. G. Naumis and R. Kerner, J. Non-Cryst. Solids 231, 111

(1998).
[24] R. Kerner and G. G. Naumis, J. Phys.: Condens. Matter 12, 1641

(2000).

042106-9

https://doi.org/10.1021/jp800347w
https://doi.org/10.1021/jp800347w
https://doi.org/10.1021/jp800347w
https://doi.org/10.1021/jp800347w
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1016/j.jnoncrysol.2011.12.083
https://doi.org/10.1016/j.jnoncrysol.2011.12.083
https://doi.org/10.1016/j.jnoncrysol.2011.12.083
https://doi.org/10.1016/j.jnoncrysol.2011.12.083
https://doi.org/10.1038/363031a0
https://doi.org/10.1038/363031a0
https://doi.org/10.1038/363031a0
https://doi.org/10.1038/363031a0
https://doi.org/10.1140/epjst/e2016-60264-4
https://doi.org/10.1140/epjst/e2016-60264-4
https://doi.org/10.1140/epjst/e2016-60264-4
https://doi.org/10.1140/epjst/e2016-60264-4
https://doi.org/10.1063/1.1703724
https://doi.org/10.1063/1.1703724
https://doi.org/10.1063/1.1703724
https://doi.org/10.1063/1.1703724
https://doi.org/10.1038/ncomms12386
https://doi.org/10.1038/ncomms12386
https://doi.org/10.1038/ncomms12386
https://doi.org/10.1038/ncomms12386
https://doi.org/10.1126/science.aaf3182
https://doi.org/10.1126/science.aaf3182
https://doi.org/10.1126/science.aaf3182
https://doi.org/10.1126/science.aaf3182
https://doi.org/10.1103/PhysRevB.95.104202
https://doi.org/10.1103/PhysRevB.95.104202
https://doi.org/10.1103/PhysRevB.95.104202
https://doi.org/10.1103/PhysRevB.95.104202
https://doi.org/10.1007/s100510050012
https://doi.org/10.1007/s100510050012
https://doi.org/10.1007/s100510050012
https://doi.org/10.1007/s100510050012
https://doi.org/10.1103/PhysRevB.83.014201
https://doi.org/10.1103/PhysRevB.83.014201
https://doi.org/10.1103/PhysRevB.83.014201
https://doi.org/10.1103/PhysRevB.83.014201
https://doi.org/10.1209/epl/i1999-00427-7
https://doi.org/10.1209/epl/i1999-00427-7
https://doi.org/10.1209/epl/i1999-00427-7
https://doi.org/10.1209/epl/i1999-00427-7
https://doi.org/10.1103/PhysRevB.80.094204
https://doi.org/10.1103/PhysRevB.80.094204
https://doi.org/10.1103/PhysRevB.80.094204
https://doi.org/10.1103/PhysRevB.80.094204
https://doi.org/10.1103/RevModPhys.78.953
https://doi.org/10.1103/RevModPhys.78.953
https://doi.org/10.1103/RevModPhys.78.953
https://doi.org/10.1103/RevModPhys.78.953
https://doi.org/10.1103/PhysRevX.7.021039
https://doi.org/10.1103/PhysRevX.7.021039
https://doi.org/10.1103/PhysRevX.7.021039
https://doi.org/10.1103/PhysRevX.7.021039
https://doi.org/10.1016/S0022-3093(98)00417-7
https://doi.org/10.1016/S0022-3093(98)00417-7
https://doi.org/10.1016/S0022-3093(98)00417-7
https://doi.org/10.1016/S0022-3093(98)00417-7
https://doi.org/10.1088/0953-8984/12/8/306
https://doi.org/10.1088/0953-8984/12/8/306
https://doi.org/10.1088/0953-8984/12/8/306
https://doi.org/10.1088/0953-8984/12/8/306


TOLEDO-MARÍN AND NAUMIS PHYSICAL REVIEW E 97, 042106 (2018)

[25] J. C. Phillips, J. Non-Cryst. Solids 34, 153 (1979).
[26] M. Thorpe, J. Non-Cryst. Solids 57, 355 (1983).
[27] A. Huerta and G. Naumis, Phys. Lett. A 299, 660 (2002).
[28] A. Huerta and G. G. Naumis, Phys. Rev. B 66, 184204 (2002).
[29] H. M. Flores-Ruiz and G. G. Naumis, Phys. Rev. E 85, 041503

(2012).
[30] E. Lerner, G. Düring, and E. Bouchbinder, Phys. Rev. lett. 117,

035501 (2016).
[31] E. Lerner and E. Bouchbinder, Phys. Rev. E 96, 020104 (2017).
[32] G. G. Naumis, Phys. Rev. E 71, 026114 (2005).
[33] G. G. Naumis, Phys. Rev. E 85, 061505 (2012).
[34] H. M. Flores-Ruiz, G. G. Naumis, and J. C. Phillips,

Phys. Rev. B 82, 214201 (2010).
[35] H. M. Flores-Ruiz and G. G. Naumis, Phys. Rev. B 83, 184204

(2011).
[36] J. Q. Toledo-Marín, I. P. Castillo, and G. G. Naumis, Physica A

451, 227 (2016).
[37] J. Q. Toledo-Marín and G. G. Naumis, J. Chem. Phys. 146,

094506 (2017).
[38] G. G. Naumis, Phys. Rev. B 73, 172202 (2006).
[39] M. Tatsumisago, B. L. Halfpap, J. L. Green, S. M. Lindsay, and

C. A. Angell, Phys. Rev. Lett. 64, 1549 (1990).
[40] M. Micoulaut and Y. Yue, MRS Bulletin 42, 18 (2017).
[41] D. Selvanathan, W. J. Bresser, and P. Boolchand, Phys. Rev. B

61, 15061 (2000).
[42] M. Bauchy and M. Micoulaut, J. Non-Cryst. Solids 357, 2530

(2011).
[43] A. Ponno, Chaotic Dynamics and Transport in Classical and

Quantum Systems, Vol. 182 (Springer, Berlin, 2005).
[44] J. Romero-Arias, F. Salazar, G. Naumis, and G. Fernandez-

Anaya, Phil. Trans Roy Soc. Lond. A 367, 3173 (2009).
[45] J. R. Romero-Arias and G. G. Naumis, Phys. Rev. E 77, 061504

(2008).

[46] M. Onorato, L. Vozella, D. Proment, and Y. V. Lvov, Proc. Nat.
Acad. Sci. 112, 4208 (2015).

[47] I. Limas, G. Naumis, F. Salazar, and C. Wang, Phys. Lett. A 337,
141 (2005).

[48] G. G. Naumis, Phys. Rev. B 59, 11315 (1999).
[49] M. Henon and C. Heiles, Astron. J. 69, 73 (1964).
[50] A. P. Fordy, Physica D 52, 204 (1991).
[51] J. Aguirre, J. C. Vallejo, and M. A. F. Sanjuán, Phys. Rev. E 64,

066208 (2001).
[52] B. A. Waite and W. H. Miller, J. Chem. Phys. 74, 3910 (1981).
[53] M. Toda, Theory of Nonlinear Lattices, Vol. 20 (Springer Science

& Business Media, Berlin, 2012).
[54] H. J. Zhao and M. L. Du, Phys. Rev. E 76, 027201 (2007).
[55] W. Bauer and G. F Bertsch, Phys. Rev. Lett. 65, 2213

(1990).
[56] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.97.042106 for a detailed derivation of the
eigenvalues and eigenvectors of the dynamical matrix, as well
as a discussion on how we fit N (t) vs t and the graphs, which
compare the numerical results log[N (t)] vs t and the linear fit.

[57] G. G. Naumis, Front. Mater. 2, 44 (2015).
[58] K. Ngai, Relaxation and Diffusion in Complex Systems (Springer

Science & Business Media, Berlin, 2011).
[59] Y. H. Liu, T. Fujita, D. P. B. Aji, M. Matsuura, and M. W. Chen,

Nature Commun. 5, 3238 (2014).
[60] H. Tanaka, Phys. Rev. E 69, 021502 (2004).
[61] H. B. Yu, W. H. Wang, H. Y. Bai, and K. Samwer, Nat. Sci. Rev.

1, 429 (2014).
[62] G. Diezemann, J. Chem. Phys. 107, 10112 (1997).
[63] G. Johari, J. Non-Cryst. Solids 307, 317 (2002).
[64] M. Vogel and E. Rössler, J. Phys. Chem. B 104, 4285

(2000).
[65] G. G. Naumis and G. Cocho, New J. Phys. 9, 286 (2007).

042106-10

https://doi.org/10.1016/0022-3093(79)90033-4
https://doi.org/10.1016/0022-3093(79)90033-4
https://doi.org/10.1016/0022-3093(79)90033-4
https://doi.org/10.1016/0022-3093(79)90033-4
https://doi.org/10.1016/0022-3093(83)90424-6
https://doi.org/10.1016/0022-3093(83)90424-6
https://doi.org/10.1016/0022-3093(83)90424-6
https://doi.org/10.1016/0022-3093(83)90424-6
https://doi.org/10.1016/S0375-9601(02)00519-4
https://doi.org/10.1016/S0375-9601(02)00519-4
https://doi.org/10.1016/S0375-9601(02)00519-4
https://doi.org/10.1016/S0375-9601(02)00519-4
https://doi.org/10.1103/PhysRevB.66.184204
https://doi.org/10.1103/PhysRevB.66.184204
https://doi.org/10.1103/PhysRevB.66.184204
https://doi.org/10.1103/PhysRevB.66.184204
https://doi.org/10.1103/PhysRevE.85.041503
https://doi.org/10.1103/PhysRevE.85.041503
https://doi.org/10.1103/PhysRevE.85.041503
https://doi.org/10.1103/PhysRevE.85.041503
https://doi.org/10.1103/PhysRevLett.117.035501
https://doi.org/10.1103/PhysRevLett.117.035501
https://doi.org/10.1103/PhysRevLett.117.035501
https://doi.org/10.1103/PhysRevLett.117.035501
https://doi.org/10.1103/PhysRevE.96.020104
https://doi.org/10.1103/PhysRevE.96.020104
https://doi.org/10.1103/PhysRevE.96.020104
https://doi.org/10.1103/PhysRevE.96.020104
https://doi.org/10.1103/PhysRevE.71.026114
https://doi.org/10.1103/PhysRevE.71.026114
https://doi.org/10.1103/PhysRevE.71.026114
https://doi.org/10.1103/PhysRevE.71.026114
https://doi.org/10.1103/PhysRevE.85.061505
https://doi.org/10.1103/PhysRevE.85.061505
https://doi.org/10.1103/PhysRevE.85.061505
https://doi.org/10.1103/PhysRevE.85.061505
https://doi.org/10.1103/PhysRevB.82.214201
https://doi.org/10.1103/PhysRevB.82.214201
https://doi.org/10.1103/PhysRevB.82.214201
https://doi.org/10.1103/PhysRevB.82.214201
https://doi.org/10.1103/PhysRevB.83.184204
https://doi.org/10.1103/PhysRevB.83.184204
https://doi.org/10.1103/PhysRevB.83.184204
https://doi.org/10.1103/PhysRevB.83.184204
https://doi.org/10.1016/j.physa.2016.01.064
https://doi.org/10.1016/j.physa.2016.01.064
https://doi.org/10.1016/j.physa.2016.01.064
https://doi.org/10.1016/j.physa.2016.01.064
https://doi.org/10.1063/1.4977517
https://doi.org/10.1063/1.4977517
https://doi.org/10.1063/1.4977517
https://doi.org/10.1063/1.4977517
https://doi.org/10.1103/PhysRevB.73.172202
https://doi.org/10.1103/PhysRevB.73.172202
https://doi.org/10.1103/PhysRevB.73.172202
https://doi.org/10.1103/PhysRevB.73.172202
https://doi.org/10.1103/PhysRevLett.64.1549
https://doi.org/10.1103/PhysRevLett.64.1549
https://doi.org/10.1103/PhysRevLett.64.1549
https://doi.org/10.1103/PhysRevLett.64.1549
https://doi.org/10.1557/mrs.2016.298
https://doi.org/10.1557/mrs.2016.298
https://doi.org/10.1557/mrs.2016.298
https://doi.org/10.1557/mrs.2016.298
https://doi.org/10.1103/PhysRevB.61.15061
https://doi.org/10.1103/PhysRevB.61.15061
https://doi.org/10.1103/PhysRevB.61.15061
https://doi.org/10.1103/PhysRevB.61.15061
https://doi.org/10.1016/j.jnoncrysol.2011.03.017
https://doi.org/10.1016/j.jnoncrysol.2011.03.017
https://doi.org/10.1016/j.jnoncrysol.2011.03.017
https://doi.org/10.1016/j.jnoncrysol.2011.03.017
https://doi.org/10.1098/rsta.2009.0069
https://doi.org/10.1098/rsta.2009.0069
https://doi.org/10.1098/rsta.2009.0069
https://doi.org/10.1098/rsta.2009.0069
https://doi.org/10.1103/PhysRevE.77.061504
https://doi.org/10.1103/PhysRevE.77.061504
https://doi.org/10.1103/PhysRevE.77.061504
https://doi.org/10.1103/PhysRevE.77.061504
https://doi.org/10.1073/pnas.1404397112
https://doi.org/10.1073/pnas.1404397112
https://doi.org/10.1073/pnas.1404397112
https://doi.org/10.1073/pnas.1404397112
https://doi.org/10.1016/j.physleta.2005.01.054
https://doi.org/10.1016/j.physleta.2005.01.054
https://doi.org/10.1016/j.physleta.2005.01.054
https://doi.org/10.1016/j.physleta.2005.01.054
https://doi.org/10.1103/PhysRevB.59.11315
https://doi.org/10.1103/PhysRevB.59.11315
https://doi.org/10.1103/PhysRevB.59.11315
https://doi.org/10.1103/PhysRevB.59.11315
https://doi.org/10.1086/109234
https://doi.org/10.1086/109234
https://doi.org/10.1086/109234
https://doi.org/10.1086/109234
https://doi.org/10.1016/0167-2789(91)90122-P
https://doi.org/10.1016/0167-2789(91)90122-P
https://doi.org/10.1016/0167-2789(91)90122-P
https://doi.org/10.1016/0167-2789(91)90122-P
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1063/1.441567
https://doi.org/10.1063/1.441567
https://doi.org/10.1063/1.441567
https://doi.org/10.1063/1.441567
https://doi.org/10.1103/PhysRevE.76.027201
https://doi.org/10.1103/PhysRevE.76.027201
https://doi.org/10.1103/PhysRevE.76.027201
https://doi.org/10.1103/PhysRevE.76.027201
https://doi.org/10.1103/PhysRevLett.65.2213
https://doi.org/10.1103/PhysRevLett.65.2213
https://doi.org/10.1103/PhysRevLett.65.2213
https://doi.org/10.1103/PhysRevLett.65.2213
http://link.aps.org/supplemental/10.1103/PhysRevE.97.042106
https://doi.org/10.3389/fmats.2015.00044
https://doi.org/10.3389/fmats.2015.00044
https://doi.org/10.3389/fmats.2015.00044
https://doi.org/10.3389/fmats.2015.00044
https://doi.org/10.1038/ncomms4238
https://doi.org/10.1038/ncomms4238
https://doi.org/10.1038/ncomms4238
https://doi.org/10.1038/ncomms4238
https://doi.org/10.1103/PhysRevE.69.021502
https://doi.org/10.1103/PhysRevE.69.021502
https://doi.org/10.1103/PhysRevE.69.021502
https://doi.org/10.1103/PhysRevE.69.021502
https://doi.org/10.1093/nsr/nwu018
https://doi.org/10.1093/nsr/nwu018
https://doi.org/10.1093/nsr/nwu018
https://doi.org/10.1093/nsr/nwu018
https://doi.org/10.1063/1.474148
https://doi.org/10.1063/1.474148
https://doi.org/10.1063/1.474148
https://doi.org/10.1063/1.474148
https://doi.org/10.1016/S0022-3093(02)01491-6
https://doi.org/10.1016/S0022-3093(02)01491-6
https://doi.org/10.1016/S0022-3093(02)01491-6
https://doi.org/10.1016/S0022-3093(02)01491-6
https://doi.org/10.1021/jp9942466
https://doi.org/10.1021/jp9942466
https://doi.org/10.1021/jp9942466
https://doi.org/10.1021/jp9942466
https://doi.org/10.1088/1367-2630/9/8/286
https://doi.org/10.1088/1367-2630/9/8/286
https://doi.org/10.1088/1367-2630/9/8/286
https://doi.org/10.1088/1367-2630/9/8/286



