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A first analysis of fluctuations of the light intensity of vertical-cavity surface-emitting lasers operating in a
bistable regime reveals the presence of 1/f noise. In this regime the intensity fluctuates between two recently
characterized states with residence times {τ1} and {τ2}. We identify three distinct processes. One of them presents
a coherence enhancement phenomenon, and in the other two the distribution of residence times in one of the states
follows either a power law P (τ1) ∼ τ−2

1 or P (τ2) ∼ τ−2
2 , and this is the cause of the 1/f shape in the spectral

density of the intensity. The process at the coherence enhancement zone shows 1/f fluctuations in the light
intensity and also in the time residence process. It is shown that the origin of these fluctuations is due to a
power-law distribution in the time separation between pulses observed in the time residence series.

DOI: 10.1103/PhysRevE.97.042105

I. INTRODUCTION

Experiments with vertical-cavity surface-emitting lasers
(VCSELs) subject to optical injection exhibit a rich dynamics
that has been the subject of interesting studies of stochastic
nonlinear processes [1]. By injecting linearly polarized light
from an external laser, either in the direction of the linear
polarization emitted by the VCSEL (parallel) or in its orthog-
onal direction, a rich variety of states exhibiting harmonic,
periodic, and chaotic dynamics can be observed by tuning
some external parameters such as the injected power and the
detuning frequency. Among these states, there are two that have
attracted considerable attention of researchers due to their pos-
sible utility in optical communications. Semiconductor lasers
subject to parallel optical injection are used in modern optical
communications. The first state corresponds to the period-1
(P1) oscillations that are generated in these systems. These
oscillations are used as photonic microwave sources in radio-
over-fiber (ROF) optical communication systems [2,3]. The
main advantage of the P1 state is that it can be used for optical
single sideband modulation [3]. This type of modulation is
employed to reduce the periodic fading of the radiofrequency
signals caused by the chromatic dispersion of the optical fibers
[2]. The second state occurs when the orthogonal polarization
mode is activated [polarization switching (PS)] and the VCSEL
locks its frequency to that of the injection laser [injection
locking (IL)]. Usually only one of these phenomena occurs, but
in a recent work [4] using parallel optical injection, a new state
in which both phenomena (IL+PS) occur simultaneously was
experimentally observed and theoretically analyzed. In IL+PS,
injection locking of the parallel polarization and excitation of
the free-running orthogonal polarization are simultaneously
observed. The fluctuation dynamics of this new state, when
(in a parameter space) it is on the frontier with other states,
presents interesting features [5–7].

Here we focus on the case in which bistability occurs
between the (IL+PS), which is a fixed point, and periodic (P1)

states in the frontier of Hopf bifurcation [6]. The fluctuations
generated by a hopping process between these states exhibit
two unusual properties. First, there is a central zone of normal
bistability in the parameter space where the time residence
distribution of both states follows a standard (not heavy tail)
statistics. Assuming that fluctuations are driven by external
noise, we can speak of a phenomenon of coherence enhance-
ment (not coherence resonance), since we have no control
over the noise intensity [8]. The unusual facts are the 1/f

fluctuations observed in the light intensity and in the residence
time processes. Second, close to the limit between this zone and
the zones of stability of the P1 and IL+PS states, we find a kind
of intermittent behavior where the residence time distribution
of one of the mentioned states is a power law with an exponent
close to −2, and where fluctuations of the light intensity are
characterized by a power spectrum close to 1/f with peaked
structure.

The existence of 1/f β noise in hopping processes was first
studied in nonlinear oscillators [9]. It is interesting because
a standard hopping process with well-defined mean resi-
dence times between states should exhibit Lorentzian power
spectra(∼1/f 2) [10]. The existence of 1/f β spectra with β

close to 1 thus means that some unusual mechanism is present
in the hopping process. Any one of three generic mechanisms
could explain this situation: (i) Hopping is not between
two or more attractors but between two loci of the same
attractor. The normal noisy process that produces hopping
between attractors is substituted here by a chaotic process
(deterministic diffusion) [9–11]. (ii) Hopping is between a
set of attractors (multistability) with a given distribution of
residence time processes [12,13]. (iii) Hopping is between two
attractors submitted to external fluctuations that change the
escape properties of the attractors [14,15]. In our experiment,
there are two involved states that are not chaotic, a limit
cycle (P1) and a fixed point (IL+PS), so only the type
(iii) mechanism is valid to explain the observed anomalous
behavior.
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Usually the identification of the exact physical mechanism
producing the 1/f noise is complicated, but at least one can
determine its generic properties. A generic mechanism of 1/f

production applicable to our process was first introduced by
Manneville [16] in the context of intermittency of chaos and
turbulence. In a more general context, this result suggests that
in any multilevel fluctuating signal with intermittent behavior,
the power-law exponent of its residence time distribution is
connected with its spectral exponent. This connection has been
found in many systems, ranging from other intermittent chaotic
systems [17], blinking quantum dots [18,19], liquid crystals
[20], and nanoscale electrodes [21]. A kind of intermittent
behavior, called two-state on-off intermittency, has been found
in several types of lasers: distributed-feedback semiconductor
lasers (DFBs) [22], diode lasers with an external cavity [15],
optical injected dual-mode semiconductor lasers [23], and
mutually coupled diode lasers [24]. However, only a character-
ization of the time residence distribution of the laminar state
with an exponent close to −3/2 has been reported in these
studies, without connecting with spectral properties. Note that
our experiment can be seen as a type of on-off intermittency
where the laminar (off) state is one of the involved states (P1)
or (IL+PS). In all these processes, a proper spectral analysis
requires special treatment, since there is a lack of ergodicity
[19,25] and the standard spectral density is not well defined.
This treatment has been developed only in recent times and
with synthetic signals [26–29]. In this paper, we use one of
these techniques to analyze and classify the 1/f noise found
in our experiments with VCSELs.

The organization of the paper is as follows. In Sec. II a
background of the methods used in the analysis of fluctuations
is presented. In Sec. III a brief sketch of the experimental setup
and results is shown. In Sec. IV the 1/f signal observed in cases
with intermittent behavior is analyzed following our previous
results. In Sec. V the analysis is devoted to fluctuations of the
time residence series in the coherence enhancement process.
Finally, conclusions are presented in Sec. VI.

II. ANALYSIS OF FLUCTUATIONS

A standard method to analyze fluctuations of a stationary
signal is the use of power spectrum densities (PSDs). Typical
spectra consist of a set of peaks superimposed on a horizontal
background line of frequencies indicating the presence of a
true signal in a noisy environment. When this line is not
horizontal but a power such as 1/f β appears, a more careful
analysis should be used. Stationarity and/or ergodicity of the
signal should be questioned [25], and other methods were used
throughout the past 50 years to solve this problem.

In general the analysis of complex signals has been per-
formed using either a direct or an indirect treatment of fluctu-
ations. Direct methods mainly include the use of widths (de-
trended fluctuation analysis [31]), correlations [27], and PSDs
[26]. Indirect methods comprise a wide set of possibilities,
ranging from the use of entropy measures [32], wavelets [33],
or even complex networks [34]. We are going to use a recently
proposed method that can be used to treat this problem by
adapting the existing spectral methods [26]. We have two clear
advantages with this choice. One is the use of a standard method
in the analysis of optical signals. The other is the existence of a

classification of 1/f processes based on this method that gives
useful additional information.

A. Complete spectral scaling

In recent years, it has been shown how to treat this problem
by adapting the existing spectral methods. One should simply
consider the size of the signal T as a relevant variable and
perform a complete spectral analysis in which both the scaling
of frequencies and sizes, T γ /f β , are taken into account
[26,30]. It is a way of adapting the Wiener-Kinchine theorem
to nonstationary or nonergodic situations [27–29].

The basis of these methods is related to the necessity
of accounting for local and global structural properties in a
general time series [26]. Consider a signal given by a time
series, Y (t) ≡ {yt1 ,yt2 , . . . ,ytN =T }, representing one sample of
an ensemble, {YT }, of a numerical or empirical process of size
N . Global properties are related to affine transformations. Let
us consider series with constant increments, ti+1 − ti = �, and
take affine transformations such as �′ = λ�, y ′ = �θy. A
global exponent, α, can be defined if, in the transformation,
it keeps the statistical description of the series invariant,
YλT (λt) ∼ λ−αYT (t). On the other hand, local properties corre-
spond to changes in the number of points of the series, keeping
the time increment constant. As in the global case, a local
exponent αloc can be defined if YλT (t) ∼ λ−αlocYT . It is worth
remarking that at least two distinct exponents, accounting for
their local and global character, are necessary for a proper
description of time-series scaling. Only the self-affine case,
where αloc = α, requires only one exponent.

To quantify the global behavior, one takes the scaling
exponents of the asymptotic variation of moments with T ,
as, for instance, the mean value 〈YT 〉 ∼ T ν and variance

〈(YT − YT )2〉 ∼ T 2α . From now on, # and 〈#〉 denote time and
sample averaging, respectively. For measuring local properties,
a variety of methods going from spectral to wavelet analysis
were used in the literature. Here we use spectral methods.
The spectral density of a sample is defined by ST (f ) =
1
T

̂YT (f ) ̂YT (−f ), where #̂ is a Fourier transform. Ensemble
averages S(f,T ) = 〈ST (f )〉 are taken with the aim of reducing
spectral fluctuations. Then we identify the local exponent with
the spectral exponent αs given by S(f,T ) ∼ 1/f 2αs+1. If we
only consider typical time series that are either symmetric with
respect to their mean values (ν = 0) or completely asymmetric,
ν = α, we can conclude that only two independent exponents,
α andαs , are necessary to have a proper characterization of time
series based on spectral properties [26]. And these exponents
could be directly obtained from power spectra of series with
variable size, since a complete scaling of power spectra is
written as [26,30]

S(f,T ) ∼

⎧⎪⎪⎨
⎪⎪⎩

T 2(α−αs )

f 2αs+1 if αs � 0,(αs,α) �= (0,0),
[log(T )]−1

f
if αs = 0,α = 0,

T 2α

f 2αs+1 if αs < 0.

(1)

This scaling allows us to classify time series into classes
using the two exponents αs and α. These classes represent
distinct types of series that share some geometrical property.
Concerning classes producing 1/f signals, it is observed that

042105-2



1/f NOISE IN THE INTENSITY FLUCTUATIONS OF … PHYSICAL REVIEW E 97, 042105 (2018)

up to four classes produce the same standard spectrum [30].
These are the class of self-affine curves (SA) defined by αs =
α > 0, of stationary noise (SN) defined by αs < 0, α = 0, of
pure 1/f noise defined by αs = 0, α < 0, and the class of
stationary fractal curves (SF) defined by αs > 0, α = 0. A
more complete description and mode of generation in each
case can be found in [30].

B. Uncorrelated pulses

Many of the fluctuating signals produced by electronic and
photonic devices are in the form of a time series of pulses.
Hopping processes are included in these signals.

Let us first consider the case in which the interpulse times
{τi} are independent variables following a given probability
density P (τ ), that is, we have a renewal process. The corre-
sponding time series is written as

Y (t) =
∑

l

h(t − tl ,θl),

where h(s,θ ) is the shape of the pulse centered in s = 0, tl =∑l
i=1 τi are the times at which the pulse is placed, and θ is a

parameter quantifying the shape of the pulse. Calculation of
the spectral density gives

ST (f ) = 1

T

∑
l,m

exp [−if (tl − tm)]h̃(f,θl)h̃(−f,θm). (2)

Assuming now that the finite Fourier transform is inde-
pendent of the position tl and integration range T , and that
the renewal times τl = tl+1 − tl and shape parameters θl are
uncorrelated, we have

S(f,T ) ∼ N (T )

T
〈|̃h(f,θ )|2〉, (3)

where we have ignored the of-diagonal (l �= m) terms, which
means that the coefficient exp[−if (tl − tm)] acts as a random
phase [25]. N (T ) is the mean number of pulses in the interval
T . When the mean renewal time τ is well defined and finite,
N (T ) = T

τ
, the size T is irrelevant in the spectra and we have a

case with single scaling. The spectral exponent is exclusively
determined by the shape and distribution of pulses. As an
example, if the shape of pulses scales as h(s,θ ) ∼ θ−ag(s/θ )
and they are distributed as a power law with P (zθ ) ∼ z−bP (θ ),
the spectral exponent becomes

αs = 1 − a − b

2
. (4)

On the other hand, if the mean renewal time is dependent
on T , we have a case of double scaling in the spectra. As an
example, we consider the case with a power law in the prob-
ability of waiting times P (τ ) = (d − 1)τ−d with 1 < d < 2,

τ ∈ (1,∞), where τ = d−1
2−d

(T 2−d − 1). In this case, using (1),
we have

2(α − αs) = d − 2. (5)

In our experiments, we deal with hopping processes that
are, in fact, a series of flat pulses, so our interest is focused on
this type of signal. The interpulse time in a hopping process
coincides with the so-called residence time, this last notation
being more illustrative. In a more general form, we can consider
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FIG. 1. PSDs of series of pulses with interpulse processes dis-
tributed following a power law P (τ ) ∼ τ−2. (a) T = 214 with ex-
ponential (green), Gaussian (red), and flat (black) pulses (hopping
process). (b) Hopping process with distinct sizes, T = 212 (black),
T = 214 (red), and T = 216 (green). In the inset, collapse of spectra
following the scaling law (1). (c) T = 214 but now with truncated
power laws with τc = 105 (black), 104 (red), 103 (green), and
102 (blue). The inset shows the corresponding saturation sizes Tc.
(d) Collapse of PSDs with truncated power laws following the scaling
law (1) but now with Tc instead of T . As an indication for the eye,
dashed lines in (a), (b), and (d) follow an exact 1/f law.

a series of pulses whose widths θi coincide with their interpulse
times τi . The spectral exponents can be calculated by doing
a = 0 in (4), as corresponds to pulses with constant amplitude,
and b = d in (4), because θ ≡ τ , giving

αs = 1 − d

2
, α = 0. (6)

These are a special kind of process with very interesting
properties that have been observed in several experiments
with systems as quantum dots and liquid crystals [25]. In the
classification by their spectral exponents [26], they belong
to the stationary fractal (SF) class. They are stationary in a
weak sense, since their variance is constant with the size T

(α = 0) but their correlation depends not only on the time dif-
ference. They are fractals (αs > 0), but not self-affine (αs �= α).
Therefore, they do not have ergodic properties. Another in-
teresting property is that their power spectra do not saturate
at low frequencies, however they hold with the condition of
finite total power, explaining the cutoff paradox of 1/f noise
[25,30]. In Fig. 1, a graphical representation of some of these
properties is shown for the case d = 2. Note that this is a limit
case, αs = 0,α = 0, which is in the frontier between being
noise or fractal (αs = 0). It exhibits a perfect 1/f shape, but,
as indicated in the spectral scaling form (1), its spectrum has
logarithmic corrections with T as corroborated in Fig. 1(b).

Figure 1(a) shows that the shape of the pulse is irrelevant
for low frequencies. The renewal process of Figs. 1(a) and 1(b)
follows a complete power law while in those of Figs. 1(c)
and 1(d) the distribution is truncated at a given τc. The effect of
truncation, as shown in Figs. 1(c) and 1(d), is the appearance of
a cutoff frequency fc in the spectra. The spectral scaling holds
simply substituting the size T with the corresponding cutoff
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FIG. 2. Upper panel: Random (down, red) and correlated (up,
blue) series of residence times distributed following a power law
P (τ ) ∼ τ−2. Lower panel: PSDs of the corresponding hopping pro-
cesses averaged over 1000 samples. The 1/f shape is robust against
correlations.

time Tc = 1/fc [Fig. 1(d)]. This analysis is important because
spectra obtained in real experiments usually show 1/f shape
in some range of frequencies. Below this range, saturation or
crossover to other behaviors is possible. Note that a complete
spectral analysis in this case involves sizes smaller than Tc, and
in real situations this is usually a small range to find a scaling
law. Then a joint analysis of a standard spectral method, giving
the αs exponent, with the distribution of residence times with a
power law with exponent −2(1 − αs), would indicate that the
process is in this class.

C. Correlated pulses

Typical series of correlated pulses that appear in the lit-
erature exhibit short-range inter-pulse distributions, usually
Gaussian, with long-time correlations [26]. This kind of time
series is classified, according to spectral properties, in the
so-called class of pure 1/f processes [26]. Their PSD presents
a pure 1/f shape (αs = 0) and the global exponent α is always
negative and depending on the correlation. For a correlation of
random walk type, α = −1/3. These kinds of processes have
been frequently used in the literature as models of systems
whose fluctuations exhibit 1/f noise [36]. However, they are
not stationary and consequently they cannot be good models
for many physical systems, including electronic and photonic
devices. In fact, what we observe in our analysis of fluctuations
in the intensity of VCSELs is that the origin of the observed
1/f noise of our hopping process comes from other types of
processes that are stationary (at least in a weak sense), α = 0,
their residence time distribution follows a power law, and they
are correlated forming clusters of uniform residence times.

For the sake of illustration, we plot in Fig. 2 two residence
time series whose probability density follows a power-law
distribution P (τ ) = τ−2, with τ > 1. One of the series has
its times distributed randomly, while in the other, with the

same values, they are grouped forming clusters. These clusters
are formed separating in intervals residence times longer or
shorter than one given threshold. Within each interval, the
distribution of residence times is random. Besides the plot
of series, we show the corresponding PSD of the normalized
hopping process. We can see that the effect of the introduced
quasiperiodic oscillations is the existence of a wide peak. But
the important result is that the 1/f original shape remains. So,
one can expect that in a more general case, while correlations
in the residence time series are of short range, the scaling of the
uncorrelated case (6) continues being valid. A background line
appears in the spectra given by this scaling with superimposed
peaks accounting for the short-range correlation. This is what
we are going to check in our signals.

III. EXPERIMENTAL RESULTS

A detailed description of the experimental setup used in this
work can be found in [5]. In essence we have a tunable master
laser that injects the parallel polarized light into the slave laser
(VCSEL) through an optical circulator. The threshold current
of the VCSEL at 298 K is Ith = 1.66 mA, and this temperature
is kept constant in the experiment, as is the bias current Ibias =
5.0 mA. In these conditions, the device emits in a linearly
polarized single transverse mode at λ = 1541.82 nm, with an
orthogonal polarization mode, which is shifted by 33.36 GHz
toward the high frequencies with a side mode suppression ratio
of 36 dB. The optical injection is characterized by its strength
Pi and its frequency detuning νi , defined as the difference
between the frequency of the injected light and that of the
free-running lasing mode. As shown in Fig. 2 of [7], several
states involving the two linear polarization modes can be
obtained for a fixed value of the detuning (νi = 0.9 GHz)
and varying the injection level. Our experiment of hopping
involves two states: one is a periodic dynamics (P1), similar to
that illustrated in Figs. 2(a) and 2(b) of [7], while the other is a
recently found state (IL+PS) [4], similar to the state shown in
Figs. 2(e) and 2(f) of [7], that is a fixed point. Figure 3 shows the
power of the orthogonal polarization signal for three different
optical injection conditions. The P1 solution is characterized
by oscillations of the power in the parallel polarization with a
frequency close to the relaxation oscillation frequency while
the power of the orthogonal polarization is constant and close
to zero. In Fig. 3, only the orthogonal polarization power is
shown, hence the P1 solution appears when the signal fluctuates
around the zero value.

As is observed in Fig. 3, three kinds of hopping processes
occur between these two states. In case (a), residence times
of the P1 state {τ1} exhibit strong variations. In the parameter
space this corresponds to points close to the limit with the
stability zone of P1. The same strong variation area is observed
in case (c) but now for the IL+PS state. Parameters are now
close to the limit with the stability zone of the IL+PS state.
In (b), a standard behavior of a bistable system with noise
is observed. The time residence distribution of both states is
normal [7].

Concerning the coherence of signals, case (b) seems almost
periodic, and then, assuming that fluctuations are driven by an
external noise that cannot be controlled, we can say that this
is a case of coherence enhancement. If one had control of the
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FIG. 3. Experimental time traces of the orthogonal polarization signal corresponding to the P1 & IL+PS dynamics (a)–(c) and the zoomed
parts of the time series (d)–(f). The system is in the P1 (IL+PS) state when the signal is small (large). The bias current is Ibias = 5 mA. Left
panel: νi = 0.8 GHz, Pi = 48.01 μW. Center panel: νi = 0.9 GHz, Pi = 53.83 μW. Right panel: νi = 1.1 GHz, Pi = 64.71 μW.

noise intensity, it would be a case of coherence resonance [8].
The other two cases present a certain analogy with the on-off
intermittent phenomenon [35] where the laminar state (off) is
P1 or IL+PS, respectively, in (a) and (c).

To study the hopping process, it is convenient to assign
mean values I1 and I2 to the intensity in each state, ignoring
interstate fluctuations. Then we have a time series with values
I1,I2 that can be represented by the series of residence times
{τ1i} and {τ2i}. Furthermore, since our analysis is based on
spectral properties, we can just consider the normalized series
{yi = 2

I1−I2
(Ii − I1+I2

2 )}, where the hopping states are, respec-
tively, 1 and −1 and the spectra become multiplied by a
constant value Sy(f ) = 4

(I1−I2)2 SI (f ) with f > 0. In this way,
the spectral analysis is focused on residence times.

IV. HOPPING FLUCTUATIONS WITH
INTERMITTENT BEHAVIOR

The residence time distribution of τ2 for the injection
conditions of Fig. 3(c), which is close to the region in which
only IL+PS is stable, is shown in Fig. 4. We have obtained
24 consecutive 2.0-s-long time traces with a 0.1 μs sampling
time. The corresponding 24 residence time distributions are
plotted with colored dashed lines while the overall distribution
is plotted with diamonds. Close to the stability zones of the
states P1 and IL+PS, the asymmetry of the residence times
τ1 and τ2 is, respectively, very strong [7]. In fact, as shown
in Fig. 4, the residence time of one of the states becomes
distributed as a clear power law close to τ−2

2 , whereas the other
follows a non-heavy-tail distribution [Fig. 5(c)]. The result in
the PSD of the hopping process is identical regardless of which
state, the upper or lower, shows the heavy-tail distribution. For
the sake of simplicity, we focus our analysis on case (c) of Fig. 3

always using a normalized description of the series. Moreover,
we take as reference the exponent −2 in the power law of the
distribution of residence times. Note that as shown in Fig. 4,
this exponent is very close to −2. The PSD in this case, as
seen in Fig. 6, shows a background line with 1/f shape in a
determined range of frequencies and with a rich structure of
peaks.

Our aim in this paper is to identify the class of our hopping
process. Unfortunately, a complete spectral analysis is not
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FIG. 4. Log-log plot of the probability density of experimental
residence times P (τ2) for each of the 24 samples (dot colored curves)
and their average (diamond curve) with its fitted line in the interval
(10−5,10−2) s (thick dashed line) showing a decay, P (τ2) ∼ τ−d

2 , with
d = 1.85. Thin dashed lines are reference lines to guide the eye. Inset:
fitted exponents of the probability density of each of the individual
samples, giving d = 1.83 ± 0.17.

042105-5



RODRÍGUEZ, COARER, AND VALLE PHYSICAL REVIEW E 97, 042105 (2018)

0 200 400 600 800

i

0
4
8

12

ε 2

10-6 10-5 10-4 10-3 10-2 10-1

τ,ε (s)

10-2
100
102
104
106

P0
4
8

12

τ 2
 (m

s)

10-4 10-3 10-2 10-1 100

f

10-12

10-10

10-8

10-6

S τ
,ε
(f

)

101 102 103

f’ (Hz)
10-13

10-12

10-11

10-10

S τ
(f

’)

(a)

(b)

(c)

(d)

(e)

FIG. 5. (a) Residence time series {τ2i} of the hopping process
observed in case (c) of Fig. 3, and (b) synthetically generated {ε2i}.
(c) Probability density of the residence time series: τ2 (blue circles),
τ1 (cyan squares), ε2 (dashed line, red), and ε1 (black continuous line).
(d) Spectral densities of the four residence time processes, Sτ2 (upper,
blue), Sτ1 (lower, violet), Sε2 (upper,red), and Sε1 (lower, brown). Sτ

spectra are averaged over 24 samples while Sε spectra are averaged
over 1000. (e) Detail of the peaked structure of the spectrum of τ2

in frequency units of f ′ = f/〈τ 〉 = f ×3.7 kHz. The dashed line
corresponds to the expected most prominent peak aroundf = 100 Hz.

possible for two reasons. On the one hand, the frequency
range in which the 1/f shape is observed is too small and full
of structural peaks that remain when the number of samples
increases. On the other hand, the expected shift of spectra
is logarithmic with the size T . Although in synthetic series
this analysis is possible, as seen in Figs. 1(b) and 1(d), we
have seen that, even with a great number of samples, the shift
in the spectra cannot be confirmed. Therefore, the analysis

FIG. 6. PSD of the hopping process observed in the case (c) of
Fig. 3 (blue spectrum) compared with that of a synthetically generated
hopping process with the same distribution of residence times but in a
random sequence (red spectrum). In both cases, the number of samples
is 24.

should be performed with the local exponent of the spectra
αs and the exponent of the residence time distribution. In
Fig. 5(a), we plot a typical series of residence times of the
state with a power-law distribution {τ2i}. In the same panel,
for the sake of comparison, a time series with the same
distribution but randomly sequenced is also plotted {ε2i}. The
time series have the same probability density [see Fig. 5(c)]
but different correlations. Note that the time residence series
show clusters of high values similar to those depicted in
Fig. 2 but with a richer structure. So, one can expect that, as
occurs in this case, the spectra of the corresponding hopping
processes keep their 1/f shape, with a superimposed peaked
structure as a result of correlations. To confirm this, we have
compared the experimental series of the hopping process with
others synthetically generated, keeping the same distribution
in the residence times of both states, but with random and
independent sequences. A graphical description of the results
is shown in Fig. 5, where probability densities and spectra
of residence times of experimental and synthetic series are
plotted. For the generated series of residence times, we have
used distributions that are uniform for a small first interval
and power law with exponent −2 in the second one, fitting the
experimental distribution, as shown in Fig. 5(c). Correlations
are accounted for by means of PSDs [Fig. 5(d)]. Finally, the
PSDs of the hopping process for the experimental and synthetic
series are presented in Fig. 6.

Note that the differences between spectra are due to corre-
lations between residence times of the same state and also
between residence times of distinct states. The correlation
index between time residence series of distinct states {τ1i} and
{τ2i} (c = −0.89) is quite significant. It can affect the peaked
structure, but it is irrelevant for the 1/f shape. This is because
one can consider pulses composed of two consecutive states
forming steps, and take into account the fact that the shape of
the pulses is irrelevant in the short frequency components of
the spectral density.

Comparing the spectrum of residence times [Fig. 5(e)] with
the spectrum of the hopping process (Fig. 6), one sees that
the peaked structure becomes very amplified in this latter case.
Note that the observed periodicity of around 40 units in the time
residence series of Fig. 5(a) appears in the spectrum of Fig. 6 as
a set of peaks around a frequency of 100 Hz. Another prominent
peak of 104 Hz appearing in the spectrum of intensities (Fig. 6)
is not visible in Figs. 5(d) and 5(e). This peaked structure with
prominent peaks at 102 and 104 Hz is the signature of the
external noise affecting our system.

V. FLUCTUATIONS OF THE RESIDENCE TIME PROCESS
IN THE COHERENCE ENHANCEMENT ZONE

In the coherence enhancement zone, the residence time
process of states {τ1i} and {τ2i} becomes similar. Now their
probability densities do not follow a power law [Fig. 7(d)], but
the spectrum of the residence times (Fig. 8) and the spectrum
of the hopping process (Fig. 9) continue exhibiting 1/f shape.
So the origin of these fluctuations is now distinct from that
observed in the preceding section. Note that, as shown in Fig. 8,
all the unusual fluctuations that appear in the light intensity of
the previous section now appear in the time residence process.
The spectrum of residence times Sτ (f ) that appears in Fig. 8
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FIG. 7. (a) Time residence series {τ2i} of the hopping process
observed in case (b) of our experiment. (b) Time residence series
{ε2i} obtained synthetically with the model shown in the text.
(c) Method for obtaining the interpulse time series {hi} for a given
threshold. (d) Probability density of residence times of each one of
the states: τ2 (green squares), τ1 (violet circles), and their combined
process (dashed black line). (e) Probability density of residence
times of experimental (blue solid line) and synthetic (red solid line)
signals. (f) Probability density of interpulse time series {hi} for
several thresholds: 3.0 (blue circles), 2.8 (violet squares), 2.6 (green
diamonds), and 2.4 (brown triangles).

is very distinct from the one shown in Figs. 5(d) and 5(e). In
fact, it is very similar in shape to the spectrum of the hopping
process in Fig. 6.

It would be interesting to know the origin of this behavior,
but at this moment we do not have a proper model to explain it.
What we can do is to classify the type of noise and understand
why the 1/f shape appears in the spectrum of the residence
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FIG. 8. PSDs of the time residence processes {τ2} observed in the
case (b) of Fig. 3 (blue spectrum) compared with that of a synthetically
generated process with the same distribution of interpulse times
but in a random sequence (red spectrum). To compare with PSDs
of the hopping process, the frequency is taken as f ′ = f/〈τ2〉 =
0.4×f MHz. The number of samples is 24 in both cases.
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FIG. 9. PSDs of the hopping processes generated from the time
residence series of the previous figure.

times Sτ (f ). To this end, we first observe the shape of the time
residence series of one of the states. Figure 7(a) shows that
its behavior is completely distinct from that in the previous
section. At short times one sees an alternating time series,
and at longer times one sees a series of pulses. To get its
interpulse time distribution, we take the intervals between
the intersection of the series with a given threshold as illustrated
in Fig. 7(c). The probability density of such intervals is plotted
in Fig. 7(f). We can see a perfect power law, P (h) ∼ h−2, in
up to four decades when taking the highest threshold. For
lower thresholds the power law remains, but in fewer decades.
Therefore, at this time scale we can say that this is a series of
pulses whose interpulse distribution follows a power law with
exponent −2. And as we have shown, independently of the
shape of pulses and correlations, the background line in the
spectral density should exhibit a 1/f shape.

To corroborate this result again, we have generated, as in
the previous section, a synthetic time series with the same
characteristics as the experimental series but in uncorrelated
sequences. To emulate simultaneously the alternating behavior
in short times with the pulse series observed at long times,
we take two series of exponential pulses, {s+

i } and {s−
i }, with

an intertime distribution given by the truncated power law
of Fig. 7(f), one with larger and positive amplitude A+ and
the other with smaller and negative amplitude a−. The short
behavior is accounted for by taking the values of one of the
series with probability p0 and adding a Gaussian random noise
with intensity D0. The obtained series {ε0i} is finally adjusted
to have the same spectral area doing the mean τ and deviation
στ identical to those of the experimental series,

εi = στ

σε0

(ε0i − ε0) + τ .

Simulations show that all synthetic series obtained in this way
show a similar 1/f shape in their spectra, since the relevant
parameters are the exponent and cutoff of the interpulse
time distribution. However, their probability densities P (ε)
are different. To get a probability density similar to the one
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obtained in experiments [see Fig. 7(e)], we have used the
following values of the free parameters: D0 = 0.5, A+ = 1,

a− = −0.25. As shown in Fig. 8, the 1/f shape in both
spectra, experimental and synthetic, coincide in intensity and
in frequency ranges. The peaked structure superimposed in the
experimental spectrum is then due to correlations in the time
residence process.

Finally, in Fig. 9 we plot the PSDs of their corresponding
hopping processes. The origin of the 1/f shape observed in
the figure now comes from the correlation of the residence
time series (Fig. 8), in clear contrast with the intermittent
case, where it comes from the power-law character of their
distribution. As in previous cases, synthetic series show the
same 1/f shape without a peaked structure. The upward shift
of the spectra of synthetic series in the 1/f zone of Fig. 8 is due
to the assumption of equal variance between the experimental
and synthetic series of residence times, which gives spectra
with the same area. This shift is maintained in the spectra of
hopping processes, as shown in Fig. 9.

VI. DISCUSSION AND CONCLUSIONS

Light intensity fluctuations of VCSELs subject to parallel
optical injection show an unusual behavior in some parameter
space regions. We have analyzed the region in which two states,
the so-called IL+PS, and one periodic process, P1, coexist. As
a consequence of this coexistence, a light intensity hopping
process between the two states is observed. Fluctuations of
this process are analyzed either directly, by means of PSDs
of the light intensity, or indirectly through the statistics of
residence time series {τ1i} and {τ2i}. Working in a broad range
of frequencies between 1 and 108 Hz, we observe three clearly
distinct processes. In one of the processes, the hopping is close
to a process of coherence enhancement, in which the residence
time series of the two states are statistically regular (not heavy
tails). In the other two processes, away from this point, one
of the residence time series, either {τ1i} or {τ2i}, presents a
power law in its distribution, and the PSD shows a 1/f shape
with a superimposed peaked structure. In the first case, the
1/f shape is observed in both the PSD of the hopping process
and also the PSD of the residence time process. To analyze
these experimental results, some considerations of the known
analytical theory have to be explored.

It is known that a hopping process whose residence time
process is renewal and distributed according to a power law,
τ−d , exhibits a PSD whose spectral exponent is determined

by d, αs = 1 − d/2. This result can be generalized to any
series of pulses whose width is proportional to its interpulse
time. In this paper, we address the question of how robust this
scaling is against cutoffs in the distribution of residence (or
interpulse) times, and short-range correlations of these times.
We show how both effects affect the frequency range of the
1/f shape and the existence of a peaked structure accounting
for correlations, respectively. These results are very useful for
analyzing real signals where both effects are usually present,
as is our case.

With these results in mind, we conclude that the origin of the
1/f shape observed in all cases is connected with the power
law in the distribution of either residence times (in the case
of intermittent behavior) or interpulses of the residence time
series (in the coherence enhancement process). Our results
show that we are in the presence of 1/f noise of the SF class.
To corroborate these results, we generate synthetic series with
the same residence time (interpulse time) distributions but in
random sequences, and we compare the obtained PSDs. A
very similar 1/f shape without a peaked structure is obtained,
confirming our hypotheses.

It is worth remarking that there are several character-
istics that differentiate our results from others with on-off
intermittency in lasers. Our experiment shows a symmetry
in the behavior between the two states IL+PS and P1 that
does not correspond with the distinct character of both (fixed
point and limit cycle). Furthermore, there are long intervals
exhibiting power laws (up to three decades) in the residence
time distributions and a value of exponents of these power laws
close to −2 instead of the typical −3/2 observed in on-off
intermittencies. So, although under these conditions we can
observe a true on-off intermittency, that is, Hopf bifurcation
driven by noise, the above-mentioned characteristics indicate
that there is something more. The existence of a peaked
structure in the PSD denotes the strong influence of external
noise, but we do not have enough elements to explain this
situation. Experiments with better control of the sources of
noise could clarify this point, but this is beyond the scope of
this work and it requires further investigation.
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