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Quantum gas in the fast forward scheme of adiabatically expanding cavities:
Force and equation of state
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With use of the scheme of fast forward which realizes quasistatic or adiabatic dynamics in shortened timescale,
we investigate a thermally isolated ideal quantum gas confined in a rapidly dilating one-dimensional (1D) cavity
with the time-dependent size L = L(t). In the fast-forward variants of equation of states, i.e., Bernoulli’s formula
and Poisson’s adiabatic equation, the force or 1D analog of pressure can be expressed as a function of the velocity
(L̇) and acceleration (L̈) of L besides rapidly changing state variables like effective temperature (T ) and L itself.
The force is now a sum of nonadiabatic (NAD) and adiabatic contributions with the former caused by particles
moving synchronously with kinetics of L and the latter by ideal bulk particles insensitive to such a kinetics.
The ratio of NAD and adiabatic contributions does not depend on the particle number (N ) in the case of the
soft-wall confinement, whereas such a ratio is controllable in the case of hard-wall confinement. We also reveal
the condition when the NAD contribution overwhelms the adiabatic one and thoroughly changes the standard
form of the equilibrium equation of states.
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I. INTRODUCTION

The equation of states plays an important role in thermody-
namics and statistical mechanics. In constructing the equilib-
rium equation of states, the motion of the wall of a gas container
(cylinder, cavity, billiard, etc.) is assumed to be quasistatic. In
the Carnot’s thermodynamic cycle [1–3], the system undergoes
very slowly a series of different thermodynamic states and
performs work on its surroundings. To make the theory of heat
engines realistic, however, one must evaluate the effect of a
rapid wall motion of gas containers on the equation of states.
In the context of a classical gas, Curzon and Ahlborn [4] and
others [5–8] investigated a finite-time heat engine. However,
little attention has been paid to the nonequilibrium equation of
states due to a rapidly moving piston.

In the case of the Otto cycle undergoing alternately isen-
tropic and isochore processes, the finite-time heat engine is
being investigated for both single- and many-quantum particle
systems in the case of the soft-wall confinement with a
harmonic trap with time-dependent frequency [9–13]. But the
researchers investigated neither nonadiabatic force nor the
nonequilibrium equation of states.

In the equilibrium equation of states for an ideal classical
gas (Boltzmann gas), the pressure (P ), volume (V ), and
temperature (T ) are quasistatic state variables and satisfy
Boyle-Charles’ law (BCL) and Poisson’s adiabatic equation
(PAE) in the isothermal and thermally adiabatic processes,
respectively [2,3]. BCL is a special limit of the Bernoulli’s
formula (BF) bridging between the pressure (P ) and internal
energy (U ) for both quantum and classical gas in the cavity.
In the d-dimensional cavity, BF is given by PV = 2U

d
, which

may be rewritten as FL = 2U with use of the force (F ) and the
length (L) in the case of the one-dimensional (1D) cavity. In
the thermally adiabatic process, PAE is given by PV (d+2)/d =

const., irrespective of classical and quantal systems. It becomes
FL3 = const. in 1D cavity.

How will the above laws be innovated when the motion of a
gas container would not be quasistatic? While the perturbative
analyses of a quantum gas [14,15] were attempted in the linear
response region, i.e., in the case of a piston with a small
but finite velocity, the nonadiabatic contribution proved not
to affect the equilibrium equation of states seriously. But, in
the case of a rapid piston, we can expect a dramatic role
of nonadiabatic contributions. The statistical treatment of a
quantum gas is very difficult in the general case of a rapid
piston where the temporal change of state variables is far from
being quasistatic. However, the fast forwarding of adiabatic
control [16] of the confinement guarantees no transition among
different quantum states, making such treatment feasible, and
one can elucidate the exact relation among the rapidly changing
state variables.

Masuda and Nakamura [17–19] proposed a way to accel-
erate quantum dynamics with use of a characteristic driving
potential determined by the additional phase of a wave func-
tion. See also a scheme for accelerating quantum tunneling
dynamics [20]. This kind of acceleration is called the fast
forward, which means to reproduce a series of events or
a history of matters in a shortened timescale, like a rapid
projection of movie films on the screen.

The fast forward theory applied to quantum adiabatic
dynamics [18,19,21] needs no knowledge of spectral properties
of the system and is free from the initial and boundary value
problem. Therefore it constitutes one of the promising ways of
shortcuts to adiabaticity (STA) devoted to tailor excitations in
nonadiabatic processes [22–27]. Recent interesting application
of the fast forward theory can be found in speedup of Dirac
dynamics [28], dynamical construction of classical adiabatic
invariant [29], and quasiadiabatic spin dynamics of entangled
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states [30]. It is now timely to investigate the fast forward of the
adiabatically dilating cavities which contain the ideal quantum
gas and to find its nonequilibrium equation of states.

In this paper, confining ourselves to the thermally isolated
isentropic process where dynamics is unitary and the von
Neumann entropy is constant, we shall investigate an ideal 1D
quantum gas (Fermi gas) in the fast forward of the adiabatically
dilating cavities. Section II is devoted to a brief summary of
the latest variant [21] of the fast forward theory. In Sec. III, we
derive the fast forward Hamiltonian for the harmonic oscillator
with time-dependent frequency, to be used for the soft-wall
confinement. In Sec. IV, we define the force operator due to
a quantum gas in the case of rapidly expanding or contracting
cavities. In Sec. V, we shall solve the von Neumann equation,
evaluate the statistical mean of the force operator, and obtain
fast forward variants of Bernoulli’s formula and Poisson’s
adiabatic equation. We study the low-temperature quantal
regime as well as the high-temperature quasiclassical regime
and give physical interpretation of the results. Section VI is
concerned with an analogous study in the case of the hard wall
confinement. Summary and discussions are given in Sec. VII.

II. FAST FORWARD OF ADIABATIC DYNAMICS

We shall sketch the scheme of fast forward of adiabatic
control of 1D confined states. Our strategy is as follows:
(i) A given confining potential V0 is assumed to change
adiabatically and to generate a stationary state ψ0, which is
an eigenstate of the time-independent Schrödinger equation
with the instantaneous Hamiltonian. Then both ψ0 and V0

are regularized so that they should satisfy the time-dependent
Schrödinger equation (TDSE); (ii) taking the regularized state
as a standard state, we shall change the time scaling with use of
the scaling factor α(t), where the mean value ᾱ of the infinitely
large time scaling factor α(t) will be chosen to compensate
the infinitesimally small growth rate ε of the quasiadiabatic
parameter and to satisfy ᾱ × ε = finite.

A. Quasiadiabatic dynamics

Consider the standard dynamics with a deformable trapping
potential whose shape is characterized by a slowly varying
control parameter R(t) given by

R(t) = R0 + εt, (2.1)

with the growth rate ε � 1, which means that it requires a very
long time T = O( 1

ε
), to see the recognizable change of R(t).

The time-dependent 1D Schrödinger equation (1D TDSE) for
a charged particle is

ih̄
∂ψ0

∂t
= − h̄2

2m
∂2
xψ0 + V0(x,R(t))ψ0, (2.2)

where the coupling with electromagnetic field is assumed to
be absent. The stationary bound state φ0 satisfies the time-
independent counterpart given by

Eφ0 = Ĥ0φ0 ≡
[
− h̄2

2m
∂2
x + V0(x,R)

]
φ0. (2.3)

Then, with use of the eigenstate φ0 = φ0(x,R) satisfy-
ing Eq. (2.3), one might conceive the corresponding time-

dependent state to be a product of φ0 and a dynamical factor
as

ψ0 = φ0(x,R(t))e− i
h̄

∫ t

0 E(R(t ′))dt ′ . (2.4)

As it stands, however, ψ0 does not satisfy TDSE in Eq. (2.2).
Therefore we introduce a regularized state,

ψ
reg
0 ≡ φ0(x,R(t))eiεθ(x,R(t))e− i

h̄

∫ t

0 E(R(t ′))dt ′

≡ φ
reg
0 (x,R(t))e− i

h̄

∫ t

0 E(R(t ′))dt ′ , (2.5)

together with a regularized potential,

V
reg

0 ≡ V0(x,R(t)) + εṼ (x,R(t)). (2.6)

The unknown θ and Ṽ will be determined self-consistently so
that ψ

reg
0 should fulfill the TDSE,

ih̄
∂ψ

reg
0

∂t
= − h̄2

2m
∂2
xψ

reg
0 + V

reg
0 ψ

reg
0 , (2.7)

up to the order of ε.
Rewriting φ0(x,R(t)) with use of the real positive amplitude

φ0(x,R(t)) and phase η(x,R(t)) as

φ0(x,R(t)) = φ̄0(x,R(t))eiη(x,R(t)), (2.8)

we see θ and Ṽ to satisfy

∂x(φ̄2
0∂xθ ) = −m

h̄
∂Rφ̄2

0 , (2.9)

Ṽ

h̄
= −∂Rη − h̄

m
∂xη · ∂xθ. (2.10)

Integrating Eq. (2.9) over x, we have

∂xθ = −m

h̄

1

φ̄2
0

∫ x

∂Rφ̄2
0dx ′, (2.11)

which is the core equation of the regularization procedure. The
problem of singularity due to nodes of φ̄0 in Eq. (2.11) can be
overcome, so long as one is concerned with the systems with
scale-invariant potentials (see Sec. III).

B. Exact fast forwarding with use of magnified timescale

We shall now accelerate the quasiadiabatic dynamics of ψ
reg
0

in Eq. (2.5), by applying the electromagnetic field.
We first introduce the fast forward version of ψ

reg
0 as

ψ
(0)
FF (x,t) ≡ ψ

reg
0 (x,R(	(t)))

≡ φ
reg
0 (x,R(	(t)))e− i

h̄

∫ t

0 E(R(	(t ′)))dt ′ , (2.12)

with

R(	(t)) = R0 + ε	(t), (2.13)

where 	(t) is the future or advanced time,

	(t) =
∫ t

0
α(t ′) dt ′, (2.14)

and α(t) is a magnification scale factor defined by α(0) = 1,
α(t) > 1 (0 � t � TFF ), α(t) = 1 (t > TFF ). Suppose T to be
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a very long time to see a recognizable change of the adiabatic
parameter R(t) in Eq. (2.1), and then the corresponding change
of R(	(t)) is realized in the shortened or fast forward time TFF

defined by

T =
∫ TFF

0
α(t)dt. (2.15)

The explicit expression for α(t) in the fast forward range
(0 � t � TFF ) is

α(t) = ᾱ − (ᾱ − 1) cos

(
2π

T/ᾱ
t

)
, (2.16)

where ᾱ is the mean value of α(t) and is given by ᾱ = T/TFF

[17–19].
Then let’s assume ψ

(0)
FF to be the solution of the TDSE for a

charged particle in the presence of gauge potentials, A
(0)
FF (x,t)

and V
(0)
FF (x,t),

ıh̄
∂ψ

(0)
FF

∂t
= HFF ψ

(0)
FF

≡
(

1

2m

(
h̄

i
∂x − A

(0)
FF

)2

+ V
(0)
FF + V

reg
0

)
ψ

(0)
FF ,

(2.17)

where, for simplicity, we employ the prescription of a positive
unit charge (q = 1) and the unit velocity of light (c = 1). The
driving electric field is given by

EFF = −∂A
(0)
FF

∂t
− ∂xV

(0)
FF . (2.18)

Substituting Eq. (2.12) into Eq. (2.17), we find φ
reg
0 to satisfy

ih̄
∂φ

reg
0

∂t
= 1

2m

(
h̄

i
∂x − A

(0)
FF

)2

φ
reg
0

+ (
V

(0)
FF + V

reg
0 − E

)
φ

reg
0 , (2.19)

where V
reg

0 ≡ V reg(x,R(	(t))), i.e., the advanced-time variant
of Eq. (2.6). The dynamical phase in Eq. (2.12) has led to the
energy shift in the potential in Eq. (2.19).

Rewriting φ
reg
0 in terms of the amplitude φ̄0 and phases

η + εθ as

φ
reg
0 ≡ φ̄0(x,R(	(t)))ei[η(x,R(	(t)))+εθ(x,R(	(t)))], (2.20)

and using Eq. (2.20) in Eq. (2.19), we find A
(0)
FF of O(εα) and

V
(0)
FF consisting of terms of O(εα) and O((εα)2).

Now, applying our central strategy to take the limit ε → 0
and ᾱ → ∞ with εᾱ = v̄ being kept finite, we can reach the
issue (for details, see [21]):

A
(0)
FF = −h̄v(t)∂xθ,

V
(0)
FF = − h̄2

m
v(t)∂xθ · ∂xη − h̄2

2m
(v(t))2(∂xθ )2 − h̄v(t)∂Rη,

(2.21)

where, with use of TFF (= T
ᾱ

= O( 1
εᾱ

)) = finite,

v(t) ≡ lim
ε→0,ᾱ→∞

εα(t) = v̄

(
1 − cos

2π

TFF

t

)
,

R(	(t)) = R0 + lim
ε→0,ᾱ→∞

ε	(t)

= R0 +
∫ t

0
v(t ′)dt ′

= R0 + v̄

(
t − TFF

2π
sin

(
2π

TFF

t

))
,

for 0 � t � TFF , (2.22)

and

v(t) = 0, R(	(t)) = R0 + v̄TFF for t > TFF . (2.23)

v(t) and its mean v̄ stand for the timescaling factors coming
from α(t) and ᾱ, respectively.

In the same limiting case as above, ψ
(0)
FF is explicitly given

by

ψ
(0)
FF = φ̄0(x,R(	(t)))eiη(x,R(	(t)))e− i

h̄

∫ t

0 E(R(	(t ′)))dt ′ . (2.24)

C. Gauge transformation and fast forwarding
with the extra phase factor

While the scheme so far guarantees the fast forward of both
the amplitude and phase of wave functions, it is now convenient
to construct a AFF -free variant of the scheme. Let us introduce
the gauge transformation of Eqs. (2.21), and (2.24) as follows:

ψ
(0)
FF → ψFF e−if ,

V
(0)
FF → VFF + h̄∂t f , (2.25)

A
(0)
FF → AFF − h̄∂x f ,

where the phase f defined so as to cancel A
(0)
FF in Eq. (2.21)

and to make AFF = 0 is given by

f = v(t)θ (x,R(	(t))). (2.26)

θ and v(t) are available from Eq. (2.11) and Eq. (2.22), respec-
tively. This gauge transformation leads to the fast forward state
with the extra phase as

ψFF = φ̄0(x,R(	(t)))eiη(x,R(	(t)))eiv(t)θ(x,R(	(t)))

× e− i
h̄

∫ t

0 E(R(	(s)))ds, (2.27)

which satisfies TDSE with a fast forward Hamiltonian HFF :

ih̄
∂ψFF

∂t
= HFF ψFF ≡

(
− h̄2

2m
∂2
x + V0 + VFF

)
ψFF .

(2.28)

Here V0 = V0(x,R(	(t))) and VFF is given by

VFF = − h̄2

m
v(t)∂xθ∂xη − h̄2

2m
(v(t))2(∂xθ )2

− h̄v(t)∂Rη − h̄v̇(t)θ − h̄(v(t))2∂Rθ. (2.29)

Equations (2.27), (2.28), and (2.29) are the issue of
the fast forward theory. VFF is responsible for the driving
electric field EFF = −∂xVFF , and guarantees the fast forward
state in Eq. (2.27). For our study below, it is convenient
to rewrite the above issue with use of quantum numbers.
Let’s rewrite eigenstates and eigenvalues of Eq. (2.3) as
|n(R)〉(0) and En(R), respectively. Then ψFF in Eq. (2.27)
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is expressed as |n〉 ≡ |n(R(	(t)))〉 ≡ |n(R(	(t)))〉(0)

eiv(t)θ(x,R(	(t)))e− i
h̄

∫ t

0 En(R(	(s)))ds , and TDSE in Eq. (2.28)
as ih̄|ṅ〉 = HFF |n〉. Finally, {|n〉} satisfies the completeness
condition

∑∞
n=0 |n〉〈n| = ∑∞

n=0 |n〉(0)(0)〈n| = I. These n-
dependent variants of the issue of the fast forward theory will
be repeatedly used in the following sections.

III. ACCELERATION OF ADIABATIC CONTROL
OF SOFT-WALL CONFINEMENT

In this section, we shall investigate the harmonic oscillator
with time-dependent frequency and obtain its fast forward
Hamiltonian HFF to be used in the statistical treatment of a
confined quantum gas.

A. Scale-invariant bound systems in the context
of fast forwarding

Consider the original potential controlled by the scale-
invariant adiabatic expansion and contraction [31–33], as given
by

V0 = 1

R2
U0

(
x

R

)
, (3.1)

where R is the adiabatic parameter as in Eq. (2.1). The
corresponding 1D eigenvalue problem for bound systems
yields ground and excited states whose normalized forms are
commonly given by

φ0 = 1√
R

h

(
x

R

)
, (3.2)

where h = h̄eiη with real amplitude h̄ and phase η. Then, with
use of a new variable X ≡ x

R
, Eq. (2.11) becomes

∂xθ = −m

h̄

R

|h̄(X)|2 ∂R

∫ X

|h̄(X′)|2dX′. (3.3)

Here the indefinite integral is used because the lower limit of in-
tegration is arbitrary. Noting ∂R = ∂X

∂R
∂

∂X
= − x

R2
∂

∂X
, Eq. (3.3)

reduces to

∂xθ = m

h̄

x

R

|h̄(X)|2
|h̄(X)|2 = m

h̄R
x. (3.4)

In the second equality of Eq. (3.4), we prescribed
limX→Xc

|h̄(X)|2
|h̄(X)|2 = 1 if h̄(X) will be h̄(Xc) = 0 at X = Xc.

From Eq. (3.4), one finds

θ = m

2h̄R
x2, ∂Rθ = − m

2h̄R2
x2. (3.5)

In the simple case that φ0 in Eq. (3.2) is real, i.e., η = 0, VFF

in Eq. (2.29) becomes

VFF = −mR̈

2R
x2, (3.6)

where R = R(	(t)), v(t) = Ṙ, and v̇(t) = R̈ in Eq. (2.22) are
used. VFF in Eq. (3.6) is nothing but the counter-diabatic
potential in the scale-invariant bound systems [32,33]. The

electric field is now given by

EFF = − ∂

∂x
VFF = mR̈

R
x. (3.7)

Thus the fast forward approach applied to the scale-invariant
bound systems is free from the problem of singularity caused
by nodes of eigenstates.

B. Harmonic oscillator with time-dependent frequency

Let us investigate a quantum harmonic oscillator with time-
dependent frequency, which constitutes a special bound sys-
tem with the scale-invariant potential. The original adiabatic
dynamics is described by

ih̄
∂

∂t
ψ0(x,R(t)) = H0(x,R(t))ψ0(x,R(t)) (3.8)

with

H0(x,R(t)) = − h̄2

2m
∂2
x + 1

2
mω2(R(t))x2. (3.9)

Here ω = ω(R(t)) is the frequency which varies slowly
through the adiabatic parameter R in Eq. (2.1). Comparing
V0 = 1

2mω2x2 in Eq. (3.9) with the scale-invariant expression
in Eq. (3.1), we see

R(t) = 1√
ω

. (3.10)

On the other hand, the effective size L(t) of the wave
function is obtained from the adiabatic eigenvalue problem
for the Hamiltonian in Eq. (3.9) and is given by

L(t) =
√

h̄

mω(t)
. (3.11)

Therefore R(t) is now read as L(t) up to the multiplication

factor
√

h̄
m

.
The adiabatic eigenvalue problem,

H0(x,L)φ = E(L)φ, (3.12)

gives the eigenvalue and eigenstate as

En =
(

n + 1

2

)
h̄ω(L),

φn =
(

mω(L)

πh̄

) 1
4

1

(2nn!)
1
2

e− mω(L)
2h̄

x2
Hn

((
mω(L)

h̄

) 1
2

x

)
,

(3.13)

with n = 0,1,2, . . .. Here Hn(·)s are Hermite polynomials.
Applying the result in Eq. (2.27) together with Eq. (3.5) and

v = L̇, the fast forward state is given by

ψFF = φn(x,L(	(t))ei m
2h̄

L̇
L
x2

e−(n+ 1
2 )i

∫ t

0 ω(L(	(t ′)))dt ′

≡ 〈x|n〉, (3.14)

which satisfies TDSE in Eq. (2.28). The fast forward Hamilto-
nian becomes

HFF = p2

2m
+ V0 + VFF , (3.15)
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with

V0 + VFF = 1

2
m

(
h̄2

m2

1

L4
− L̈

L

)
x2, (3.16)

where the general result in Eq. (3.6) is used.
The effective confining size L and the frequency ω are now

expressed as

L ≡ L(	(t)) = L0 +
∫ t

0
v(t ′)dt ′,

ω(L(	(t)))

ω0
≡

(
L0

L(	(t))

)2

. (3.17)

IV. FORCE OPERATOR

We now embark upon the statistical treatment of a quantum
gas (Fermi gas) of noninteracting particles confined in a
harmonic potential with its frequency being time dependent.
When the confined region is increased or expanded, the gas
system exerts a force on its outside. The force operator and
its statistical mean play an essential role in constructing the
equation of states. The force consists of both adiabatic and
nonadiabatic parts, when the temporal change of the confining
area is not quasistatic.

For the soft-walled confinement with a time-dependent
effective size L = L(	(t)) in Eq. (3.17), the fast forward
Hamiltonian HFF is explicitly given by Eqs. (3.15) and (3.16).
We now see the expectation of HFF as given by

〈ψFF |HFF |ψFF 〉, (4.1)

where |ψFF 〉 is a solution of TDSE in Eq. (2.28) with
Hamiltonian HFF .

The expectation of the force acting on the wall is obtained
by

〈F 〉 = − ∂

∂L
〈ψFF |HFF |ψFF 〉. (4.2)

Noting ∂
∂L

|ψFF 〉 = 1
L̇

∂
∂t

|ψFF 〉 = 1
ih̄L̇

HFF |ψFF 〉 and its Her-
mitian conjugate, Eq. (4.2) reduces to

〈F 〉 = −〈ψFF |∂HFF

∂L
|ψFF 〉. (4.3)

Hence the force operator is defined by

F̂ = −∂HFF

∂L
. (4.4)

However, the kinetic energy of HFF does not include L

explicitly. Therefore it is not obvious how to evaluate the force
operator directly by using Eq. (4.4).

To overcome this difficulty, we shall first make the time-
dependent canonical transformation related to the scale trans-
formation of both the coordinate x and amplitude of wave
function as

H = e−iU

(
HFF − ih̄

∂

∂t

)
eiU , (4.5)

where

U = − 1

2h̄
(x̂p̂ + p̂x̂) ln L = i

(
x

∂

∂x
+ 1

2

)
ln L. (4.6)

Similarly the amplitude of the wave function is scaled as

φ = e−iUψFF (x,t). (4.7)

Finally the Schrödinger equation is transformed to

ih̄
∂

∂t
φ = Hφ, (4.8)

with the new Hamiltonian,

H = − h̄2

2m

1

L2

∂2

∂x2
+ ih̄

L̇

L
x

∂

∂x

+ ih̄

2

L̇

L
+ 1

2
m

(
h̄2

m2

1

L2
− L̈L

)
x2. (4.9)

Taking L derivative of H , we can rigorously define the force
operator in the transformed space as

F = −∂H

∂L

= 1

mL3
p̃2

x − L̇

2L2
(x̃p̃ + p̃x̃) + 1

2
m

(
h̄2

m2

2

L3
+ L̈

)
x2.

(4.10)

Now, carrying out the inverse canonical transformation
(xL → x, etc.), we have the force operator expressed in the
original space as

F̂ = eiUFe−iU

= p̂2

mL
− L̇

2L2
(x̂p̂ + p̂x̂) + 1

2
m

(
h̄2

m2

2

L5
+ L̈

L2

)
x̂2,

(4.11)

which certainly satisfies

〈ψFF |F̂ |ψFF 〉 ≡ − ∂

∂L
〈ψFF |HFF |ψFF 〉, (4.12)

where ψFF is given in Eq. (3.14). In fact,

〈ψFF |F̂ |ψFF 〉 ≡ 〈n|F̂ |n〉

= h̄2

m

2n + 1

L3
+ 2n + 1

4
mL̈ ≡ Fn (4.13)

is available from the variational derivative of

〈ψFF |HFF |ψFF 〉 ≡ 〈n|HFF |n〉

= 2n + 1

2

h̄2

m

1

L2
+

(
n + 1

2

)
m

2
L̇2

−
(

n + 1

2

)
m

2
L̈L, (4.14)

with respect to L. In Eq. (4.11), the adiabatic force corresponds
to the terms depending only on L. The nonadiabatic force
corresponds to those dependent on L̇ and L̈, and are time-
reversal symmetric, namely, invariant against the operation
L̇ → −L̇,L̈ → L̈,p̂ → −p̂.

V. NONEQUILIBRIUM EQUATION OF STATE

Let’s enter to the main part of the present paper. In this
section we consider a Fermi gas of N noninteracting particles

042104-5



BABAJANOVA, MATRASULOV, AND NAKAMURA PHYSICAL REVIEW E 97, 042104 (2018)

FIG. 1. (a) Quantum gas in soft-wall confinement; (b) quantum
gas in hard-wall confinement. L0 and L(	(t)) are the initial and time-
dependent size of the expanding cavities, respectively. F is the force
due to the gas.

confined in harmonic potential whose frequency is time depen-
dent and in the next section we shall move to the gas system
in the hard-wall confinement. Figure 1 illustrates two kinds of
confinements. We shall derive the nonequilibrium equation of
states during the fast forward. The statistical mean of the force
operator is given by

F̄ = Tr(ρF̂). (5.1)

Here ρ is the density operator for the mixed state satisfying the
von Neumann equation,

ih̄
∂ρ

∂t
= [HFF ,ρ]. (5.2)

With use of the exact solution {|n〉} of TDSE in Eq. (2.28) and
noting the quantum-number-dependent description of the fast
forward theory in the last paragraph of Sec. II, ρ is solved as

ρ(t) =
∞∑

n=0

|n〉fn〈n|, (5.3)

where fn is the Fermi-Dirac distribution at the initial time
(t = 0), which, takes

fn = 1

eβ(En(L(	(t=0)))−μ) + 1
≡ ρnn(0). (5.4)

In fact, with the use of TDSE ih̄|ṅ〉 = HFF |n〉, we see

ih̄ρ̇ =
∑

n

(ih̄|ṅ〉fn〈n| − |n〉fn〈ṅ|ih̄)

= HFF

∑
n

|n〉fn〈n| −
∑

n

|n〉fn〈n|HFF

≡ [HFF ,ρ]. (5.5)

A. Low-temperature (T � T0) and high-density region

At T = 0 (zero temperature) or β(≡ 1
kBT

) = +∞, fn re-
duces to the Heaviside step function fn = �(EF − En). Then

F̄ = 2
∞∑

n=0

fnFn ≡ F̄ ad + F̄ nad , (5.6)

where, with use of Eq. (4.13),

F̄ ad = 2

N+ 1
2∑

n=0

h̄2

m

2n + 1

L3
= h̄2

m

N2

2L3
,

F̄ nad = 2

N+ 1
2∑

n=0

2n + 1

4
mL̈ = m

8
N2L̈ (5.7)

for the total number of electrons N 
 1. As we shall see below,
F̄ nad plays a role in the nonequilibrium equation of states in
the fast forward protocol of a very rapid piston.

At T �= 0 (finite temperature) or β(≡ 1
kBT

) < +∞, we first
summarize the formula for thermodynamic averages, with use
of the Fermi-Dirac distribution f (E) = 1

eβ(E−μ)+1 .
In low-temperature region at T � T0 (degenerate temper-

ature), we see the formula [3]:∫ ∞

E0

g(E)f (E)dE

=
∫ μ

E0

g(E)dE + π2(kT )2

6
g′(μ) + O((kT )4), (5.8)

where g(E0) = 0 is assumed.
Choosing 1D density of states D(E) as g(E), we have

N = 2
∫ ∞

0
D(E)f (E)dE, (5.9)

which defines the chemical potential μ as a function N .
At t = 0, the adiabatic eigenvalues are

En =
(

n + 1

2

)
h̄ω0,(n = 0,1,2, . . .), (5.10)

from which we can obtain density of states as

lim
�E→0

�n

�E
≡ D(E) = 1

h̄ω0
. (5.11)

With use of Eq. (5.9) and h̄ω0 = h̄2

mL2
0

[see Eq. (3.17)], the
chemical potential is obtained as

μ = N

2

h̄2

mL2
0

. (5.12)

Having recourse to formulas in Eqs. (4.13), (5.4), (5.10), (5.11),
and (5.12), the expectation of force becomes

F̄ = 2
∞∑

n=0

fnFn

= N2

(
h̄2

2mL3
+ m

8
L̈

)
×

[
1 + 4π2

3
L2

0

(
mkT

h̄2

)2(
N

L0

)−2

+ · · ·
]
, (5.13)
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the leading term of which indicates that the force consists of
adiabatic ( h̄2

2mL3 ) and nonadiabatic (m
8 L̈) parts with the former

due to particles insensitive to kinetics of the confining length
L and the latter due to particles moving synchronously with
the kinetics of L. From Eq. (5.13) we see

F̄L3 − h̄2

2m
N2

[
1 + 4π2

3
L2

0

(
mkT

h̄2

)2(
N

L0

)−2

+ · · ·
]

= m

8
N2L3L̈

[
1 + 4π2

3
L2

0

(
mkT

h̄2

)2(
N

L0

)−2

+ · · ·
]
,

(5.14)

which is the extension of 1D Poisson’s adiabatic law (FL3 =
const.) to the case of a rapid piston.

Similarly, using Eq. (4.14), the internal energy for the
expanding cavity is calculated as

Ū = Tr(ρĤFF ) = 2
∞∑

n=0

Enfn = 2
∫ ∞

0
ED(E)f (E)dE

= N2

(
h̄2

4mL2
− m

8
LL̈ + m

8
L̇2

)
×

[
1 + 4π2

3
L2

0

(
mkT

h̄2

)2(
N

L0

)−2

+ · · ·
]
. (5.15)

As in the case of the force, the internal energy consists of two
contributions with one coming from particles insensitive to
the kinetics of L and the other from particles synchronously
moving with kinetics of L. Combining Eqs. (5.13) and (5.15),
we have

F̄L − 2Ū =
(

3m

8
N2LL̈ − m

4
N2L̇2

)
×

[
1 + 4π2

3
L2

0

(
mkT

h̄2

)2(
N

L0

)−2

+ · · ·
]
,

(5.16)

which stands for a fast forward variant of the quantum analog
of 1D Bernoulli’s formula (FL = 2U ).

The right-hand side of Eq. (5.14) is proportional to L̈ and
that of Eq. (5.16) consists of terms proportional to L̈ and
L̇2. These terms, which are nonperturbative and time-reversal
symmetric, come from particles synchronously moving with
kinetics of the confining size L as explained below Eqs. (5.13)
and (5.15).

B. High-temperature (T � T0) and low-density region

We shall then investigate the opposite limit, i.e., the high-
temperature and low-density quasiclassical regime. Here we
shall have recourse to a high-temperature expansion of the
Fermi-Dirac distribution with μ < 0:

f (E) ≡ 1

eβ(E−μ) + 1
=

∞∑
n=1

(−1)n−1e−nβ(E−μ). (5.17)

Here

eβμ = h̄2N

2mL2
0kT

(
1 + h̄2N

4mL2
0kT

+ · · ·
)

. (5.18)

With use of the above equations we can obtain the force,

F̄ = 2
∞∑

n=0

fnFn

= N
mL2

0kT

h̄2

(
2h̄2

mL3
+ 1

2
mL̈

)[
1 + N

8L2
0

h̄2

mkT
+ · · ·

]
.

(5.19)

Since the prefactor (mL2
0kT

h̄2 ) is dimensionless, the leading term

of the above force consists of the adiabatic ( 2h̄2

mL3 ) and nona-
diabatic ( 1

2mL̈) terms with the former coming from particles
insensitive to the kinetics of L and the latter from particles
synchronously moving with the kinetics of L. Then we see
the extension of Poisson’s adiabatic law to the case of a rapid
piston:

F̄L3 − 2L2
0NkT

[
1 + N

8L2
0

h̄2

mkT
+ · · ·

]
= 1

2

m2

h̄2 L2
0L

3L̈NkT

[
1 + N

8L2
0

h̄2

mkT
+ · · ·

]
. (5.20)

Similarly, the internal energy is given by

Ū = N
mL2

0kT

h̄2

(
h̄2

mL2
− 1

2
mLL̈ + mL̇2

)
×

[
1 + N

8L2
0

h̄2

mkT
+ · · ·

]
. (5.21)

As in the case of the force, the internal energy consists of two
parts with one from particles insensitive to the kinetics of L

and the other from particles synchronously moving with the
kinetics of L. The fast forward variant of Bernoulli’s formula
in the quasiclassical region is given by

F̄L − 2Ū =
(

3

2

m2

h̄2 L2
0LL̈ − 2

m2

h̄2 L2
0L̇

2

)
× NkT

[
1 + N

8L2
0

h̄2

mkT
+ · · ·

]
. (5.22)

The right-hand sides of Eqs. (5.20) and (5.22) include the
nonadiabatic terms proportional to L̈ and L̇2, which come from
particles synchronously moving with kinetics of the confining
length L, as explained below Eqs. (5.19) and (5.21).

In closing this section, we should note the following:
During the fast forward time region (0 � t � TFF ), there is
no transition among different quantum states, namely, the fast
forward dynamics is the population (ρnn)-preserving cooling
or heating process. Let’s assume the ideal gas to have the
equilibrium temperature T (0) and effective temperature T (t)
at the initial (t = 0) and fast forward time (t > 0), respectively.
Then the nth level population at both temperatures should be
identical, if there is the equality,

f (En(L(	(t = 0))),T (0)) = f (En(L(	(t))),T (t)), (5.23)

in the Fermi-Dirac distribution. In other words, Eq. (5.23)
defines the effective temperature T (t) during the fast forward
time. Noting that the Fermi-Dirac distribution is a function of
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TABLE I. Equation of states in thermally isolated isentropic process for Fermi gas in the fast forward protocol. L,F̄ , and T are the cavity
size, statistical mean of force, and effective temperature defined by Eq. (3.17), Eq. (5.1), and Eq. (5.25), respectively.

Equation of states Low-temperature quantal region High-temperature quasiclassical region

Poisson’s adiabatic
equations

Soft-wall confinement F̄L3 − h̄2

2m
N 2

[
1 + 4π2

3 L2
(

mkT

h̄2

)2
( N

L
)−2 + · · · ] F̄L3 − 2L2NkT

[
1 + N

8L2
h̄2

mkT
+ · · · ]

= m

8 N 2L3L̈
[
1 + 4π2

3 L2
(

mkT

h̄2

)2
( N

L
)−2 + · · · ] = 1

2
m2

h̄2 L5L̈NkT
[
1 + N

8L2
h̄2

mkT
+ · · · ]

Hard-wall confinement F̄L3 − π2 h̄2

12m
N 3

[
1 + 24

π2

(
mkT

h̄2

)2(N

L

)−4 + · · · ] F̄L3 − L2NkT
[
1 + N

4L

√
πh̄2

mkT
+ · · · ]

= N

6 mL3L̈
[
1 + 6

π2
1

N2

(
1 + 16

3π2

(
mkT

h̄2

)2(N

L

)−4 + · · · )] = N

6 mL3L̈
(
1 + 3πh̄2

2mL2kT

)
Bernoulli’s formula
Soft-wall confinement F̄L − 2Ū = N 2

(
3m

8 LL̈ − m

4 L̇2
)

F̄L − 2Ū = (
3
2

m2

h̄2 L3L̈ − 2 m2

h̄2 L2L̇2
)
NkT

× [
1 + 4π2

3 L2
(

mkT

h̄2

)2(N

L

)−2 + · · · ] × [
1 + N

8L2
h̄2

mkT
+ · · · ]

Hard-wall confinement F̄L − 2Ū F̄L − 2Ū

= N
(

1
2 mLL̈ − 1

3 mL̇2
) = N

(
1
2 mLL̈ − 1

3 mL̇2
)

×[
1 + 6

π2
1

N2

(
1 + 16

3π2

(
mkT

h̄2

)2(N

L

)−4 + · · · )] ×(
1 + 3πh̄2

2mL2kT

)
E
kT

, Eq. (5.23) is satisfied by imposing the condition,

h̄ω0

kT (0)
= h̄ω(L(	(t)))

kT (t)
, (5.24)

or, with use of Eq. (3.17),

T (0)L2
0 = T (t)L2(	(t)). (5.25)

In all equations in this section, we so far took T = T (0).
From now on, whenever we see T L2

0, it will be read as T L2

where T (= T (t)) and L(= L(	(t))) are values in the fast
forward time region (0 � t � TFF ). Table I shows the fast
forward variants of Bernoulli’s formula and Poisson’s adiabatic
equations obtained in this section, where F̄ , L, and T are are
not quasistatic variables but rapidly changing state variables at
the same time t (0 � t � TFF ).

In the fast forward variants of equation of states, the
nonadiabatic (NAD) contribution overwhelms the adiabatic
one, if mLL̈,mL̇2 
 h̄2

mL2 , namely, if the energy of particles
synchronously moving with kinetics of the confining size (L)
is much larger than that of bulk particles which is insensitive
to the kinetics of L. In the very rapid piston, therefore, the
feature of the fast forward variants of Bernoulli’s formula and
Poisson’s adiabatic equation is completely different from that
of the original equilibrium versions.

VI. THE CASE OF HARD-WALLED CONFINEMENT

We now investigate the 1D quantum box with a moving
wall. The dynamics of a particle is governed by

ih̄
∂ψ

∂t
= H0ψ = − h̄2

2m
∂2
xψ, (6.1)

with the time-dependent box boundary conditions as ψ(x =
0,t) = 0 and ψ(x = L(t),t) = 0. L(t) is assumed to change
adiabatically as L(t) = L0 + εt .

The adiabatic eigenvalue problem related to Eq. (6.1) gives
eigenvalues and eigenstates as

En = h̄2

2m

(
πn

L

)2

, φn =
√

2

L
sin

(
πn

L
x

)
. (6.2)

The phase θ which the regularized state acquires is given using
the formula in Eq. (2.11), as

∂xθ = −m

h̄

1

φ2
n

∂L

∫ x

0
φ2

ndx = m

h̄

x

L
, θ = m

2h̄

x2

L
. (6.3)

Thanks to the real nature of φn, we find η = 0 in Eq. (2.10)
and see that Ṽ is vanishing.

Applying the fast forward scheme in Sec. II and taking
the asymptotic limit(ε → 0,ᾱ → ∞ with εα = v(t)), the fast
forward state becomes

ψFF = φn(x,L(	(t)))ei mL̇
2h̄L

x2
e
−i h̄

2m
(πn)2

∫ t

0
dt ′

L2(	(t ′)) , (6.4)

where L(	(t)) = L0 + ∫ t

0 v(t ′)dt ′ with the timescaling factor
v(t) given by v(t) = v̄(1 − cos 2π

TFF
t). From Eq. (2.29), the fast

forward potential is given by

VFF = −m

2

L̈

L
x2, (6.5)

which agrees with the existing references [34–36].
The TDSE for the fast forward state is written as

ih̄ ∂
∂t

ψFF (x,t) = HFF ψFF (x,t) with

HFF = − h̄2

2m
∂2
x + VFF . (6.6)

As in the previous section, the force operator is now given
by

F̂ = p̂2

mL
− L̇

2L2
(x̂p̂ + p̂x̂) + mL̈

2L2
x̂2. (6.7)

We now proceed to the statistical treatment of noninteract-
ing particles in the case of the hard-walled confinement. As in
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Eq. (5.3), the solution of the von Neumann equation is

ρ =
∞∑

n=1

|n〉fn〈n|. (6.8)

fn is the Fermi-Dirac distribution at t = 0, i.e., fn =
1

eβ(En (L(	(t=0)))−μ)+1 with β = β(0). This fn can be replaced by
fn = 1

eβ(t)(En(L(	(t)))−μ)+1 because of the population-preserving
nature of the fast forward of adiabatic dynamics as described
at the end of the previous section. The time independence of
fn is equivalent to introducing the equality β(t)En(L(	(t))) =
β(0)En,0, which reduces to Eq. (5.25) with use of Eq. (6.2).
Below we shall take β(≡ 1

kT
), L and E are time-dependent

variables in the fast forward time range 0 � t � TFF . The
relevant matrix elements of force and Hamiltonian are as
follows:

Fn = 〈n|F̂ |n〉

= h̄2π2n2

mL3
+

(
1

6
− 1

4π2n2

)
mL̈, (6.9)

En = 〈n|HFF |n〉

= h̄2π2n2

2mL2
+

(
1

6
− 1

4π2n2

)
(mL̇2 − mLL̈), (6.10)

from which we confirm Fn = − ∂
∂L

En. Density of states D(E)
is given by

D(E) =
√

m

2

L

h̄π
E−1/2. (6.11)

Let us calculate the statistical mean of force F̄ and internal
energy Ū . Since the way of calculation is the same as in the
previous section, we shall show only the calculated results in
the following.

A. Low-temperature (T � T0) and high-density region

First, we must find the chemical potential,

N = 2
∫ ∞

0
D(E)f (E)dE

= 2
√

2mL

πh̄
μ1/2

(
1 − π2

24
(kT )2μ−2 + · · ·

)
, (6.12)

from which we obtain the chemical potential,

μ = π2h̄2

8m

(
N

L

)2(
1 + 16

3π2

(
mkT

h̄2

)2(
N

L

)−4

+ · · ·
)

.

(6.13)

At low-temperature (T � T0), the expectation of force is

F̄ = π2h̄2

12m

N3

L3

[
1 + 24

π2

(
mkT

h̄2

)2(
N

L

)−4

+ · · ·
]

+ N

6
mL̈

×
[

1 + 6

π2

1

N2

(
1 + 16

3π2

(
mkT

h̄2

)2(
N

L

)−4

+ · · ·
)]

.

(6.14)

The force consists of the adiabatic (first line) and nonadiabatic
(second line) contributions with the former coming from bulk

particles insensitive to kinetics of the wall and the latter
from near-wall particles synchronously moving with the wall
motion. While the contribution from bulk particles is of O(N3)
and that of near-wall particles is of O(N ), which is in marked
contrast with the soft-wall confinement in the previous section
where both kind of contributions are commonly of O(N2).

Internal energy for our system is given by

Ū = π2h̄2

24m

N3

L2

[
1 + 24

π2

(
mkT

h̄2

)2(
N

L

)−4

+ · · ·
]

− N

6
(mLL̈ − mL̇2)

×
[

1 + 6

π2

1

N2

(
1 + 16

3π2

(
mkT

h̄2

)2(
N

L

)−4

+ · · ·
)]

,

(6.15)

which consists of the term of O(N3) from bulk particles
insensitive to the wall motion and the one of O(N ) from near-
wall particles synchronously moving with the wall motion.
Combining Eq. (6.14) with Eq. (6.15), we can obtain the
fast forward variants of Poisson’s adiabatic equation and
Bernoulli’s formula in the low-temperature and high-density
region, which are given in Table I. Here the nonadiabatic
contribution which comes from near-wall particles is by the
factor of O(N−2) less than the adiabatic one from bulk
particles. The role of near-wall particles moving synchronously
with the moving boundary was also pointed out in the context
of the quantum fluctuation theorem [37,38].

B. High-temperature (T � T0) and low-density region

Here we obtain the chemical potential by using

eβμ = N

L

√
πh̄2

2mkT

⎛⎝1 + N

2L

√
πh̄2

mkT
+ · · ·

⎞⎠. (6.16)

Now, we will calculate F̄ for the semiclassical region, i.e.,
high-temperature and low-density region,

F̄ = NkT

L

[
1 + N

4L

√
πh̄2

mkT
+ · · ·

]
+ N

6
mL̈

(
1 + 3πh̄2

2mL2kT

)
. (6.17)

Similarly the internal energy is given by

Ū = 1

2
NkT

[
1 + N

4L

√
πh̄2

mkT
+ · · ·

]
− N

6
(mLL̈ − mL̇2)

(
1 + 3πh̄2

2mL2kT

)
. (6.18)

In both the force and internal energy, the adiabatic contribution
coming from bulk particles and the nonadiabatic one from
near-wall particles are commonly of O(N ), which differs from
the characteristics in the low-temperature region of hard-wall
confinement. The above issues are reflected on the fast for-
ward variants of Poisson’s adiabatic equation and Bernoulli’s
formula, which are given in Table I.
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In the hard-wall confinement, the Poisson’s adiabatic equa-
tion has a new term proportional to L̈, and the Bernoulli’s
formula includes two terms proportional to L̇2 and to L̈. The
state variables F̄ , L, and T are not quasistatic, but rapidly
changing variables during the fast forward time range (0 �
t � TFF ). These discoveries are the same as in the case of soft-
wall confinement. However, the criteria that the nonadiabatic
(NAD) contribution overwhelms the adiabatic one is more
subtle: The NAD contribution dominates the equation of states
in the low-temperature and high-density region, if the energy of
near-wall particles (mLL̈,mL̇2) is much larger than that of bulk
particles ( h̄2

mL2 ) multiplied by N2, and in the high-temperature
and low-density region, if the energy of near-wall particles is
much larger than kT (: classical kinetic energy).

VII. SUMMARY AND DISCUSSIONS

Applying the idea of fast forward of adiabatic control of 1D
confined systems, we investigated the nonequilibrium equation
of states of an ideal quantum gas (Fermi gas) confined to
rapidly dilating soft-wall and hard-wall cavities. We showed
the fast forward variants of Poisson’s adiabatic equation and
Bernoulli’s formula which bridges the force and internal
energy. Confining ourselves to the thermally isolated isentropic
process and using the exact solution of the von Neumann
equation, statistical means of the adiabatic and nonadiabatic
(time-reversal symmetric) forces are evaluated in both the
low-temperature quantum-mechanical and high-temperature
quasiclassical regimes.

Reflecting the fact that the fast forward dynamics is a
population-preserving cooling or heating process, the state
variables such as the statistical mean of force (F̄ ), cavity
size (L), and effective temperature (T ) are not quasistatic, but
rapidly changing variables. We elucidated the nonadiabatic
(NAD) contributions to Poisson’s adiabatic equation and to
Bernoulli’s formula. While the adiabatic contribution comes
from ideal bulk particles insensitive to kinetics of L, the
NAD one comes from particles synchronously moving with
the kinetics of L, and is proportional to the acceleration
(L̈) and square of the velocity (L̇). The relative ratio of
NAD and adiabatic contributions is independent from the
particle number (N ) in the case of soft-wall confinement,
whereas such a ratio is controllable in the case of hard-wall
confinement. We also revealed the condition when NAD
contribution overwhelms the adiabatic one and thoroughly
changes the standard form of the equilibrium equation of
states.

In the analysis of the nanoscale heat engine based on Fermi
gas, one further needs nonequilibrium equation of states in the
fast forward of the isochore process where the heat transfer
between the gas and thermal reservoir is far from quasistatic,
which will be investigated as a next challenge.
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