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Fluctuation relation for heat exchange in Markovian open quantum systems
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A fluctuation relation for the heat exchange of an open quantum system under a thermalizing Markovian
dynamics is derived. We show that the probability that the system absorbs an amount of heat from its bath, at
a given time interval, divided by the probability of the reverse process (releasing the same amount of heat to
the bath) is given by an exponential factor which depends on the amount of heat and the difference between the
temperatures of the system and the bath. Interestingly, this relation is akin to the standard form of the fluctuation
relation (for forward-backward dynamics). We also argue that the probability of the violation of the second law
of thermodynamics in the form of the Clausius statement (i.e., net heat transfer from a cold system to its hot bath)
drops exponentially with both the amount of heat and the temperature differences of the baths.
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I. INTRODUCTION

The irreversibility of dynamics is a ubiquitous feature
of macroscopic systems, which appears despite microscopic
reversibility in classical and quantum systems [1–4]. The
relation between these macroscopic and microscopic features
can be captured by “fluctuation relations” (FRs) [5–10]. For
example, for a Markovian process, where the initial and final
states of the system are thermal (with inverse temperature β =
1/T , taking the Boltzmann constant kB ≡ 1), the probability
of doing workW on the system in the forward path is related to
the corresponding probability of doing work −W in the reverse
path, through [5]

PF(+W)

PR(−W)
= eβ(W−�F), (1)

where �F is the difference in the free energy of the system.
A similar relation has been shown to govern heat exchange Q
in the forward and reverse paths between two weakly coupled
systems S and B (from B to S), with the difference �β =
βS − βB in their inverse temperatures [10–14],

PF(+Q)

PR(−Q)
= eQ�β. (2)

The distribution function of any quantity in the forward and
reverse paths depends on two factors. One is the probability
of the initial state of the system, which is determined by
preparation; the other is the probability of the path, which
is determined by dynamics. For a closed system (where the
associated dynamics is generated completely by a Hamiltonian
through the Schrödinger equation), due to the time reversibility
of the dynamics, the path probabilities are equal in the forward
and reverse cases such that they cancel each other out when
we calculate the ratio of the distributions [10]. As a result,
dynamics seems to play no explicit role in deriving FRs.

The dynamics of an open system (where the system is
coupled to an environment which affects its behavior [15])
is not necessarily time reversible, so the path probabilities

in the forward and reverse paths are not the same. But in
what follows we show that a similar FR (in some sense) is
attainable. A principal question for open systems is what a
reverse dynamics physically means. Although there has been
some progress towards defining reverse dynamics [16–18]), an
unambiguous definition has been elusive thus far. In order to
avoid this issue, here we simply replace the notion of reverse
dynamics with reverse process. If in the forward dynamics,
the system releases heat Q, the reverse process corresponds
to absorbing heat Q. This setting helps us express our finding
fully for the forward path.

Such a relation may have its own appeal and advantages.
For example, a prototypical example for the irreversibility
inherent within the second law is that one cannot unbreak
a broken egg. In this example there seems to be no explicit
mention of backward dynamics; even if we wait for a long time
(i.e., in the forward direction of time), we will almost never
see the reverse event. This observation implies that (forward)
dynamics does hardly feature a violation of the second law
of thermodynamics. What we do in this paper is to provide
a rigorous formulation of this observation for a fairly general
class of open-system quantum dynamics.

For a system S prepared in a thermal state of temperature
TS = 1/βS , and then put in contact for time τ with a heat
bath of temperature TB = 1/βB , where the dynamics of the
system is given by a thermalizing Lindblad equation (i.e., the
dynamics drives the system to become thermal with the bath
in a sufficiently long time), we can show that the following FR
holds,

PF(+Q,τ )

PF(−Q,τ )
= eQ�β, (3)

where PF(±Q,τ ) is the probability that the system absorbs
(releases) heat Q from (to) the heat bath in the time interval
τ in the forward path (see Fig. 1). An interesting feature of
our result is that although both PF(+Q,τ ) and PF(−Q,τ )
are time-dependent and transient expressions, our FR relation
indicates that their ratio is indeed time independent. In the
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FIG. 1. Left: Schematic of thermalization of system S (with initial temperature TS) in contact with a bath B with temperature TB . Right:
Schematic of the process where at time τ system S absorbs heat Q from bath B.

following sections, after reviewing a fairly general model for
thermalizing Markovian dynamics, we give the proof of our
FR. In what follows, we omit “F” hereon in order to simplify
the notation.

II. THERMALIZING DYNAMICS OF AN OPEN
QUANTUM SYSTEM

Consider a quantum system with a D-dimensional Hilbert
space, and let H0 be its free Hamiltonian and the set {|m〉}
indicates the eigenvectors corresponding to the discrete and
nondegenerate eigenvalues E(0)

m (H0|m〉 = E(0)
m |m〉), ordered

increasingly as E
(0)
1 < E

(0)
2 < · · · < E

(0)
D . Assume that the

system is then put in contact with a heat bath (reservoir or
environment) of inverse temperature βB and that the dynamics
of the system is described (within the weak-coupling and
Markovian approximation) by the Lindblad equation [19,20]

d�

dτ
= −i[H,�] +

∑
a

(
La�L†

a − 1

2

{
L†

aLa,�
})

, (4)

where we have set h̄ ≡ 1, �(τ ) is the density matrix of the
system, H representing an effective Hamiltonian (usually
different from H0), and La’s are the quantum jump operators
induced by the interaction with the bath (whose number can
always be reduced to D2 − 1).

Conditions under which a Lindbladian dynamics can yield
a stationary state which is a thermal equilibrium state in a
Gibbsian form have been studied extensively in the literature
[3,4,21–23]. Here, we in particular follow the formalism and
the framework laid out recently in Ref. [21]. The structure
of the evolution (4) should meet the following conditions: (i)
Consider

H =
∑
m

Em|m〉〈m|, (5)

that is, the eigenvectors of the isolated system {|m〉} are the
eigenvectors of the effective Hamiltonian, too. (ii) Choose La’s
as the jump operators among all different energy levels of the
isolated system, i.e.,

Lmn = lmn|m〉〈n|, (6)

for m �= n (implying forbidden |n〉 → |n〉 transitions), where
lmn’s fulfill the “detailed balance” condition

|lmn|2 = Cmne
−βB (E(0)

m −E
(0)
n )/2, (7)

in which Cmn = Cnm > 0 and Cmn’s depend on the interaction
of the system and the heat bath. These conditions—along with
the nondegeneracy of the spectrum of H0—have been shown
to guarantee the existence of a unique stationary solution of
thermal (Gibbsian) form �(eq) = e−βBH0/Tr[e−βBH0 ].

Defining the vector |v(τ )〉 = ∑
m �mm(τ )|m〉, we have the

following evolution:

|v(τ )〉 = e−τA|v(0)〉, (8)

where A = ∑
mn Amn|m〉〈n| is defined as

Amn =
{∑

j �=m |ljm|2, m = n,

−|lmn|2, m �= n.
(9)

The matrix A is diagonalizable with non-negative real eigen-
values, with the minimum value being zero and nondegenerate
(valid for typical nondegenerate H0’s). Additionally, it can
also be seen that the off-diagonal elements of � evolve
independently as

�mn(τ ) = e−(iωmn+γmn)τ �mn(0), (10)

where ωmn = Em − En is the gap of the effective Hamiltonian
and γmn = (1/2)

∑
j (|ljm|2 + |ljn|2) � 0 represents the decay

rate. Thus we obtain

�(τ ) =
∑
nm

�nn(0)〈m|e−τA|n〉|m〉〈m|

+
∑
m�=n

e−(iωmn+γmn)τ �mn(0)|m〉〈n|. (11)

III. FORWARD FLUCTUATION RELATION

Consider a system prepared initially in a thermal state of
inverse temperature βS , �(0) = e−βSH0/Tr[e−βSH0 ], which is
brought into contact with a heat bath of inverse tempera-
ture βB . Suppose that the dynamics of the system is given
by the Lindblad equation (4) and after a sufficiently long
time it reaches a thermal state of the inverse temperature
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FIG. 2. Schematic construction of the functions fi,j .

βB , �(∞) = e−βBH0/Tr[e−βBH0 ]. Because the initial state is
diagonal in the eigenbasis of the original Hamiltonian H0, it
is evident from Eq. (10) that the state of the system remains
diagonal in time.

The probability that the system absorbs heat Q from the
bath, in the time interval (0,τ ), is given by

P (+Q,τ ) =
∑
mn

pm p(n,τ |m,0)δ
(
Q − [E(0)

n − E(0)
m ]

)
. (12)

Here, pm is the probability that the system is initially in the
state |m〉,

pm = Tr[�(0)|m〉〈m|] = e−βSE
(0)
m

Tr[e−βSH0 ]
, (13)

and p(n,τ |m,0) is the probability that the system reaches the
state |n〉 at time τ , if it starts from the state |m〉,

p(n,τ |m,0) = Tr[�(τ ; m)|n〉〈n|] = 〈n|e−τA|m〉, (14)

where �(τ ; m) is the state of the system at time τ , if it started
from the state |m〉 at time 0 (i.e., �(0) = |m〉〈m|). In addition,
following Ref. [10], we have defined heat as the energy needed
to induce a transition between two energy levels of the original
system [10],

Q = E(0)
n − E(0)

m . (15)

See also the remark below Eq. (16).
If in the transition |m〉 → |n〉 the system absorbs heat Q

from the bath, in the reverse transition |n〉 → |m〉 it releases
the same amount to the bath. Hence the probability that the
system releases heat Q to the bath in the time interval (0,τ ) is
given by

P (−Q,τ ) =
∑
mn

pn p(m,τ |n,0)δ
(
Q − [

E(0)
n − E(0)

m

])
. (16)

Remark. The concepts of “heat” and “work” have been
defined in various ways in the literature (see, e.g., Refs. [7,24]).
However, for simplicity, here we have adopted the commonly

used definition for heat as the change of the energy of the
isolated system [Eq. (15)], a definition which sounds plausible
within the weak-coupling and Markovian regime when the
system Hamiltonian does not vary in time.

In order to prove Eq. (3), we show that

pm p(n,τ |m,0) = eQ�βpn p(m,τ |n,0). (17)

First, we note that from Eq. (13) we have

pm

pn

= eβS (E(0)
n −E

(0)
m ) = eβSQ. (18)

The rest (and main part) of the proof hinges on the following
relation:

p(n,τ |m,0)

p(m,τ |n,0)
= 〈n|e−τA|m〉

〈m|e−τA|n〉 = e−βBQ. (19)

We give the detailed proof of this in the Appendix. In brief,
the idea is as follows. We first write 〈n|e−τA|m〉 as a Taylor
series expanding e−τA. Next, in this series expansion, we show
that each expression in the form 〈n|As |m〉 can be recast as
e−βB (E0

n−E0
m)/2f (n,m), therefore,

〈n|e−τA|m〉 = e
− βB

2

(
E

(0)
n −E

(0)
m

) ∑
s=0

∑
i,j=1

as(τ )fi,j (n,m; s).

(20)

We next argue by a term-by-term analysis and by examining
its construction (diagrammatically represented in Fig. 2) that
f is a symmetric function of n and m, i.e., f (n,m) = f (m,n).

Combining Eqs. (18) and (19) completes the proof.
Having Eq. (3), similarly to Ref. [10], one can also obtain

an upper bound on the (accumulative) probability of a heat
transfer from a cold system to a hot bath (TS < TB or �β > 0)
—a violation of the Clausius statement of the second law of
thermodynamics. This can be seen as follows. Take Q to be
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equal to some given (but arbitrary) value q. Then we have∫ q

−∞
P (Q,τ )dQ =

∫ q

−∞
P (−Q,τ )eQ�β dQ � eq�β. (21)

If we now assume that q � 0, the above relation implies that the
total probability of a heat transfer of amount �|q| from a cold
system to a hot bath drops exponentially with both the amount
of the transferred heat |q| and the temperature difference �β.

IV. SUMMARY

We have derived a quantum fluctuation relation for the heat
transfer from a system (in its thermal state) to its bath, when
they are interacting such that the system would reach a unique
thermal state (characterized by the temperature of the bath)
through a weak-coupling, Markovian (Lindbladian) master
equation. Unlike the usual fluctuation relations, where the
time-reverse dynamics is also assumed valid (microreversibil-
ity), here our relation is given by a heat transfer process and
its reverse—obviating the need to define a reverse dynamics.
In this sense, our relation (although in a form similar to
but) differs from the existing fluctuation relations where the
probability of absorbing an amount of heat in the forward path
is divided by the probability of releasing the same amount of
heat in the backward dynamics. We have shown that in the
forward dynamics, given by a fairly general class of quantum
Markovian evolutions, the Clausius statement of the second
law of thermodynamics may be violated negligibly with an
exponentially small probability.

It will be interesting to see how far one may extend our
analysis to non-Markovian dynamics and see whether some
sort of similar fluctuation relation may be obtained.
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APPENDIX: PROOF OF EQ. (19)

We have

〈n|e−τA|m〉 =
∞∑

s=0

(1/s!)(−τ )s〈n|As |m〉. (A1)

Let us expand

〈n|As |m〉 =
∑

k1,k2,...,ks−1

〈n|A|k1〉〈k1|A|k2〉〈k2| · · · |ks−2〉

× 〈ks−2|A|ks−1〉〈ks−1|A|m〉. (A2)

In the above sum, we discern four possibilities for the values
of indices k1 and ks−1:

(a) k1 �= n ∧ ks−1 �= m,
(b) k1 = n ∧ ks−1 �= m,
(c) k1 �= n ∧ ks−1 = m,
(d) k1 = n ∧ ks−1 = m.

For case (a), according to Eqs. (7) and (9), the right-hand
side (RHS) of the above equation becomes

e
−βB

(
E

(0)
n −E

(0)
m

)
/2

f1,1(n,m; s), (A3)

where

f1,1(n,m; s) =
∑

k1 �=n,k2,...,ks−2,ks−1 �=m

Cnk1Cmks−1e
βB (E(0)

k1
−E

(0)
ks−1

)/2

×〈k1|A|k2〉〈k2| · · · |ks−2〉〈ks−2|A|ks−1〉. (A4)

We note that the function f1,1(n,m; s) is symmetric under n ↔
m, i.e., f1,1(n,m; s) = f1,1(m,n; s).

In case (b), we consider index k2. There are two possibilities
for the value of k2, k2 = n and k2 �= n, so

(b1) k1 = n ∧ ks−1 �= m ∧ k2 �= n,
(b2) k1 = n ∧ ks−1 �= m ∧ k2 = n.
For case (b1) the RHS of Eq. (A2) becomes

e−βB (E(0)
n −E

(0)
m )/2〈n|A|n〉

∑
k2 �=n,k3...,ks−2,ks−1 �=m

Cnk2Cmks−1

× e
βB (E(0)

k2
−E

(0)
ks−1

)/2〈k2|A|k3〉〈k3| · · · |ks−2〉〈ks−2|A|ks−1〉.
(A5)

Before getting to case (b2), we consider case (c) and later
combine these cases, as explained below.

In case (c), we look at index ks−2. There are two possibilities
for the value of ks−2, ks−2 = m and ks−2 �= m, so

(c1) k1 �= n ∧ ks−1 = m ∧ ks−2 �= m,
(c2) k1 �= n ∧ ks−1 = m ∧ ks−2 = m.
For case (c1) the RHS of Eq. (A2) becomes

e−βB (E(0)
n −E

(0)
m )/2〈m|A|m〉

∑
k1 �=n,k2,...,ks−1,ks−2 �=m

Cnk1Cmks−2

× e
βB (E(0)

k1
−E

(0)
ks−2

)/2〈k1|A|k2〉〈k2| · · · |ks−3〉〈ks−3|A|ks−2〉.
(A6)

Now, adding up the results of cases (b1) and (c1)—Eqs. (A5)
and (A6)—yields

e−βB (E(0)
n −E

(0)
m )/2f1,2(n,m; s), (A7)

where

f1,2(n,m; s) = (〈n|A|n〉 + 〈m|A|m〉)
∑

k1 �=n,k2,...,ks−1,ks−2 �=m

Cnk1

×Cmks−2e
βB (E(0)

k1
−E

(0)
ks−2

)/2〈k1|A|k2〉〈k2| · · · |
× ks−3〉〈ks−3|A|ks−2〉. (A8)

We note that, similarly to f1,1(n,m; s), the function f1,2(n,m; s)
is symmetric, as f1,2(n,m; s) = f1,2(m,n; s).

In a similar fashion, for cases (b2) and (c2), we consider,
respectively, indices k3 and ks−3. The possibilities are as
follows:

(b2.1) k1 = n ∧ ks−1 �= m ∧ k2 = n ∧ k3 �= n,
(b2.2) k1 = n ∧ ks−1 �= m ∧ k2 = n ∧ k3 = n,
(c2.1) k1 �= n ∧ ks−1 = m ∧ ks−2 = m ∧ ks−3 �= m,
(c2.2) k1 �= n ∧ ks−1 = m ∧ ks−2 = m ∧ ks−3 = m.
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The combination of the terms corresponding to cases (b2.1)
and (c2.1) in the RHS of Eq. (A2) can be written as

e−βB (E(0)
n −E

(0)
m )/2f1,3(n,m; s), (A9)

where

f1,3(n,m; s) = (〈n|A|n〉2 + 〈m|A|m〉2)
∑

k1 �=n,k2,...,ks−2,ks−3 �=m

Cnk1

×Cmks−3e
βB (E(0)

k1
−E

(0)
ks−3

)/2〈k1|A|k2〉
× 〈k2| · · · |ks−3〉〈ks−4|A|ks−3〉. (A10)

We can continue this procedure for the remaining possibilities.
For case (d), the RHS of Eq. (A2) becomes

〈n|A|n〉〈m|A|m〉
∑

k2,k3,...,ks−2

〈n|A|k2〉〈k2|A|k3〉〈k3| · · · |ks−3〉

× 〈ks−3|A|ks−2〉〈ks−2|A|m〉. (A11)

The above sum is the same as the sum in Eq. (A2) except
with two less indices. Thus the same steps (a)–(d) can be
carried out here again. Figure 2 summarizes the whole scenario.
Combining all pieces, the matrix elements of As are then given

by

〈n|As |m〉 = e−βB (E(0)
n −E

(0)
m )/2

∑
i,j

fi,j (n,m; s), (A12)

where

fi,j (n,m; s) = (1/2)δj,1 (〈n|A|n〉〈m|A|m〉)i−1(〈n|A|n〉j−1

+〈m|A|m〉j−1)
∑

k1 �=n,k2,...,ks−j−2(i−1) �=m

Cnk1Cmks−j−2(i−1)

× e
βB (E(0)

k1
−E

(0)
ks−j−2(i−1)

)/2〈k1|A|k2〉〈k2| · · · |
× ks−j−2i+1〉〈ks−j−2i+1|A|ks−j−2(i−1)〉. (A13)

Note that each fi,j (n,m; s) has the m ↔ n symmetry,
fi,j (n,m; s) = fi,j (m,n; s). Substituting Eq. (A12) in Eq. (A1)
yields

〈n|e−τA|m〉 = e−βB (E(0)
n −E

(0)
m )/2

∑
s=0

∑
i,j=1

as(τ )fi,j (n,m; s).

(A14)

Since fi,j (n,m; s)’s are symmetric under the n ↔ m transfor-
mation, one can conclude that

〈n|e−τA|m〉
〈m|e−τA|n〉 = e−βB (E(0)

n −E
(0)
m ) = e−βBQ. (A15)

[1] H. B. Callen, Thermodynamics and an Introduction to
Thermostatistics (Wiley, New York, 1985).

[2] G. E. Crooks, J. Stat. Mech. (2011) P07008.
[3] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, New York, 2002).
[4] Á. Rivas and S. F. Huelga, Open Quantum Systems: An

Introduction (Springer, Heidelberg, 2012).
[5] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
[6] D. J. Evans and D. J. Searles, Adv. Phys. 51, 1529 (2002).
[7] M. Campisi, P. Hänggi, and P. Talkner, Rev. Mod. Phys. 83, 771

(2011).
[8] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[9] G. E. Crooks, Phys. Rev. E 61, 2361 (2000).

[10] C. Jarzynski and D. K. Wójcik, Phys. Rev. Lett. 92, 230602
(2004).

[11] Y. Sughiyama and S. Abe, J. Stat. Mech. (2008) P05008.
[12] S. Akagawa and N. Hatano, Prog. Theor. Phys. 121, 1157

(2009)
[13] J. Goold, U. Poschinger, and K. Modi, Phys. Rev. E 90,

020101(R) (2014).
[14] G. T. Landi and D. Karevski, Phys. Rev. E 93, 032122 (2016).
[15] The attributes “closed” and “open” in this paper are based on

dynamics (not thermodynamics) given whether or not the system

dynamics can be described only by the system Hamiltonian. As
a result, no heat is involved in the dynamics of a closed system,
but the system may exchange work with its environment if its
Hamiltonian can vary in time (i.e., it is “thermally” isolated but
may be “mechanically” open). However, the dynamics of an
open system may involve both heat and work (i.e., it may be
thermally and mechanically open).

[16] G. E. Crooks, Phys. Rev. A 77, 034101 (2008).
[17] E. Aurell, J. Zakrzewski, and K. Życzkowski, J. Phys. A: Math.

Theor. 48, 38FT01 (2015).
[18] T. Albash, D. A. Lidar, M. Marvian, and P. Zanardi, Phys. Rev.

E 88, 032146 (2013).
[19] G. Lindblad, Commun. Math. Phys. 48, 119 (1976); V. Gorini,

A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821
(1976).

[20] D. Chruściński and S. Pascazio, Open Syst. Inf. Dyn. 24,
1740001 (2017).

[21] M. Ostilli and C. Presilla, Phys. Rev. A 95, 062112 (2017).
[22] H. Spohn, Lett. Math. Phys. 2, 33 (1977).
[23] S. Alipour, K. Mølmer, S. J. Kazemi, and A. T. Rezakhani

(unpublished).
[24] S. Alipour, F. Benatti, F. Bakhshinezhad, M. Afsary, S. Marcan-

toni, and A. T. Rezakhani, Sci. Rep. 6, 35568 (2016).

042101-5

https://doi.org/10.1088/1742-5468/2011/07/P07008
https://doi.org/10.1088/1742-5468/2011/07/P07008
https://doi.org/10.1088/1742-5468/2011/07/P07008
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1080/00018730210155133
https://doi.org/10.1080/00018730210155133
https://doi.org/10.1080/00018730210155133
https://doi.org/10.1080/00018730210155133
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevE.61.2361
https://doi.org/10.1103/PhysRevE.61.2361
https://doi.org/10.1103/PhysRevE.61.2361
https://doi.org/10.1103/PhysRevE.61.2361
https://doi.org/10.1103/PhysRevLett.92.230602
https://doi.org/10.1103/PhysRevLett.92.230602
https://doi.org/10.1103/PhysRevLett.92.230602
https://doi.org/10.1103/PhysRevLett.92.230602
https://doi.org/10.1088/1742-5468/2008/05/P05008
https://doi.org/10.1088/1742-5468/2008/05/P05008
https://doi.org/10.1088/1742-5468/2008/05/P05008
https://doi.org/10.1143/PTP.121.1157
https://doi.org/10.1143/PTP.121.1157
https://doi.org/10.1143/PTP.121.1157
https://doi.org/10.1143/PTP.121.1157
https://doi.org/10.1103/PhysRevE.90.020101
https://doi.org/10.1103/PhysRevE.90.020101
https://doi.org/10.1103/PhysRevE.90.020101
https://doi.org/10.1103/PhysRevE.90.020101
https://doi.org/10.1103/PhysRevE.93.032122
https://doi.org/10.1103/PhysRevE.93.032122
https://doi.org/10.1103/PhysRevE.93.032122
https://doi.org/10.1103/PhysRevE.93.032122
https://doi.org/10.1103/PhysRevA.77.034101
https://doi.org/10.1103/PhysRevA.77.034101
https://doi.org/10.1103/PhysRevA.77.034101
https://doi.org/10.1103/PhysRevA.77.034101
https://doi.org/10.1088/1751-8113/48/38/38FT01
https://doi.org/10.1088/1751-8113/48/38/38FT01
https://doi.org/10.1088/1751-8113/48/38/38FT01
https://doi.org/10.1088/1751-8113/48/38/38FT01
https://doi.org/10.1103/PhysRevE.88.032146
https://doi.org/10.1103/PhysRevE.88.032146
https://doi.org/10.1103/PhysRevE.88.032146
https://doi.org/10.1103/PhysRevE.88.032146
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1142/S1230161217400017
https://doi.org/10.1142/S1230161217400017
https://doi.org/10.1142/S1230161217400017
https://doi.org/10.1142/S1230161217400017
https://doi.org/10.1103/PhysRevA.95.062112
https://doi.org/10.1103/PhysRevA.95.062112
https://doi.org/10.1103/PhysRevA.95.062112
https://doi.org/10.1103/PhysRevA.95.062112
https://doi.org/10.1007/BF00420668
https://doi.org/10.1007/BF00420668
https://doi.org/10.1007/BF00420668
https://doi.org/10.1007/BF00420668
https://doi.org/10.1038/srep35568
https://doi.org/10.1038/srep35568
https://doi.org/10.1038/srep35568
https://doi.org/10.1038/srep35568



