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Defect transitions in nematic liquid-crystal capillary bridges
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We use experiment and computational modeling to understand the defect structure and director configuration
in a nematic liquid crystal capillary bridge confined between two parallel plates. We find that tuning of the aspect
ratio of the bridge drives a transition between a ring defect and a point defect. This transition exhibits hysteresis,
due to the metastability of the point-defect structure. In addition, we see that the shape of the capillary-bridge
surface determines whether the defect is hyperbolic or radial, with waistlike bridges containing hyperbolic defects
and barrel-like bridges containing radial defects.
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Uniaxial nematic liquid crystals (NLCs) are an ordered
phase characterized by apolar orientational order where, on
average, the individual mesogens align along a preferred axis,
the director n. As in other types of ordered media, defects in
NLCs often appear as regions where the characteristic local
order becomes undefined and are fundamental to the physics
of the system [1]. Line defects, for example, can be entangled to
both study knot theory [2,3] and generate topological materials
[4,5], and point defects have been recently shown to mediate
cell growth [6,7]. In addition, the understanding and control of
defects in liquid-crystalline materials continues to yield tech-
nological developments, such as controlled self-assembly of
colloidal particles [8–10] and new display technologies based
on blue phases [11]. In all of these examples, confinement
plays a significant role, as it introduces constraints that force
the presence of defects in the director field. Clearly, confining a
NLC to within a spherical volume and enforcing homeotropic
boundary conditions, such that n is everywhere perpendicular
to the surface, will result in at least one singularity within the
volume. Because smooth deformations of n cannot remove a
singularity, the defect is topological and can be characterized
by its “hedgehog charge,” defined as Q = 1

4π

∫
S2 dθ dφ n ·

[∂θn × ∂φn], where the integral is taken over a spherical surface
enclosing the defect, and θ and φ are, respectively, the polar
and azimuthal angles on that surface [12]. Geometrically, Q

relates the orientations of n taken on a surface that is equivalent,
topologically, to a sphere enclosing the defect to the number
of times the orientations of n cover the unit sphere [12]. Thus,
we see that confining a NLC to a volume that is topologically
spherical with homeotropic boundary conditions must yield a
total “hedgehog charge” |Q| = 1. This condition is satisfied by
Q = −1 hyperbolic ring defects or hyperbolic point defects,
shown from the side in the schematics in Figs. 1(a) and 1(d)
and from the top in Figs. 1(c) and 1(f), and also by Q = +1
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radial ring defects or radial point defects, shown from the side
in the schematics in Figs. 1(b) and 1(e) and from the top in
Figs. 1(c) and 1(f) [13].

The myriad of possible defect configurations gives topolog-
ically confined systems a richness that has been well explored
for the case of geometrically spherical boundaries, where the
confinement can only be modified through changing the sphere
radius [14,15]. However, the role of shape when confining
NLCs in geometries with more than one characteristic length
scale is not completely understood. Consider the case of a
cylindrical geometry of aspect ratio � = 2R/H , where R

is the radius of the cylinder and H is its height. With this
notation, the classic case of a cylindrical capillary corresponds
to � � 1. The � � 1 situation corresponds to confinement
between narrowly separated plates. When � ∼ O(1), the
equilibrium defect configuration undergoes a transition from
a ring defect, found when � � 1, to a point defect, seen
when � � 1. Prior experimental work investigating this ring-
to-point transition used liquid-crystal capillary bridges made
with the NLC pentylcyanobiphenyl (5CB) [16,17]. However,
since in Refs. [16,17], the bridge were only observed from
above, where the radial and hyperbolic defect structures look
similar, as demonstrated schematically in Figs. 1(c) and 1(f),

FIG. 1. (a,b,d,e) Cross sections of (a) hyperbolic and (b) radial
rings, and of (d) hyperbolic and (f) radial point defects, viewed from
the side. (c,f) Cross sections of (c) ring and (f) point defects, viewed
from the top.
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they were unable to determine if the defects were radial or
hyperbolic. Prior theoretical work used computational mod-
eling to explore the defect configuration within a cylindrical
bridge as a function of � and K11/K33, where K11 and
K33 are the Frank elastic constants corresponding to splay
and bend distortions, respectively [18,19]. For 5CB, which
has K11/K33 = 0.74, they predicted that the bridge should
transition between a radial ring defect and a hyperbolic point
defect. Since the capillary bridges in Refs. [16,17] were likely
not cylindrical, the equilibrium defect configuration in nematic
capillary bridges remains unknown.

In this Rapid Communication, we address this question and
perform both experiments and computations pertaining to a
confined NLC within a capillary bridge sandwiched between
two parallel plates of adjustable separation and hence of
varying �. By observing our experimental bridges from both
the top and the side, and comparing our observations with
results from our computations, we find that shape of the free
surface controls whether the defect is radial or hyperbolic:
waistlike bridges contain hyperbolic defects, and barrel-like
bridges contain radial defects. In addition, we find good
agreement between experiment and theory for the critical
aspect ratio �c at which the defect in the waist-shaped bridge
undergoes a transition between a ring defect and a point defect.
Finally, we see that this transition is hysteretic due to the
metastability of the point defect. Our results clarify the role of
shape and elasticity in dictating the defect structure in confined
homeotropic nematics.

We first model a cylindrical nematic bridge using a modified
version of the finite difference method laid out in Ref. [19].
Although the free energy in the algorithm presented there
depends on the cut-off length of the defect core, the equilib-
rium defect configuration is independent of this length scale
provided it is reasonably small. We modify the algorithm to
treat the small region containing the defect separately from the
remainder of the computation volume, such that the calculated
free energy converges as the mesh size grows [20,24]. We find
that a cylindrical bridge with K11/K33 = 0.74 should undergo
a defect transition between a radial ring and a hyperbolic point,
as highlighted by the dashed line in the phase diagram in
Fig. 2(a), consistent with prior computational modeling [19].
However, we predict ring-to-point defect transitions at aspect
ratios that are significantly smaller than those in Ref. [19]. In
addition, our phase diagram has no radial point structure, and
the line separating the radial and hyperbolic rings occurs for
K11/K33 < 1 [see Fig. 2(a)]; these features are all in contrast
to the diagram in Ref. [19], where there is a stable radial point
and the transition between radial and hyperbolic rings always
occurs at K11/K33 = 1.

To address the problem experimentally, we confine 5CB
(Hebei Mason Chemical Co.) between two parallel glass
microscope slides (Thermo Scientific) to form a capillary
bridge. Prior to use, the slides are dip coated with 0.1% w/w
lecithin (granular; Acros) in hexane (98.5% purity; BDH) and
left to dry to enforce homeotropic anchoring [25]. We set up
the experiment by first placing both microscope slides stacked
on top of each other on the microscope stage. We then epoxy
the top plate to a rod affixed to a micromanipulator such that we
can adjust the distance between the slides. Note that this simple
protocol ensures that the two microscope slides are parallel

FIG. 2. (a,b) Phase diagram of the equilibrium defect structure in
(a) a cylinder and (b) a waist-shaped bridge in terms of aspect ratio
� and the ratio, K11/K33, of the splay and bend elastic constants.
The dashed line indicates K11/K33 for 5CB. HP: hyperbolic point;
HR: hyperbolic ring; RR: radial ring. (c) Free energy of a director
configuration in a waist-shaped bridge relative to the free energy in
the presence of the point defect and normalized by HK33, as a function
of scaled ring radius Rring/Rbridge. Squares: � = 3.0; circles: � = 2.8;
up triangles: � = 2.5; down triangles: � = 2.0.

to each other and to the microscope stage. After the epoxy
hardens, we raise the top slide and use a glass capillary to place
a ∼nl-volume drop of 5CB onto the bottom plate. We then
bring the top plate down until it makes contact with the sessile
droplet and forms a capillary bridge. The final experimental
setup is depicted schematically from the side in Fig. 3(a).

We can then view the bridge from the top and determine
whether the defect is a ring or a point; examples of these
situations are shown in the bright-field images in Figs. 3(b) and
3(d) and the corresponding crossed-polar images in Figs. 3(c)
and 3(e). To calculate an effective aspect ratio �, we take R as
the radius of the circular cross section of the bridge midway
between the two confining plates, and H as the distance
between the plates. We start at large �, where we observe a
ring defect, and determine the radius of the ring, Rring, as we
decrease � by increasing H in discrete steps. At each H , we
monitor the bridge over time to ensure that the defect state
no longer changes and the system is in equilibrium. For each
bridge, we also determine, as we decrease �, the effective
aspect ratio for the defect transition, �c. Using results for 21
different bridges, we find an average �c = 2.7 ± 0.3, as shown
in the upper contour in Fig. 3(f), where we have plotted each
observation of a stable ring defect with open circles and of a
stable point defect with × symbols. The ring radius, scaled
by the bridge height, varies linearly with � for � > �c, as
indicated by the squares in Fig. 3(g), where we have again
plotted every measurement we have performed. At �c, the ring
becomes unstable, and collapses to a point defect, yielding the
discontinuity in Rring shown with a dashed line in Fig. 3(g),
where the point defect is represented as having a vanishing
Rring.

To determine whether the defects are radial or hyperbolic
we can look at the bridges from the side. We thus change our
setup so that the microscope slides are held orthogonal to the
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FIG. 3. (a) Schematic of the experimental setup with sample oriented for a top view. The distance between the plates can be increased and
decreased, as indicated by the arrows near the top of the sample. (b–e) Example bright-field and crossed-polar images of a waist-shaped bridge
with (b,c) ring and (d,e) point defects. (f) Experimental phase diagram for the defect state. Starting at a large � in the ring-defect state (open
circles) and decreasing � leads to a transition to a point defect (× symbols) at a value of �c = 2.7 ± 0.3, which we obtain by averaging the
result for all bridges. The error is the standard error of the mean. In contrast, when starting at small � in a point-defect state and increasing
�, the point-defect state persists; this is represented with a line. (g) Twice the ring defect radius in a waist-shaped bridge scaled by height of
the bridge, plotted as a function of the bridge aspect ratio. A vanishing ring radius corresponds to a point defect. The squares are experimental
measurements. The circles correspond to computations in a waist structure using the elastic constants for 5CB. Scale bars in (b) and (d) are
250 μm.

microscope stage, as shown schematically in Supplemental
Material Fig. S1(a) [20]. When viewed from the side, we
first see that our bridges are waist shaped, as shown in the
example bright-field image in Fig. 4(a), and are surfaces of
constant mean curvature where the contact angle sets the shape
[20]. We then rotate the crossed polarizer and analyzer to
determine whether the defect is radial or hyperbolic. However,
due to the curvature of the waist shape, we cannot clearly
distinguish the rotation of the brushes. As an alternative to
this approach, we introduce anisotropic fluorophores and use
polarized epifluorescent microscopy (PFM) to see whether
the defect is radial or hyperbolic, as shown schematically in
Fig. S1(a) [20]. We add 0.01 wt % Nile red (Sigma Aldrich) to
5CB; at this concentration, Nile red does not affect the director
configuration. Furthermore, the long axes of the fluorophores
align along the director [26,27]. Because the emission dipole
of Nile red lies along the long axis of the molecule, the
fluorescent emission of the mixed Nile red and 5CB solution
will be linearly polarized along the director [28]. We excite
the sample with isotropic light from a short-arc lamp (X-Cite
120Q), and record the output color image as a function of
analyzer angle �A. We convert the color image to grayscale
using a common weighted sum of the red (R), green (G),
and blue (B) channels: 0.29889 R + 0.5870 G + 0.1140 B
[29].

The emitted intensity from each point in the sample will be
∝ cos2 (�A − δ), where δ is the orientation of n in the plane
of the output image [28]. As we use wide-field fluorescent
microscopy, the intensity at each point in the output image
reflects an averaging of the director along the light path. This
technique is a simplified version of the polarized fluorescent
confocal microscopy (PCFM) pioneered in Ref. [26]. Here, we
sacrifice the three-dimensional spatial resolution of PCFM for
the simplicity of PFM.

We validate our technique using a cylindrical capillary
(World Precision Instruments) filled with Nile red–doped 5CB
[20]. The capillary has an escaped-radial configuration with a
point defect separating two regions that escape in the opposite
direction [see Supplemental Material Fig. S1(b)] [20]. We find
that we capture reasonably well the expected escaped-radial
texture as well as the radial character of the defect between the
two escaped domains [see Supplemental Material Fig. S1(c)],
indicating that we can use PFM to determine if the defect in a
bridge is hyperbolic or radial.

We then consider the example Nile red–doped NLC bridge
seen under bright-field illumination in Fig. 4(a) and in PFM in
Figs. 4(b)–4(d), where each image has already been converted
to grayscale with the analyzer angle depicted schematically
in the lower-right corner. For this example, we focus on the
window of interrogation highlighted by the white square in
Figs. 4(b)–4(d), and plot the mean grayscale intensity in this
region as a function of analyzer angle, as shown in Fig. 4(e).
We then fit this averaged output intensity, I , as a function of
�A in the window to the form

I = A + B cos2 (�A − δ′), (1)

where A, B, and δ′ are fitting parameters; A and B set the
minimum value and range of I , respectively, and δ′ reflects an
average of the director orientation along the light path and over
the window of interrogation. The side length of the window sets
the spatial resolution of the technique; in all our experiments,
we take a 10 px × 10 px window, which translates to a spatial
resolution of 50 μm. From the fit, we find δ′ = −45◦. We do
this for every window of interrogation in the whole image, and
plot the director orientations on top of an epifluorescent image
in Fig. 4(f). We find that the defect is clearly hyperbolic. Note
that we are unable to distinguish the actual singularity due to
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FIG. 4. (a) Bright-field image of a waist-shaped bridge. (b–d)
Polarized epifluorescent images of the central region of the bridge in
(a). The analyzer direction is indicated in the lower-right corner of the
images. (e) Grayscale intensity I , as a function of analyzer angle φA,
for the small square region highlighted in images (b–d). An intensity
of 1 is mapped to white and 0 to black. The curve is a fit that allows
us to obtain δ′, and hence the approximate director in the region. (f)
Director orientation plotted on top of an epifluorescent image with
no analyzer in the emitted light path. Scale bars in (a) and (b) are
250 μm.

the wide-field nature of our technique and the spatial averaging;
however, we clearly detect the presence of a hyperbolic defect
in the bridge. We do this for bridges spanning � � �c to � �
�c, and find that the defect is always hyperbolic, implying that
our bridges transition from a hyperbolic ring to a hyperbolic
point as � decreases.

This transition appears to conflict with our computations, in
which a radial ring is predicted to evolve into a hyperbolic point
as � decreases for K11/K33 = 0.74. However, the geometry in
these computations is cylindrical. We therefore hypothesize
that, due to the homeotropic boundary conditions, the shape of
the boundary acts as a level surface for the director. Thus,
the waistlike shape of the bounding surface of the bridges
in our experiments will force any defect to be hyperbolic.
To confirm this, we repeat our computations in a waistlike
structure, and find that radial defects disappear for all values of
K11/K33 that we used, as shown in Fig. 2(b). Furthermore, we
find that the ring defect radius predicted by our computations
[circles, Fig. 3(g)] for a waistlike shape agrees well with
our experimental data [squares, Fig. 3(g)]. In addition, we
see that the hyperbolic ring to hyperbolic point transition
happens at �c = 2.7 for K11/K33 = 0.74, in agreement with
our experimental measurement for 5CB for decreasing �.
However, we note that there is hysteresis in the experimental
transition. When we start at � < �c in the point-defect state
and increase �, the point defect never transitions to a ring,
as seen in the lower contour in Fig. 3(f). Interestingly, if for
� > �c we melt the nematic phase in a bridge containing a
point defect, we always recover a ring defect state when we let
the bridge cool back to the nematic phase. This suggests that the
point defect is metastable for � > �c. To test this possibility,
we compute the energy landscape of a waist-shaped nematic
bridge as a function of ring radius; we show the result for two
bridges having � > �c and for two bridges having � < �c

in Fig. 2(c), where we have taken K11/K33 = 0.74. Recall
that the point defect is represented by the free energy for a
vanishing ring radius. We indeed see that the point defect is
metastable for � > �c, consistent with our interpretation of the
experimental results. In addition, given a representative bridge
height of H = 100 μm and K33 ≈ 10−11 N, we note that the
height of the barrier between the point and ring configurations,
is always O(104 kBT ), implying that a point defect will not be
observed to spontaneously transform into a ring defect, also
consistent with our experimental observations. For � < �c,
this metastability disappears, and the point defect is the only
stable defect state.

To further confirm that the shape of the bounding surface
determines whether the defect is radial or hyperbolic, we
examine barrel-shaped bridges. In this case, we expect that
only radial defects should be present. In these experiments, we
use Nile red–doped bridges with water as the outer medium.
The water contains 8 mM sodium dodecyl sulfate (Sigma
Aldrich) to enforce homeotropic anchoring. Viewed from the
side, the bridge has a clear barrel shape, as shown by the
bright-field image of an example bridge in Fig. S2(a) [20]. Just
as all the waist-shaped bridges at all measured � contained
hyperbolic defects, we find that all the barrel-shaped bridges
at all measured � have radial defects. Viewed from the top,
we only observe ring defect structures, as seen in the example
barrel-shaped bridge in Supplemental Material Figs. S2(c) and
S2(d) [20]. We have repeated our computations in a barrel-like
structure, and find that the only stable state is a radial ring
defect. This agrees with our experiments and further confirms
that the shape of the bounding surface determines whether the
enclosed defect structure is radial or hyperbolic.

In conclusion, the equilibrium defect structure in a nematic
capillary bridge under homeotropic boundary conditions is
found to depend on both the shape of the bounding surface
as well as the aspect ratio of the bridge. The aspect ratio
determines whether the defect is a ring defect or a point defect,
and the boundary shape determines whether the defect is radial
or hyperbolic, with waistlike shapes containing hyperbolic
defects and barrel-like shapes containing radial defects. In
addition, we find that in a waist structure the point defect can
be metastable, causing the transition between a ring defect and
a point defect to exhibit hysteresis. Starting at � > �c and
decreasing � to below �c brings about the collapse of the ring
defect to a point defect, with the collapse occurring at a nonzero
value of the ring radius. However, starting with a point defect
at � < �c and increasing � never yields a transition from a
point defect to a ring defect.

Although prior computations with thin films [30] or
perforated sheets [31] have been used to attribute the radial
or hyperbolic character of defects to confinement shape, our
work provides experimental evidence of this phenomenon. We
accomplish this by developing PFM, a simpler technique than
its confocal counterpart that enables, despite refraction, the
determination of the director field when viewing the bridge
from the side. Thus, our work confirms that shape can be
used to influence and control the equilibrium defect states
in confined NLCs under homeotropic boundary conditions.
Due to the ability of shape to bias the defect structure, the
cylindrical bridge with � ∼ O(1) becomes an interestingly
peculiar case, as the shape is neither a waist nor a barrel. In
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fact, our computations in a cylindrical bridge predict transitions
from a radial ring to a hyperbolic point, as well as from a
hyperbolic ring to a radial ring [see Fig. 2(a)], emphasizing
the interesting scenarios that could arise for this shape; this
would be technically difficult to investigate in our experiments,
however, as one would need to enforce a θ of exactly π/2.
Further interesting results in a cylinder include the sensitivity
of the phase diagram in Fig. 2(a) to slight deviations from
θ = π/2 as well as the equilibrium shape of the bridge when
nematic elasticity is comparable to or larger than the surface
tension force [32]. In addition, the absence of a stable radial

point defect in our phase diagrams regardless of the shape of
the bridge is an intriguing feature that merits further work. Our
work thus not only brings further understanding to the role of
shape and elasticity in confined NLCs, but also highlights the
relevance of future studies.
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