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The persistence of a stochastic variable is the probability that it does not cross a given level during a fixed
time interval. Although persistence is a simple concept to understand, it is in general hard to calculate. Here we
consider zero mean Gaussian stationary processes in discrete time n. Few results are known for the persistence
P0(n) in discrete time, except the large time behavior which is characterized by the nontrivial constant θ through
P0(n) ∼ θn. Using a modified version of the independent interval approximation (IIA) that we developed before,
we are able to calculate P0(n) analytically in z-transform space in terms of the autocorrelation function A(n). If
A(n) → 0 as n → ∞, we extract θ numerically, while if A(n) = 0, for finite n > N , we find θ exactly (within
the IIA). We apply our results to three special cases: the nearest-neighbor-correlated “first order moving average
process”, where A(n) = 0 for n > 1, the double exponential-correlated “second order autoregressive process”,
where A(n) = c1λ

n
1 + c2λ

n
2, and power-law-correlated variables, where A(n) ∼ n−μ. Apart from the power-law

case when μ < 5, we find excellent agreement with simulations.

DOI: 10.1103/PhysRevE.97.040101

Introduction. In this Rapid Communication we study a
Gaussian stationary process (GSP) x(n) of zero mean in
discrete time n. We are interested in the persistence probability
P0(n), which is the probability that x(n) has not changed sign
up to step n.

Even though simple to understand, it is in general challeng-
ing to calculate P0(n) exactly. Even after decades of efforts
by mathematicians [1–6] and theoretical physicists [7–16], the
problem remains unsolved. Historically the field was theoret-
ically driven, but more recently several experimental groups
also contributed with new insights [17–23], for example, from
measuring the decay time of clusters in soap froth [19] and the
mean spin magnetization in a laser-polarized xenon gas [21].

On the theoretical side, most results come from studies
of continuous time processes (see [24] for a comprehensive
review). However, these results do not simply generalize to
discrete time processes, which means that they cannot be
applied to time series data coming from measurements or
simulations. In this Rapid Communication we narrow this gap.
Specifically for GSPs.

To derive our results, we used the independent interval
approximation (IIA) [25,26], that we recently generalized to
handle GSPs in discrete time [27,28]. In short, the IIA splits
the total observation time into intervals, where the end points
of the intervals correspond to sign changes of x(n). Then we
assume that the lengths of these intervals are uncorrelated
with each other. This converts x(n) into a “clipped” process,
where the memory is erased at every sign change. Indeed, this
is an inaccurate treatment if the processes’ memory extends
over several intervals, for example, for power-law-correlated
variables, but as we demonstrate, it works well for processes
with finite memory.

*markus.nyberg@umu.se

Based on our method, we derive P0(n) analytically in z-
transform space (a discrete Laplace transform), as well as a
recursion relation in time domain. To evaluate our expressions,
we only need to specify the process’ autocorrelation function.

Furthermore, for the simplest GSPs, the Markovian
Ornstein-Uhlenbeck process [29] and the non-Markovian ran-
dom acceleration process [30], we know that P0(n) ∼ θn for
large times n. Here θ is the persistence constant, which depends
nontrivially on the autocorrelator. To find θ for any GSP, we
derive a semianalytic expression in terms of the autocorrelation
function. We show that our formula works well when the
correlation between variables decays exponentially or when
it is nearest neighbor correlated. In summary, we find simple
yet accurate results for the following.

(1) The persistence probability P0(n) for n � 0 through a
recursive relation.

(2) The persistence constant θ via a summation formula,
that can be solved analytically for nearest neighbor correlated
variables.

As a subresult, we also calculate the mean first-passage time
till the first sign change using a summation formula.

Derivation of equations. To calculate the persistence P0(n),
we first find the first-passage time density (FPTD), ρ(n), using
the IIA. The FPTD is related to the persistence via P0(n) =
1 − ∑n

k=0 ρ(k), which can be rewritten as

P0(n) = P0(n − 1) − ρ(n). (1)

The persistence is a special case of the more general probability
that m sign changes occur up to n. Denoting this by Pm(n),
we start by splitting the total observation time n into m + 1
intervals; see Fig. 1. The first time interval j1 is the first-passage
time and thus related to the FPTD ρ(j1). The subsequent
intervals are drawn from the first-return density ψ(j ), where
we assume that the process x(n) has the same dynamics on
both sides of the origin. Indeed, this is an approximation
for processes with memory. But for a zero mean GSP, the
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FIG. 1. Stochastic time series describing the continuous position
x(n) as a function of the discrete time n. Time intervals j1,j2, . . .

denote times spent above and above the origin.

probability of being above or below the origin is 1/2, which tells
us that there should not be any significant difference between
any two consecutive intervals ji and ji+1 for i > 1. Using the
IIA, we can formally write Pm(n) as [28]

Pm(n) =
n∑

j1=0

ρ(j1)
n∑

j2=j1

ψ(j2 − j1)
n∑

j3=j2

ψ(j3 − j2) · · ·

· · ·
n∑

jm=jm−1

ψ(jm − jm−1)Q(n − jm), (2)

valid for m > 0, where Q(n) = ∑∞
j=n+1 ψ(j ) makes sure that

no further sign change occurs after the mth crossing.
The name “first-return density” is somewhat misleading,

since ψ(n) describes the first passage to zero from some
position close to zero (see Fig. 1). However, as shown before
[27,28], this only weakly affects the results coming out of the
IIA.

To proceed, we work in z-transformed space. The z trans-
form of f (n) is f (z) = ∑∞

n=0 f (n)z−n [31]. Applying this to
Eq. (2) gives

Pm(z) = ρ(z)ψ(z)m−1 z[1 − ψ(z)]

z − 1
. (3)

To reduce the number of unknowns, we first use Rice’s
formula, that gives the mean number of sign changes up to
time n for a GSP in discrete time, 〈m(n)〉 = nr [32], where
r ≡ cos−1(A(1))/π is the rate of sign changes and A(n) is
the autocorrelator 〈x(n + j )x(j )〉/〈x(0)2〉. In z-transformed
space, the Rice formula is given by

〈m(z)〉 = zr

(z − 1)2
. (4)

Calculating the first moment from Eq. (3) and using Eq. (4)
yields the relation

ρ(z) = r
1 − ψ(z)

z − 1
. (5)

Next, if the probability for an odd number of sign changes up
to time n is given by ω(n), then

ω(z) =
∞∑

m=1

P2m−1(z) = zρ(z)

z − 1

1

1 + ψ(z)
, (6)

where we used Eq. (3) and summed the geometric series. To
solve for the FPTD, we use Eqs. (5) and (6). This gives

ρ(z) = 2r(z − 1)ω(z)

rz + (z − 1)2ω(z)
. (7)

A formal solution to the FPTD in n space is given by the
simple recursive formula (see Supplemental Material [33] for
details)

ρ(n + 1) = �ω(n) − 1

2r

n∑
j=0

ρ(j )�2ω(n − j ), (8)

where �ω(n) = ω(n + 1) − ω(n). Using Eqs. (1) and (8) gives
the persistence

P0(n + 1) = P0(n) − �ω(n) − 1

2r

n∑
j=0

�P0(j )�2ω(n − j ),

(9)

which only depends on the autocorrelator A(n) through (see
Supplemental Material [33] for details)

ω(n) = 1

2
− 1

π
sin−1(A(n)), (10)

where we note that ω(1) = r .
In summary, Eqs. (8) and (9) are exact within the IIA and

simple to evaluate numerically. They are valid for all n � 1
with the initial conditions P0(n) = 1 and ρ(n) = 0 for n � 0.
The only input is the autocorrelator A(n) that enters in ω(n).
However, Eq. (9) is not on the best analytical form to find
the persistence constant θ , which characterizes the long-time
behavior of P0(n). Therefore, one must work in a different
direction.

Persistence constant. For large n, we assume that the
persistence of a zero mean GSP in discrete time decays
exponentially for large times n as P0(n) ∼ θn [29], which in z

space reads [34]

P0(z) ∼ z

z − θ
, (11)

where we note that θ is a pole in P0(z). Using Eqs. (1) and (7),
the persistence in z-space becomes

P0(z) = z

z − 1

rz + (z − 1)(z − 1 − 2r)ω(z)

rz + (z − 1)2ω(z)
. (12)

We then find θ by solving for the largest root (<1) in the
denominator of Eq. (12), that is,

rz∗ + (z∗ − 1)2ω(z∗)
∣∣
z∗=θ

= 0, (13)

with the z transform of ω(n) given by

ω(z) = z

2(z − 1)
− 1

π

∞∑
n=0

sin−1(A(n))z−n. (14)

In general, this sum cannot be carried out analytically. There-
fore, one must truncate the sum at some large value of n when
it has converged, and solve Eq. (13) numerically. However,
there are special cases that we will consider where the sum can
be computed analytically that yield ω(z) on closed form and
therefore an analytical expression for P0(n) and θ .

040101-2



PERSISTENCE OF NON-MARKOVIAN GAUSSIAN … PHYSICAL REVIEW E 97, 040101(R) (2018)

Simulations and results. With the theory laid out, we
now turn to applications. We will consider three different
non-Markovian GSPs and compare them to simulations and
literature results when possible. When simulating the GSP, we
use the algorithm in [35] that generates random trajectories
based on the two-point correlator 〈x(n + j )x(j )〉.

Example 1. The first GSP that we consider is the nearest-
neighbor-correlated first order moving average process [36].
It evolves for n � 1 via

x(n) = η(n) + αη(n − 1), (15)

where α is a constant and η is Kronecker δ-correlated white
noise 〈 η(n)η(k) 〉 = σ 2δn,k with variance σ 2, which we set to
unity. From Eq. (15) the autocorrelator becomes

A(n) =
⎧⎨
⎩

1, n = 0,

α/(1 + α2), n = ±1,

0, |n| > 1
(16)

and using Eq. (16) in Eq. (14) gives

ω(z) = r

z
+ 1

2z(z − 1)
. (17)

This allows us to calculate the persistence and its constant
exactly within the IIA. Using Eqs. (12) and (17), we get

P0(z) = z[1 + 4r(z − r)]

4r(z − z∗+)(z − z∗−)
, (18)

with the poles

z∗
± = 4r − 1 ± √

1 + 8(1 − 2r)r

8r
. (19)

We invert P0(z) with [31]

P0(n) = 1

2πi

∮
C
dz P0(z)zn−1, (20)

where C is a positively oriented curve that encloses all poles.
We have two simple poles at z = z∗

±, and Cauchy’s residue
theorem therefore gives

P0(n) = (z∗
+)n[1 + 4r(z∗

+ − r)] − (z∗
−)n[1 + 4r(z∗

− − r)]

4r(z∗+ − z∗−)
.

(21)

From this we identify the slowest decaying term that depends
on n as the persistence constant θ (α) = z∗

+. Thus

θ (α) = 4r − 1 + √
1 + 8(1 − 2r)r

8r
, (22)

where α enters through r = cos−1 (α/(1 + α2))/π . For α =
0, the process is Markovian and the probability of making a
sign change at each step is 1/2, yielding the trivial asymptotic
behavior, P0(n) ∼ 2−n. When α = 0, the IIA becomes exact
as each interval between sign changes is uncorrelated. Indeed,
α = 0 (r = 1/2) in Eq. (22) gives θ = 1/2.

Equation (22) is new, but approximative for α 
= 0. With
α = 1 (r = 1/3) in Eq. (22) we get θ (1) = (1 + √

17)/8 ≈
0.6404, which is close to the exact result 2/π ≈ 0.6367 [37].
For other values of α, we compare Eq. (22) to simulations (see
Fig. 2) where the inset displays the result for P0(n) in Eq. (21)
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FIG. 2. Persistence constant θ (α) as a function of α for the process
described by the equation of motion x(n) = η(n) + αη(n − 1). Inset
displays the persistence P0(n) for the case α = 1. Simulations are
averaged over 106 realizations.

for α = 1. In all aspects, we see good results compared to
simulations.

Example 2. In Example 1 we saw that the IIA can be
successfully applied to nearest-neighbor-correlated variables.
To increase the process’ complexity, we next consider variables
that have an exponential decaying correlation. The simplest
non-Markovian member of this class is the second order
autoregressive process [36]. It is a two-step memory process
governed by the equation of motion

x(n) = φ1x(n − 1) + φ2x(n − 2) + η(n), (23)

for n � 2 with φ1,2 constants. The autocorrelator is given by
(see Supplemental Material [33] for details)

A(n) = λn+1
1

(
1 − λ2

2

) − λn+1
2

(
1 − λ2

1

)
(λ1 − λ2)(1 + λ1λ2)

, (24)

where λ1,2 depends implicitly on φ1,2 through the relations
φ1 = λ1 + λ2 and φ2 = −λ1λ2 with λ1 
= λ2 and |λ1|,|λ2| <

1, which puts boundaries on the values of φ1,2.
Using Eqs. (13) and (14), we numerically solve for the

persistence constant θ . In Fig. 3(a), we plot θ vs λ2 for three
different values of λ1. In the inset, we show the results from
the recursive relation in Eq. (9) with fixed λ2 = 0.35.

Using the recursive formula in Eq. (9), we also show in
Fig. 3(b) the mean absolute error, ε(n) = ∑n

k=0 |P sim
0 (k) −

P rec
0 (k)|/(n + 1), with the expected behavior: as the autocorre-

lator decays faster (λ1,2 → 0), ε decreases, and vice versa. Note
that A(n) and φ1,2 are invariant when interchanging λ1 � λ2,
which is why the heat map is symmetric along the diagonal. In
all aspects, we see good results compared to simulations.

Example 3. We showed in the above examples that the
IIA is a good method when dealing with weakly correlated
variables. However, where is the limit where the variables
become too strongly correlated and the IIA breaks down? To
investigate this, we consider an extreme case with a power law
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FIG. 3. (a): Persistence constant θ for the two-step memory pro-
cess, x(n) = φ1x(n − 1) + φ2x(n − 2) + η(n), for different values of
λ1,2 (φ1,2). Inset displays the persistence probability P0(n) for fixed
λ2 = 0.35. Simulations are averaged over 106 realizations. (b) Heat
map displaying the mean absolute error of the persistence up to
n = 35: recursive formula vs simulation. Simulation is averaged over
4 × 106 realizations. In both (a) and (b), note that the points where
λ1 = λ2 are excluded, as they make the autocorrelator divergent.

autocorrelator given by

A(n) = (1 + n)−μ ∼ n−μ, (25)

and we want to find the smallest μ where the simulated
persistence and the recursive formula in Eq. (9) agree down
to n = 20. The result is displayed in Fig. 4. By inspection, we
see that, for μ � 5, we match the simulations well down to
n = 20. For μ < 5 we start to see deviations between the re-
cursive formula and the simulations at n < 20. However, these
deviations occur much later than the mean time 〈n〉, where
the first sign change occurs. For example, when μ = 4, then
〈n〉 ≈ 2.1 (see Table I), which means that most trajectories will
have changed their sign long before deviations are substantial.
This result can be compared to fractional Gaussian noise [38],
which exhibits the power law decay A(n) ∼ n2H−2 for large
n, H being the Hurst index, 0 < H < 1. Thus, translated to
the exponent μ, we have values between 0 < μ < 2 for our
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FIG. 4. Persistence probability P0(n) (on the ordinate), simula-
tion vs recursive formula. Simulations plotted as far as they have
converged, averaged over 108 realizations.

toy model. Therefore, we conclude that strongly correlated
variables, like fractional Gaussian noise, are not applicable to
our results. However, to generalize the IIA to these kinds of
processes is a big challenge that goes beyond the scope of this
work.

Mean first-passage time. As a subresult, we calculate the
mean first-passage time till the first sign change, 〈n〉. Naively,
and guided by Rice’s formula, one might guess that 〈n〉 ≈
1/r , as this gives a measure of the time needed before the
process changes sign. However, this does not take the memory
of the process into consideration, since the probability that x(n)
changes sign will in general depend on all the steps leading up
to time n. To calculate 〈n〉 within the IIA, it is useful to define
the auxiliary function

y(z) = 2

zπ

∞∑
n=0

sin−1(A(n))z−n, (26)

which, together with Eqs. (7) and (14), gives a compact
expression for the first-passage time density

ρ(z) = 1 − (z − 1)y(z)

1 + z−1
2r

[1 − (z − 1)y(z)]
. (27)

The mean first-passage time can be calculated from 〈n〉 =∑∞
n=0 nρ(n) = −dρ(z)/dz|z=1, which leads to the summation

TABLE I. Comparing Eq. (28) and simulations (averaged over
107 realizations) for the mean first-passage time. The autocorrelator
A(n) used is indicated by its parameters in the leftmost column.

A(n) 〈n〉 [Eq. (28)] 〈n〉 (Sim.)

α = 1 2.8333 2.8172
λ1 = 0.9, λ2 = 0 10.6221 10.5276
λ1 = 0.9, λ2 = 0.5 14.1929 14.5686
μ = 4.5 2.0638 2.0627
μ = 4 2.0939 2.0910
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formula

〈n〉 = 1

2r
+ 2

π

∞∑
k=0

sin−1(A(k)), (28)

that is different from the naive assumption 1/r . We get good
agreement compared to simulations for the processes discussed
herein; see numerical values in Table I.

Summary and discussion. For a Gaussian stationary process
(GSP) in discrete time n, the persistence probability for large
times n is characterized by the persistence constant θ through
P0(n) ∼ θn. In general, θ is nontrivial to calculate except for
a few special cases such as x(n) = η(n) [see Eq. (15) with
α = 0]. To tackle this problem, we provide a simple method
based on the independent interval approximation (IIA), where
we have derived a new set of equations for calculating the
persistence constant but also the full persistence probability
for any time n via a recursive formula that is valid for a general
GSP.

When analyzing data from measurements and simulations,
it is important to respect that the data is a collection of discretely
sampled numbers. Thus, using a persistence theory based on
continuous time, effectively approximating the discrete time
process with a continuous one, the persistence probability
might be overestimated. This is because the continuous process
may change sign an even number of times between two
consecutive discrete time points, which will not happen in a
discrete theory.

Nevertheless, most results for the persistence probability
are in continuous time t . For a general non-Markovian GSP
with autocorrelator A(t), there are no exact results except if
A(t) < 1/t for large t , then P0(t) ∼ exp(−θct) [39]. To find
θc, there are several approximations where the IIA is one of the
most successful methods that can be applied to a wide range of
smooth processes [24]. Our work can be seen as an extension
to that. Indeed, with the time increment �t , we set tn = n�t ,
and keep n�t fixed as we let �t → 0 and n → ∞. This is the
continuum limit of our equations. In this limit, we replace the
sums in Eq. (2) with integrals and the Rice rate r is replaced by
rc = √−A′′(t0)/π [32]. Then one proceeds as in discrete time,

but using the Laplace transform, L {f (t)} = f (s), instead of
the z transform. It is then possible to find the persistence
constant θc numerically as the first root on the negative s

axis from the equation 1 + s
2rc

(1 − 2s
π

L {sin−1(A(t))}) = 0,
since L {exp(−θct)} = 1/(s + θc). This is the continuous time
version of Eq. (13), and it is also found in, e.g., Ref. [39].

Prior to our work, the main method for calculating the
persistence constant θ for a general GSP in discrete time has
been via a series expansion in terms of the autocorrelator [40].
To the 14th order, automated with a computer, the authors in
[40] found good numerical results for θ for weakly correlated
variables. While the IIA also relies on weakly correlated
variables it cannot be systematically improved, compared to,
e.g., a series expansion. However, our work is less involved and
provides closed-form expressions, arguably simpler expres-
sions than [40], and a recursive formula for the full persistence
probability. Comparing the persistence constant for the non-
Markovian process x(n) = η(n) + η(n − 1) to the exact result,
our IIA approach is identical down to two significant figures.

The persistence P0(n) is just the special case m = 0 of
the more general probability distribution Pm(n) that m sign
changes have occurred up to n. The only exact result related
to Pm(n) is its first moment 〈m(n)〉, given by Rice’s result [see
Eq. (4)]. While the full distribution still is unknown, for large n

it tends to a Gaussian, Pm(n) ∼ exp[−(m − 〈m(n)〉)2/2σ 2(n)]
[41], characterized by its first two cumulants, 〈m(n)〉 and
σ 2(n), which are process specific. Advancements have been
made in this regime of the already mentioned process x(n) =
η(n) + η(n − 1), using large deviation theory [42] but also in
[43], where σ 2(n) was calculated using the same expansion
technique as in [40] for weakly correlated variables. More
recently, higher order cumulants (and moments) of Pm(n)
were calculated using the IIA with good results for higher
order autoregressive processes [28]. In the future, it would be
interesting to see to what extent the IIA can be used to find the
full Pm(n).
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