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Most simulation schemes for partial differential equations (PDEs) focus on minimizing a simple error norm
of a discretized version of a field. This paper takes a fundamentally different approach; the discretized field
is interpreted as data providing information about a real physical field that is unknown. This information is
sought to be conserved by the scheme as the field evolves in time. Such an information theoretic approach to
simulation was pursued before by information field dynamics (IFD). In this paper we work out the theory of
IFD for nonlinear PDEs in a noiseless Gaussian approximation. The result is an action that can be minimized
to obtain an information-optimal simulation scheme. It can be brought into a closed form using field operators
to calculate the appearing Gaussian integrals. The resulting simulation schemes are tested numerically in two
instances for the Burgers equation. Their accuracy surpasses finite-difference schemes on the same resolution. The
IFD scheme, however, has to be correctly informed on the subgrid correlation structure. In certain limiting cases
we recover well-known simulation schemes like spectral Fourier-Galerkin methods. We discuss implications of
the approximations made.
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I. INTRODUCTION

Simulation of partial differential equations (PDEs) is a wide
field with countless applications. This stems from the fact
that there is no general known analytic solution for most of
the interesting, in practice occurring, PDEs. Thus one has to
resort to simulation in order to make predictions about the
behavior of the solutions. PDEs are differential equations for
fields, which have infinite degrees of freedom. However, on a
computer one is not able to store the whole field for any point
in time. Furthermore the time evolution has to be discretized
as well, because time is a continuous variable.

Information field dynamics (IFD) [1] takes an approach that
differs slightly on a fundamental level from conventional field
discretization. Instead of simulating a discretized field, finite
information about the real continuous field is stored in a data
vector, as if it were obtained from a measurement. The time
evolution of the data is then derived from the evolution of
the real field. This interpretation enables the application of
information theory, specifically information field theory [2,3],
which is information theory for the reconstruction of fields.

The application of information theory to get an improve-
ment or better understanding of existing numerical methods is
not new. One of the early prominent examples is [4], where
Bayesian inference is used to compute integrals. There are
also examples of groups working on applying information
theory to simulations. Some historic examples are [5–8], which
regard the problem as a hidden Markov model which is then
treated in a Bayesian fashion through a filtering approach. See,
e.g., [9] for an overview and [10] for a more generic review
of sequential Monte Carlo methods. There is still ongoing
research for the filtering approach (see, e.g., [11–13]). These
methods can also be applied to neural networks (see, e.g., [14]).
In some cases, for example for linear differential equations, one

can infer the solution directly [15]. Other approaches focus
on parametrizing the posterior as a Gaussian and learning the
dynamics in a way motivated by machine learning [16].

The approach that is probably the closest to the one in this
paper is described in [17], where stochastic differential equa-
tions are approximately solved using a variational approach.
The differences to our approach lie in the way the probability
density is parametrized and how the Kullback-Leibler (KL)
divergence is used. All in all, Bayesian simulation is an active
and growing field of research.

In our approach, we do not rely on sampling, nor are we
restricted to linear PDEs. Instead, we approximate the true
evolved probability distribution of solutions by a parametrized
one in each time step and choose the parameters so that the
loss of information is minimized. Hereby we parametrize
the probability distribution such that it mimics a physical
measurement instrument.

In Sec. II the reader is introduced to the fundamental
concepts of IFD and general formula for discretizing PDEs.
This formula is then tested in Sec. III for its numerical
performance. Advantages and disadvantages of the proposed
scheme are discussed in Sec. IV. We conclude in Sec. V.

II. GENERAL FORMALISM

IFD is a formalism for simulating differential equations for
fields s = s(x,t) of the form

ds

dt
= f (s) (1)

using only the finite resources that are available on computers.
This implies that from the infinite degrees of freedom of a field
s only finitely many can be taken into account. IFD is a specific
kind of Bayesian forward simulation scheme.
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A forward simulation scheme takes a data vector d0 and
returns a new data vector d1 = d1(d0). Here a data vector is
referring to an array of numbers on a computer. The data d0 are
supposed to contain information about the real physical field s0

at time t0. What kind of information d contains is also specified
by the simulation scheme. The new data vector d1 is supposed
to contain information about the field s1 at the time t1 = t0 +
dt . One then iterates the application of this scheme until one
arrives at a target time. On this abstract level IFD yields a
forward simulation scheme. The difference in the construction
from most other simulation schemes is its information theoretic
foundation and very restrictive formalism. The formalism is
restrictive in the sense that, once what information the data d

contains about the field s is defined, the time evolution of the
scheme d1(d0) is completely specified.

IFD attempts to mimic the optimal Bayesian simulation.
In an optimal Bayesian simulation we take the knowledge
about the initial conditions P (s0|init) and then compute the
time evolved probability density using the exact analytic time
evolution:

P (sn|init) = P [s0(sn)|init]

∣∣∣∣∣∣∣∣∂s0(sn)

∂sn

∣∣∣∣∣∣∣∣. (2)

Here we have assumed that there exists an exact solution for
the PDE to be simulated [at least up to a zero set of P (s0|init)].
Thus there is a one to one mapping between fields s0 at time t0
and fields sn at time tn, such that we can write the initial field
s0(sn) as a function of the later field sn, or vice versa. We denote
with || ∂s0(sn)

∂sn
|| the absolute value of the Jacobi determinant

that arises from transforming the probability density. Note
that no information is lost, since time forward and backward
evolution is a one to one mapping of the phase space of the
field s. This optimal Bayesian simulation scheme is practically
not accessible in most interesting cases because it requires
the exact (backward) time evolution to be known, the Jacobi
determinant to be computable, and the storage of whole
probability densities over fields. In this paper, we propose a
scheme that aims to overcome these limitations at the cost of
losing some information in the process of simulation. It does
so by parametrizing the probability density and then evolving
these parameters such that the least amount of information is
lost in each of the small time steps. We proceed by describing
in detail how the probability density is parametrized, then we
describe how we approximate the time evolution.

In IFD we store a finite amount of data d on the actual
continuous field s, as if measured by an instrument the action of
which is described by a measurement equation of the following
form:

d = R(s)(t) + n. (3)

Here n is accumulated numerical noise and R is some response
function. As an example for R one could choose a matrix of
Dirac δ distributions for R to mimic point measurements of
the field at certain locations. This measurement equation does
not imply that there is an actual measurement; it just defines
the probability theoretic connection between the data d on
our computer and the actual physical field s that we want to
simulate. The initial conditions of the PDE will determine the
first data d0; future data will then be determined by the scheme
to mimic the time evolution of the field s. To recover the full

field s0 from the data d0 at time t0 one can use Bayes’s theorem:

P (s0|d0) = P (d0|s0)P (s0)

P (d0)
. (4)

For this, a prior P (s0) is necessary. It reflects the knowledge
about s0 when no data d0 are available. A simulation scheme
also has to discretize the time evolution such that in a time step
from t0 to t1 = t0 + dt the data get updated from d0 to d1. In the
language just introduced, the purpose of a simulation scheme
is to choose a proper time discretization d1(d0) that is as close
to the real evolution of U (s0) = s1 as possible (or even equal
if feasible) and a proper discretization R of space such that the
features of the field are represented well.

In IFD the time evolution of the data d is defined indirectly,
that is, we assign d1 such that the posterior P (s1|d1) using
our new data d1 matches the time evolved probability density
P (s1|d0) using our old data d0 as well as possible. Note
that P (s1|d0) is what we defined to be the optimal Bayesian
simulation, but simulated only for a small time step dt , where
a linearization of the time evolution might still be justified.
Because we cannot store the whole density P (s1|d0) we store
an approximation of it that uses the same parametrization as the
probability density P (s0|d0) but with new values d1 assigned
to the parameters such that it approximates the time evolved
probability density P (s1|d0) as well as possible. For probability
densities corresponding to a Bayesian belief, there is only one
consistent notion of “approximating as well as possible,” given
the two requirements that the optimal approximation is no
approximation and that an approximation can be judged by
what it predicts for actual outcomes. We refer to [18] for a
practice-oriented discussion of why this uniquely determines
the “approximation” KL distance as the appropriate loss
function to be used here (see [19] for the original proof on
probability densities). This proposed loss is different from
that in the originally proposed IFD scheme [1] and leads to
matching the two distributions via

DKL(d0,d1) =
∫

ds1 P (s1|d0)ln
P (s1|d0)

P (s1|d1)
. (5)

In this matching, d0 is given and d1 is searched for, such that the
KL divergence serves as an action that is minimized to obtain
the discretized time evolution d1(d0).

It was also proposed in [18] that for information preserv-
ing dynamics, that is, for nonstochastic time evolution, one
has P (s1|d0) = P (s0|d0)|| ∂s0(s1)

∂s1
|| and therefore this Kullback-

Leibler distance is equal to the Kullback-Leibler distance with
both probability densities time evolved to the past (note the
changed indices):

DKL(d0,d1) =
∫

ds0 P (s0|d0)ln
P (s0|d0)

P (s0|d1)
. (6)

Note that the equality between Eqs. (5) and (6) is nothing else
than the invariance of the KL under invertible transformations.
In this case the transformation is the time evolution of the
field s. The latter KL can be calculated once one makes a
suitable choice for R. For this, note that there is a degeneracy
between R and s. That means that, if R is altered by an
invertible operator T ,

R′ = RT, (7)
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then this is equivalent to instead simulating the differential
equation for T s,

d

dt
(T s) = dT

ds
{f [T −1(T s)]}, (8)

and using the unaltered response R. This is because

(R′)s(t) = (RT )s(t) = R(T s)(t). (9)

This provides some freedom to simplify R, thus R can be
chosen such that it is linear at the cost of possibly making
the time evolution more complicated. If the prior P (s0) =
G (s0,S0) and the noise P (n0) = G (n0,N0) are zero-centered
Gaussian distributions with covariance matrices S0 and N0,
respectively, then the inverse problem can be solved by a
(generalized) Wiener filter [20] and a Gaussian posterior
distribution is obtained:

P (s0|d0) = G (s0 − m0,D0)

= |2πD0|− 1
2 e− 1

2 (s0−m0)†D−1
0 (s0−m0). (10)

Here m0 = D0R
†N−1

0 d0 and D−1
0 = S−1

0 + R†N−1
0 R. One

also gets a Gaussian posterior distribution for s1:

P (s1|d1) = G (s1 − m1,D1), (11)

with D−1
1 = S−1

1 + R†N−1
1 R (12)

and m1 = D1R
†N−1

1 d1 (13)

= SR†(RS1R
† + N1)−1d1. (14)

Note that Eqs. (13) and (14) are two equivalent ways to obtain a
reconstruction m1. In our paper we will mostly use Eq. (14), as
the matrix inversion only needs to be computed for RS1R

† +
N1, which is a finite dimensional operator.

To compute the necessary quantities for our action as given
by Eq. (6) we have to compute the distribution for s0 given d1.
It is obtained from the backward time evolution of P (s1|d1):

P (s0|d1) = G (U (s0) − m1,D1)

∣∣∣∣∣∣∣∣dU (s0)

ds0

∣∣∣∣∣∣∣∣. (15)

Here U [s(t0)] = s(t1) is the exact analytical time evolution.
Using this, the Kullback-Leibler divergence that needs to be
minimized so that d1 is obtained is

DKL(d0,d1) =
∫

ds0 P (s0|d0)ln
P (s0|d0)

P (s0|d1)

=
∫

ds0 G (s0 − m0,D0)

× ln
G (s0 − m0,D0)

G (U (s0) − m1,D1)
∣∣∣∣ dU (s0)

ds0

∣∣∣∣ . (16)

We only minimize for parameters of G (U (s0) − m1,D1), so we
can ignore any additive terms that do not depend on d1. Thus

DKL(d0,d1) =̂
∫

ds0 G (s0 − m0,D0) ln
1

G (U (s0) − m1,D1)
.

(17)

Here “=̂” denotes equality up to irrelevant constants, which
in this case are constants that are not a function of d1. These
will drop out when the expression is minimized with respect
to d1 later on. Note that the absolute value of the Jacobian
|| dU (s0)

ds0
|| can be ignored because it only depends on s0. The

integral above can be quite difficult to evaluate in general. For
integrals involving Gaussian distributions there is, however, a
general method [21] to write down a closed expression for the
result. Replacing every instance of s0 with the field operator

Om0 = m0 + D0
d

dm0
(18)

allows us to evaluate the integral at the cost of having to
evaluate operator expressions. The integral is rewritten as

DKL(d0,d1) =̂ ln
1

G
(
U

(
Om0

) − m1,D1
)

=̂ 1

2

[
U

(
Om0

) − m1
]†

D−1
1

[
U

(
Om0

) − m1
]

+ 1

2
tr[ln(2πD1)]. (19)

We now minimize this Kullback-Leibler divergence with
respect to d1. For this we compute the derivative

dDKL(d0,d1)

dd1
=

(
dm1

dd1

)†
D−1

1

[
m1 − U

(
Om0

)]
= N−1

1 R
[
m1 − U

(
Om0

)]
(20)

with respect to d1. We now assume that we leave the noise
matrix, the response, and the prior invariant, thus omitting the
indices on these operators. At the minimum this derivative is
zero, so we can solve it for d1:

0 = N−1R
[
m1 − U

(
Om0

)]
,

0 = RSR†(N + RSR†)−1d1 − RU
(
Om0

)
,

d1 = (N + RSR†)(RSR†)−1RU
(
Om0

)
. (21)

One way to use IFD is to reformulate a PDE like Eq. (1) to an
ordinary differential equation (ODE), for which potent solvers
already exist. For this we expand Eq. (21) to first order in dt :

d1 = (N + RSR†)(RSR†)−1R
[
Om0 + dtf

(
Om0

)]
,

d1 = (N + RSR†)(RSR†)−1R

× [
SR†(N + RSR†)−1d0 + dtf

(
Om0

)]
,

d1 = d0 + (N + RSR†)(RSR†)−1Rdtf
(
Om0

)
. (22)

Inserting d1 = d0 + dt dd
dt

we arrive at an ODE for d:

dd

dt
= (N + RSR†)(RSR†)−1Rf (Om). (23)

Using this in the limit of no-noise N → 0 we get the following
compact expression for the updating rule:

dd

dt
= Rf (Om) = Rf (OSR†(RSR†)−1d ). (24)

Equations (23) and (24) are the central equations of this paper,
allowing us to discretize any differential equation. They were
derived through minimizing the action given by Eq. (6) and
thus mimic the Bayes optimal simulation up to a minimized
information loss. Using Eqs. (23) and (24) and an appropriate
choice of the responseR of the virtual measurement connecting
field and data, IFD tells us how the differential operators need
to be discretized.
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III. NUMERICAL TESTS

As a benchmark we simulate the Burgers equation:

∂s

∂t
= f (s) = η

∂2s

∂x2
− s

∂s

∂x
. (25)

This equation is numerically challenging as it develops shock
waves for small diffusion constants η. First, we have to specify
our choice of R. We demonstrate the formalism for two
different choices of R.

A. Box grid

We choose

Rix = 1xi ,xi+1 =
{

1 xi < x � xi+1

0 otherwise
. (26)

This type of grid is commonly used in simulations. Starting
from Eq. (24), we compute

dd

dt
= Rf (Om)

= R(�Om − Om∇Om)

= R(�m − m∇m)

−
∫

dxdydz R·xDxy

d

dmy

(∇xzmz)

= R�SR†(RSR†)−1d

−R{SR†(RSR†)−1d[∇SR†(RSR†)−1d]}
−

∫
dxdy R·xDxy∇xy. (27)

We introduce the short hand notation

d ′ = (RSR†)−1d (28)

so that the IFD Burgers scheme simplifies to

dd

dt
= ηR�SR†d ′ − R[SR†d ′(∇SR†d ′)]

−
∫

dxdy R·xDxy∇xy. (29)

Assuming that our a priori knowledge favors no certain
points in space or certain directions, according to the Wiener-
Khintchin theorem [22] the covariance operator S has to be
diagonal in Fourier space. This is equivalent to a convolution
with a convolution kernel Cx in configuration (x) space, such
that

(SR†)xi = Cx � R
†
xi =

∫
dy Cx−yR

†
yi . (30)

We now compute the three terms of Eq. (29) all separately,
starting with the term involving the Laplace operator:

(R�SR†d ′)i

=
∫ xi+1

xi

dx
∑

j

�

∫ xi+j

xj

dy Sxyd
′
j

=
∫ xi+1

xi

dx
∑

j

�Cx � 1xj ,xj+1d
′
j

=
∫

dx 1xi ,xi+1

∑
j

�Cx � 1xj ,xj+1d
′
j

=
∫ xi+1

xi

dx
∑

j

∇{Cx � [δ(x − xj ) − δ(x − xj+1)]}d ′
j

=
∫

dx [δ(x − xi+1) − δ(x − xi)]

×
∑

j

(
Cx−xj

− Cx−xj+1

)
d ′

j

=
∑

j

(
Cxi+1−xj

− Cxi+1−xj+1

)
−

∑
j

(Cxi−xj
− Cxi−xj+1 )d ′

j

=
∑

j

(Cl(i−j+1) − 2Cl(i−j ) + Cl(i−j−1))d
′
j . (31)

Here we assumed the xi to be equally spaced with distance
l. Note that this version of the discretized Laplace operator
has similarities with the normal finite-difference [23] Laplace
operator, but accounts for the field correlation structure. We
continue by computing the second term:

{R[SR†d ′(∇SR†d ′)]}i
=

∫
dx Rix(SR†d ′)x(∇SR†d ′)x

= −
∫

dx {∇[Rix(SR†d ′)]x}(SR†d ′)x

= −
∫

dx (∇Rix)(SR†d ′)(SR†d ′)

−
∫

dx Rix(∇SR†d ′)(SR†d ′). (32)

The last summand in Eq. (32) is the same term we started with,
only with a negative sign. Thus we can bring both to the same
side of the equation and get

R[SR†d ′(∇SR†d ′)]

= −1

2

∫
dx (∇Rix)(SR†d ′)(SR†d ′)

= 1

2

⎡⎣⎛⎝Cx �
∑

j

Rxjd
′
j

⎞⎠(
Cx �

∑
k

Rxkd
′
k

)⎤⎦xi+1

x=xi

. (33)

The third term is ∫
dxdy RixDxy∇xy. (34)

This term vanishes in the case of periodic bound-
ary conditions. One can see this by rewriting ∇xy =
ε−1[δ(x − y + ε) − δ(x − y − ε)] for a sufficiently small ε to
obtain∫

dxdy RixDxyε
−1[δ(x − y + ε) − δ(x − y − ε)]

=
∫

dx ε−1Rix(Dx(x+ε) − Dx(x−ε)). (35)
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t = 0.5

FIG. 1. Simulation of the Burgers equation using a Gaussian
velocity profile as initial condition as represented by the gray line.
The dotted line shows the reconstruction as it is obtained from the
IFD formalism; the dashed line shows a finite-difference simulation
with the same resolution. The solid line is a more exact simulation
obtained by simulating with a finite-difference scheme in four-times
higher spatial resolution.

Because S and R have no favored direction, Dx(x+ε) = Dx(x−ε)

and thus the third term vanishes. Finally we have to compute

d ′ = (RSR†)−1d

=
(∫ xi+1

xi

∫ xj+1

xj

dxdy Cx−y

)−1

dj . (36)

Now that one has all the terms of Eq. (27) one can choose a
prior and obtain a simulation scheme as a result. Normally,
one would choose the prior according to physical properties of
the system, such that it meaningfully encodes our knowledge
in the absence of data. The matter of choosing priors will be
further addressed in Sec. IV B. We just want to demonstrate
the formalism, so we simply choose the analytic form of Cx

such that we can easily compute the three integrals given by
Eqs. (31), (33), and (36). One convenient choice of Cx is a
Gaussian (or a mixture of Gaussians), for which we know all
the above terms analytically. One might equally well choose
any correlation function and do these integrations numerically.
Because these integrals only have to be done once, this does
not significantly increase the computation time of the resulting
simulation scheme.

Note that all computed operators are local, meaning that
they fall off as Cx falls off. Thus, they can be truncated at a
certain distance and the whole simulation scales only linearly
with the number of data points.

Figure 1 shows an example of a simulation that was
performed using the scheme that was worked out in this section.
As a comparison, the figure also shows a simulation using the
finite-difference method with the same spatial resolution. This
simulation uses 64 data values and the function

s(x) = e4−(x/64−0.5)2
(37)

as initial condition. The simulation space is an interval of length
64 with periodic boundary conditions. The prior covariance

t = 0.5

FIG. 2. Zoom-in into the simulation of the Burgers equation
shown in Fig. 1. The dash-dotted line shows the reconstruction as
it is obtained from the IFD formalism, but with double the spatial
resolution. The other lines are the same as in Fig. 1.

was chosen to be a convolution with a zero-centered Gaussian
that has a standard deviation of 0.5. The diffusion constant
η was chosen to be 5. The result of a simulation using the
finite-difference method with a four-times higher resolution
is displayed as well. This high resolution simulation should
capture all features produced by the Burgers dynamics. To
investigate the resolution dependence of the IFD scheme, we
compare the IFD simulation of Fig. 1 with a simulation on a
two-times more resolved grid in Fig. 2. For comparison one
can again see the fine resolved finite-difference method. One
can clearly see an increased performance as the resolution
increases.

B. Fourier grid

Now we switch to a different response. We choose a Fourier
space grid

Rik =
∑

i

δ(k − ki) (38)

with Fourier space grid points ki . There is a choice whether to
view the Fourier transform

Fkx = eikx (39)

as part of the measurement R or as transformation of the field
sk = Fkxsx [see Eqs. (7)–(9)]. We choose the latter and obtain
as transformed time evolution

dsk

dt
= Fkx

dsx

dt

= Fkx[�sx − (sx)(∇sx)]

= −k2sk + (sk) � (iksk). (40)

We insert this into Eq. (24) and obtain

dd

dt
= Rf (Om) = −Rk2SR†(RSR†)−1d

+Rk2SR†(RSR†)−1d. (41)
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t = 0.5

FIG. 3. Simulation of the Burgers equation using a Gaussian velocity profile as initial condition as represented by the gray line and a
Fourier space response. The dotted line is a reconstruction that is obtained through simulating with the IFD scheme. This simulation scheme is
equivalent to a Fourier-Galerkin scheme. The solid line is a high resolution simulation using a finite-difference scheme.

If the a priori knowledge does not favor any specific direction
or point in space, then S is diagonal in Fourier space. Thus

[SR†(RSR†)−1]ki =
∑
lrjp

Sklδlmj

(
δmipSprδrmj

)−1

=
∑

j

Skmj

(
Smimj

)−1

= δkmi
= R

†
ki (42)

and the prior covariance drops out, making time evolution on
this grid invariant under Fourier space priors. For the final time
evolution we arrive at

ddi

dt
= −k2

i di+
∑

j

∫
dkdk′ δ(k − ki−k′)diik

′δ(k′−kj )dj

= −k2
i di +

∑
j

dj−i ikj dj (43)

where the continuous convolution was translated to a finite
convolution on a grid. This resulting time evolution equation
can be implemented efficiently and the results can be seen
in Fig. 3. The simulation constraints, initial conditions, and
degrees of freedom were chosen to be the same as in Sec. III A.

The developed Fourier space IFD method is equivalent to a
Fourier-Galerkin method [24]. In the Fourier-Galerkin method,
the error to the correct solution is minimized for a vector in a
subspace. This subset is a linear subspace of the real solution
space, with selected basis functions that are often chosen to be
polynomials or, as in the case of the Fourier-Galerkin method,

Fourier basis functions. In the case of IFD this subspace is
the coimage of the response R. Thus Galerkin schemes can
be regarded as IFD schemes with R being specified by the
Galerkin basis. The prerequisites for this equivalence are that
the prior S commutes with the discretization R†R and that we
work in the no-noise regime N → 0.

IV. CURRENT ADVANTAGES AND DISADVANTAGES

In the current development status of the IFD method, there
are some caveats as well as some advantages over classical
approaches. Some of them stem from the theoretical side,
where approximations had to be done in order to arrive at a
computable scheme. In this section we discuss all the observed
problems and benefits.

A. Subgrid structure

Information field dynamics employs the field evolution
of the real physical field, and thus automatically takes into
account subgrid structure. However, this leads to problems
when the time evolution is truncated after the first order in
dt . In most physical systems, the time evolution is faster for
the smaller scales, thus if we take into account all scales no
dt is small enough to justify this approximation. In other
schemes, the discretized field automatically yields a cutoff
at high frequencies. However, for IFD, in the derivation we
truncate the whole time evolution of the real system at first
order, which is not justified. As an example consider the
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diffusion equation

ds

dt
= �s, (44)

dsk

dt
= −k2sk. (45)

For higher modes k the change of s scales with k2. Thus, if we
truncate the Taylor expansion of the time evolution at order of

dt , then for k >

√
2
dt

we get

sk
t+dt = st

k − dt k2st
k = −(1 − dt k2)st

k (46)

where |1 − dt k2| > 1, thus the scheme is boosting small
frequencies instead of damping them.

This is, however, a general problem of any simulation
scheme.

B. How to choose a prior

The goal of a prior is to incorporate as much information
as one has about the system and nothing more. If the system
has no special directions or singled out locations, one should
choose a prior that is homogeneous and isotropic. These two
requirements force the covariance matrixSxy = 〈sxs

†
y〉P (s) to be

diagonal in Fourier space. If we restrict ourselves to Gaussian
priors, the prior is fully characterized by its power spectrum
P (k) ∝ 〈|sk|2〉P (s). Thus, the only a priori information that
enters the simulation in the Gaussian case is how smooth
the physical field is. But this is also a significant restriction.
For example, for infinitely sharp shocks, as they occur in
the Burgers equation with η = 0, no smoothness at all is
justified at the location of the shock, whereas at other points
the solution might be perfectly smooth. To capture this kind
of behavior one would need to either use a prior that allows
for higher order statistics, use a dynamical prior which evolves
in time, or introduce data that capture the discontinuities. In
our simulation we observed that the scheme diverges quickly
if an unjustified prior was chosen, for example, a prior that
enforces significantly more smoothness than is present in the
solution.

To choose the right power spectrum of the prior one could
use a fine grid simulation and take the occurring power
spectrum as input for a coarser simulation.

C. Static prior

In the current formulation we assume that the prior does
not evolve in time. However, ideally the prior should evolve
with the system. This is because some a priori assumptions
that were made for time step t0 might not be true at a later
time (for example, initial smoothness might be violated by the
formation of a shock). However, from an agnostic point of
view, if one has no knowledge about points in time, then the
prior should be invariant under time translation. In principle,
IFD provides guidance on how to evolve any kind of degree
of information on the field, like its covariance structure, and
not only some measurement data. By minimizing Eq. (19) with
respect to any such piece of information, we obtain an evolution
equation for it that loses the minimal amount of information.

This way, when the prior is parametrized, an update rule for it
is automatically obtained.

D. No-noise approximation

To derive our algorithms, we take the limit N → 0. While
this significantly simplifies the derivation of the schemes, it
also deprives the resulting schemes of the advantages that an
information theoretic treatment has in general. In the no-noise
approximation field configurations s with Rs �= d are assigned
zero probability, thus the information loss in the presence of
numerical rounding errors and finite time steps, where the
evolution of the data d cannot satisfy Eq. (24) exactly, is
infinite. Further development in the field of IFD will have to
investigate approaches incorporating noise.

V. CONCLUSION

The requirement of minimal information loss per time step
defines a unique simulation framework. This concrete simula-
tion scheme requires the specification of the field measurement
(response) and the incorporation of prior known correlation
structure. It exhibits similarities to the finite-difference scheme
when the response is a grid of boxes and becomes a spectral
scheme in the case of Fourier space response. This yields
an interpretation for linear and in some cases even nonlinear
Galerkin schemes. These are information optimal up to the
approximations made in this paper if no spatial a priori
knowledge about the field is available.

IFD can thus be regarded as a general theory for simulations
that explains what assumptions about the simulated field
enter a given simulation scheme, if one is able to reproduce
that scheme in IFD. For some schemes one can enhance
the performance by using a prior that is correctly informed
on the field correlation structure. When the prior is chosen
incorrectly, for example if it is chosen such that the simulation
produces features that are regarded very unlikely by the
prior, the scheme tends to diverge quickly. In principle, IFD
can provide a guideline for how to evolve any degree of
freedom; by minimizing Eq. (6) one gets a unique simulation
scheme. An interesting route, at least for the Burgers and other
hydrodynamic equations, would be to automatically infer the
position of the virtual measurements, allowing the scheme to
sample the field where it is most informative. The investigation
in that direction is, however, beyond the scope of this paper and
might be the target of future research.

All in all information theory provides a powerful language
to talk about simulation tasks. Even though the series of
approximations made in this paper permitted the resulting
simulation schemes to only outperform finite differences by
a small amount, further advancements in the field could yield
substantial enhancements.
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