
PHYSICAL REVIEW E 97, 033312 (2018)

Numerical simulation of three-component multiphase flows at high density
and viscosity ratios using lattice Boltzmann methods
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In this paper, we propose a multiphase lattice Boltzmann model for numerical simulation of ternary flows
at high density and viscosity ratios free from spurious velocities. The proposed scheme, which is based on
the phase-field modeling, employs the Cahn-Hilliard theory to track the interfaces among three different fluid
components. Several benchmarks, such as the spreading of a liquid lens, binary droplets, and head-on collision
of two droplets in binary- and ternary-fluid systems, are conducted to assess the reliability and accuracy of
the model. The proposed model can successfully simulate both partial and total spreadings while reducing the
parasitic currents to the machine precision.
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I. INTRODUCTION

Three-component fluid flows are ubiquitous in many natural
phenomena and industrial applications, such as in petroleum
engineering, in purifying the water via flotation, and in mi-
crofluidic devices, just to name a few. Although experimental
studies can reveal the main aspects of a multiphase flow dynam-
ics, it is impractical to investigate all the involved parameters
and consider their individual effects. This drawback can be
overcome using numerical simulation, which has become an
attractive approach in dealing with different physical phenom-
ena, including fluid flow. At the macroscopic level, several
multiphase flow solvers based on the Navier-Stokes equations
have been introduced, such as level-set [1], volume of fluid [2],
and front-tracking schemes [3].

As a mesoscopic approach, the lattice Boltzmann method
(LBM) has become an established framework for numerical
simulation of fluid dynamics [4,5]. The LBM can readily tackle
multiphase flows by incorporating interfacial and intermolecu-
lar forces into its kinetic-based equations. Other advantages of
the LBM are its ease of implementation, especially on parallel
machines [6,7], and its ease of handling complex geometries
[8]. In past decades, several two-phase lattice Boltzmann
(LB) models have been proposed that can be categorized as:
color gradient [9], pseudopotential [10], free-energy [11], and
phase-field [12] models. Based on these original two-phase
models, some improved variants have also been proposed, e.g.,
entropic [13] and cascaded [14] LB models, just to name a few.
An extensive review of the previously proposed two-phase LB
models can be found in Refs. [15,16].

Although all of the above-mentioned LB models can deal
with binary, or two-component fluids, little effort has been
made to formulate an LB model for ternary fluids. Leclaire et al.
[17] presented an N -component multiphase LB model based
on the color-gradient method [18]. They simulated several
stationary problems (at low Reynolds numbers) with density
ratios up to 1000. The main shortcoming of their model is that it
would be limited to density-matched fluids when dealing with

dynamic problems with noticeable topological changes. Bao
and Schaefer [19] developed a multicomponent multiphase
model based on the pseduopotential model. They simulated
stationary problems with density ratios of 1000 and performed
dynamic tests with density ratios of 300. They showed that the
parasitic currents in their model depend on the density ratio and
that their model is able to reduce the parasitic currents down to
0.032 l.u. (l.u. := lattice units) at density ratios of 1000. Based
on the free-energy approach, Semprebon et al. [20] proposed
a LBM for ternary fluids with independently tunable surface
tension coefficients. Their model was also limited to density-
match fluids for both static and dynamic cases. Shi et al. [21]
proposed a flux-solver LBM based on the three-component
Cahn-Hilliard equation. Because of numerical instability, their
model is limited to low density ratios up to 2. Liang et al. [22]
proposed another ternary LBM based on phase-field modeling.
They showed that the maximum density in their model is
dependent on the velocity field and that their model can handle
static and dynamic problems with density ratios up to 100 and
20, respectively.

In addition to the above-mentioned LB models for three-
component fluids, there are other LB schemes that can model
amphiphilic mixture fluids, such as oil-water-amphiphile. The
first amphiphilic LB model was proposed by Lamura et al. [23]
based on an appropriate free-energy functional. This LB model
is suitable for ternary systems in which an amphiphilic phase
(surfactant) exists at the interface of the other two ordinary
phases with no orientational degree of freedom. Based on their
binary-fluid model [10], Chen et al. [24,25] proposed another
LB model for amphiphilic mixtures by considering the dipole
direction of the amphiphile and its corresponding interaction
with other phases.

All the existing LB models for ternary fluids have two
major limitations: (a) They are mostly limited to relatively low
density ratios, and (b) they suffer from large parasitic currents.
Recently, Lee and Liu [26] proposed a LBM for simulation of
two-phase flows at high density ratios. This model has been
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shown to be free from parasitic currents [27] and a reliable
scheme in dealing with multiphase flows at relatively high
Reynolds numbers [28]. It has also successfully extended and
applied to a variety of systems, such as phase change [29],
evaporation [30], pool boiling [31], film boiling [32], and
combustion [33,34].

In this paper, we extend the aforementioned model [26]
from binary fluids to ternary fluids and propose a different
LB model for three-component multiphase flows at high
density and viscosity ratios without parasitic currents. The
fluid properties, such as density, viscosity, and surface tension,
of each component can be defined and tuned independently.
Additionally, we are able to simulate both total and partial
spreadings at high density and viscosity ratios, the phenomena
that escape the capabilities of the existing LB models.

The outline of the paper is as follows: in Sec. II, we present
the Cahn-Hilliard-based lattice Boltzmann model for ternary
fluids at high density ratios. We introduce three different
distribution functions, two of which are used to track the
interface among three different fluid components, and one
of which is used to recover the hydrodynamic properties. In
Sec. III, we validate and assess the efficacy of the proposed
model by examining various classical benchmarks. Finally, we
conclude the paper in Sec. IV.

II. MATHEMATICAL MODELING

A. Cahn-Hilliard theory for ternary fluids

In order to capture the evolution of the interface between
different components, the Cahn-Hilliard approach [35] is used
in this paper. The evolution of volume fractions for each fluid
component is driven by the minimization of a free energy.
The three-component free energy for a fluid in a domain �

is defined by [36,37]

F =
∫

�

[
12

ξ
E + 3

8
ξγ1|∇C1|2 + 3

8
ξγ2|∇C2|2

+ 3

8
ξγ3|∇C3|2

]
d�, (1)

where E is the bulk free energy, Ci is the order parameter (or the
volume fraction) of component i, ξ is the interface thickness
which is assumed to be the same among all components, and
γi is the capillary coefficient for component i and is related
to surface tension coefficients according to γi = σij + σik −
σjk (i,j,k = 1–3) in which σij denotes the surface tension
between components i and j . The following bulk free energy
for three-component fluids has been proposed [36,37]:

E = σ12C
2
1C2

2 + σ13C
2
1C2

3 + σ23C
2
2C2

3

+C1C2C3(γ1 + γ2 + γ3) + �C2
1C2

2C2
3 , (2)

where � is a constant that is nonzero for total spreading. In the
context of ternary systems, a so-called spreading parameter
for component i defined as Si = −γi classifies the system
to behave as total spreading (when Si is positive for at least
one component) or partial spreading (when Si is negative for

all components) [36]. For a mixture of three components, the
following relation holds among the order parameters:

C1 + C2 + C3 = 1, (3)

which means that only two of the three order parameters, say
C1 and C2, are needed to be known, and the third one can be
obtained via C3 = 1 − C1 − C2.

Theoretically, the volume fraction must be bounded be-
tween 0 and 1. This, however, can be easily violated numeri-
cally due to the dispersion errors in discretization, resulting
in undershooting and overshooting of the order parameter,
which is the main reason for numerical instability at high
density ratios. To overcome this, enforcing the order parameter
between zero and one or using a cutoff value for the local
density has been used by some researchers [38–40]. These
approaches, however, might cause some discontinuity in the
flow field and violate mass conservation. In order to overcome
these unwanted features, we propose to add the following term
to the right-hand side of Eq. (2):

E0 = �
{
C2

1 step[− min(0,C1)] + C2
2 step[− min(0,C2)]

+ C2
3 step[−min(0,C3)]

}
, (4)

where � is an arbitrary constant and step is the step function.
Equation (4) is used to increase the slope of the bulk free
energy outside the Gibbs triangle (where the order parameters
might be negative) and prevent its minimum values to become
progressively negative in the simulations. A similar idea was
used by Lee and Liu [26] to prevent the order parameter from
becoming negative when considering solid-fluid interactions.
It is worth noting that this term is more effective when
dealing with fluid-solid interactions. Although we will show
its positive effects on different parameters in the ternary-fluid
system, in practice, we only need to implement this term when
considering contact line dynamics on solid boundaries. The
Gibbs triangle of the bulk free energy of a ternary system
[Eq. (2)] plus the additional term in Eq. (4) is shown in
Fig. 1 for two different values of � in partial spreading, where
σ12 = σ13 = σ23 = 10−4 l.u. As can be seen, the free energy
possesses a local maximum at each edge of the triangle and
a global maximum inside the triangle which means that the
bulk free energy has its minimizing states at the corners of
the triangle, i.e., (C1,C2,C3) = (1,0,0), (0,1,0), (0,0,1). As
can be seen in Fig. 1, the nonzero value of � does not have
any effect on the bulk free energy inside the triangle; it only
modifies the values of the bulk free energy when the order
parameters are negative.

The behavior of a three-component system is governed by
the following transport equation:

∂Ci

∂t
+ ∇ · (uCi) = −∇ · J i , i = 1 − 3, (5)

where t is the time, u is the macroscopic velocity, and J i is the
volumetric flow rate of component i due to diffusion. Cahn and
Hilliard [29] assumed that J i is proportional to the gradient of
the chemical potential, say J i = −Mi∇μi in which Mi = M0

γi

is the mobility with M0 being an auxiliary parameter [36,37],
and μi is the chemical potential of component i that is defined

033312-2



NUMERICAL SIMULATION OF THREE-COMPONENT … PHYSICAL REVIEW E 97, 033312 (2018)

FIG. 1. Bulk free energy with � = 0 inside the Gibbs triangle, (a) � = 0 and (b) � = 10−4.

by [36,37]

μi = 4γT

ξ

∑
j �=i

[
1

γj

(
∂E

∂Ci

− ∂E

∂Cj

)]
− 3

4
ξγi ∇2Ci,

i = 1−3, (6)

where 3
γT

= ( 1
γ1

+ 1
γ2

+ 1
γ3

). Therefore, the convective Cahn-
Hilliard equation for three-component fluids becomes [36,37]

∂Ci

∂t
+ ∇ · (uCi) = ∇ · (Mi∇μi), i = 1−3. (7)

Note that, in the Cahn-Hilliard equation for ternary fluids
(similar to that for binary fluids), there are Mi , γi , and ξ on the
right-hand side of the governing equation (the diffusion term).
Hence, a combination of these parameters can be used as the
diffusion coefficient, i.e., 6Miγi/ξ . In this paper the values of
the mobility Mi are given in terms of 6Miγi/ξ .

B. Lattice Boltzmann equation for multicomponent fluids

The lattice Boltzmann equation for multiphase fluids with
the Bhatnagar-Gross-Krook (BKG) collision operator can be
written as [41]

Dfα

Dt
= ∂fα

∂t
+ eα · ∇fα

= −1

λ

(
fα − f eq

α

) + (eα − u) · F
ρc2

s

f eq
α , (8)

where fα and f
eq
α are the distribution function and its equilib-

rium, respectively, eα is the mesoscopic velocity set, λ is the
relaxation time, ρ is the density, and cs = c/

√
3 is the lattice

speed of sound in which c = δx/δt is the lattice speed and δx

and δt are the grid spacing and time step, respectively. The
external force in Eq. (8) is defined by F = ∇ρc2

s − ∇p + Fs

in which p stands for pressure and the interfacial tension Fs

among different components is taken into account through a
volumetric force that is zero in the bulk and nonzero within the

interface,

Fs =
3∑

i=1

μi∇Ci. (9)

For the D2Q9 lattice structure, the mesoscopic velocity set
and the equilibrium distribution function are [4] as follows:

eα =
⎧⎨
⎩

c(0,0), α = 0,

c(cos θα,sin θα), α = 1−4,√
2c(cos θα,sin θα), α = 5−8,

(10)

f eq
α (ρ,u) = ρwα

[
1 + (eα · u)

c2
s

+ (eα · u)2

2c4
s

− (u · u)

2c2
s

]
,

(11)

where wα is the weighting coefficient set given by w0 = 4
9 ,

w1−4 = 1
9 , and w5−8 = 1

36 .
In order to track the interfaces among the three components,

we introduce two new distribution functions as follows:

hi
α = Ci

ρ
fα, i = 1,2, (12)

where the superscript i represents components 1 and 2 and the
third component is obtained from Eq. (3). Taking the material
derivative of Eq. (12) and applying the trapezoidal integration
along characteristics, one can obtain

h̄i
α(x + eαδt,t + δt) − h̄i

α(x,t)

= − 1

τ + 0.5

(
h̄i

α − h̄i,eq
α

)∣∣∣∣
(x,t)

+ δt(eα − u)

·
[
∇MCi − Ci

ρc2
s

(
∇Mp −

3∑
i=1

μi∇MCi

)]
�α

∣∣∣∣
(x,t)

+
(

δt

2
Mi∇2μi

)
�α

∣∣∣∣
(x,t)

+
(

δt

2
Mi∇2μi

)
�α

∣∣∣∣
(x+eαδt,t)

,

(13)
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FIG. 2. Parasitic currents in a binary-fluid setup magnified by (a) 108 and (b) 1014. The dashed lines indicate the initial interface location.
The red lines indicate C1 = 0.5.

where �α(u) = f
eq
α (ρ,u)/ρ. In the above equation, the mod-

ified distribution function h̄i
α and its equilibrium h̄

i,eq
α are

defined as

h̄i
α = hi

α + 1

2τ

(
hi

α − hi,eq
α

) − δt

2
(eα − u)

·
[
∇CCi − Ci

ρc2
s

(
∇Cp −

3∑
i=1

μi∇CCi

)]
�α, (14)

h̄i,eq
α = hi,eq

α − δt

2
(eα − u)

·
[
∇CCi − Ci

ρc2
s

(
∇Cp −

3∑
i=1

μi∇CCi

)]
�α, (15)

in which h
i,eq
α = Cif

eq
α /ρ. In order to enforce incompressibil-

ity and avoid numerical instability for obtaining the pressure
and velocity fields, we use the following change in variable as
suggested by He et al. [12]:

gα = fαc2
s + (

p − ρc2
s

)
wα. (16)

Taking the material derivative of gα and using Eq. (8) yields

Dgα

Dt
= ∂gα

∂t
+ eα · ∇gα = −1

λ

(
gα − geq

α

) + (eα − u)

·
[
∇ρc2

s (�α − wα) +
(

3∑
i=1

μi∇Ci

)
�α

]
, (17)

in which g
eq
α = wα(p + ρc2

s [ eα ·u
c2
s

+ (eα ·u)2

2c4
s

− (u·u)
2c2

s
]) is the new

equilibrium distribution function. As can be seen in Eq. (17),
the gradient of the density is now multiplied by (�α − wα),

which is an order of magnitude smaller than (eα − u) in Eq. (8).
This improves the numerical stability at higher density ratios.
Integrating Eq. (17) using the trapezoidal rule gives us the
following LB equation for recovering the hydrodynamics:

ḡα(x + eαδt,t + δt) − ḡα(x,t)

= − 1

τ + 0.5

(
ḡα − ḡeq

α

)∣∣
(x,t) + δt(eα − u)

·
[
∇Mρc2

s (�α − wα) +
(

3∑
i=1

μi∇MCi

)
�α

]∣∣∣∣∣
(x,t)

,

(18)

where τ = λ/δt is the nondimensional relaxation time
which is related to the kinematic viscosity by ν = τc2

s δt ,
and ḡα and ḡ

eq
α are the modified hydrodynamic distribu-

tion function and its equilibrium, respectively, which are
defined by

ḡα = gα + 1

2τ

(
gα − geq

α

) − δt

2
(eα − u)

·
[
∇Cρc2

s (�α − wα) +
(

3∑
i=1

μi∇CCi

)
�α

]
, (19)

ḡeq
α = geq

α − δt

2
(eα − u)

·
[
∇Cρc2

s (�α − wα) +
(

3∑
i=1

μi∇CCi

)
�α

]
. (20)

In the above equations, the superscripts C and M on
the gradients stand for the second-order central and mixed
(arithmetic average of central and biased) finite differences,
respectively [26]. Specifically, for a scalar variable φ we use
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FIG. 3. Parasitic currents in a ternary-fluid system magnified by (a) 108 and (b) 1014. The dashed lines indicate the initial interface location.
The red and green lines indicate C1 = 0.5 and C2 = 0.5, respectively.

the following relations:

eα · ∇Cφ|(x,t) = 1

2
[φ(x + eαδt,t) − φ(x − eαδt,t)],

eα · ∇Mφ|(x,t) = 1

4
[−φ(x + 2eαδt,t) + 5φ(x + eαδt,t)

− 3φ(x,t) − φ(x − eαδt,t)],

∇Cφ|(x,t) = 1

c2
s δt

∑
α �=0

wαeα(δt eα · ∇C)φ|(x,t),

∇Mφ|(x,t) = 1

c2
s δt

∑
α �=0

wαeα(δt eα · ∇M )φ|(x,t),

∇2φ|(x,t) = 2

c2
s δt

2

∑
α �=0

wα[φ(x + eαδt,t) − φ(x,t)].

The order parameters, velocity, and pressure can be calcu-
lated by taking the zeroth and first moments of the distribution

functions as follows:

Ci =
∑

α

h̄i
α, i = 1,2, (21a)

u = 1

ρc2
s

∑
α

eαḡα + δt

2ρ

(
3∑

i=1

μi∇CCi

)
, (21b)

p =
∑

α

ḡα + δt

2
u · ∇Cρc2

s . (21c)

The local density of the fluid is calculated by a linear
interpolation ρ = ∑3

i=1 Ciρi in which ρi is the bulk density
of component i. The dimensionless relaxation time is also
updated by [37]

τ = (τ1 − τ3)H (C1 − 0.5) + (τ2 − τ3)H (C2 − 0.5) + τ3,

(22)

FIG. 4. Maximum kinetic energy versus dimensionless time for (a) a binary fluid and (b) a ternary fluid.
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FIG. 5. Verification of the Laplace test.

where H is the Heaviside function. It is possible that the order
parameters fluctuate out of their bulk values (0 and 1). These
fluctuations tend to increase as the density and viscosity ratios
increase. Using Eq. (22) prevents excessive fluctuations in
physical parameters.

III. NUMERICAL RESULTS

A. Droplets in a quiescent fluid

To probe the consistency of the present LB model, first a
system consisting of a single stationary droplet is considered
(C2 is initially set to zero). All the parameters will be pre-
sented either in lattice units or in dimensionless form, unless
otherwise stated. A two-dimensional (2D) droplet is placed
at the center of a computational domain with 100 × 100
lattice nodes. Periodic boundary conditions are imposed on
all the boundaries. The fluid properties are ρ1 = 1, ρ3 = 0.1,

τ1 = τ3 = 0.5, and σ13 = 10−4. The interfacial thickness is
set to ξ = 4 and 6Miγi/ξ = 0.02. Here, the dimensionless
time is defined as t∗ = t/(η1R/σ13), where t is the number
of iterations and η1 is the dynamic viscosity of the heavy fluid.
Figure 2 depicts the parasitic currents in the binary-fluid setup.
As can be seen, the results are in agreement with those of the
two-component model in Ref. [26]. As shown in Fig. 2, the

FIG. 6. Two cylindrical droplets in a ternary-fluid system.

present model is capable of eliminating parasitic currents to
the machine precision.

Now we consider a ternary-fluid setup with triple junction
points. Three incomplete droplets in contact with each other
are generated in a computational domain of size 150 ×
150 lattice nodes (see Fig. 3). The properties of the added
droplet (the second component) are ρ2 = 0.5, τ2 = 0.5, and
σ12 = σ23 = 10−4. The boundary conditions and other phys-
ical parameters are the same as those in the binary-fluid
setup.

Figure 3 depicts the parasitic currents for the three-
component fluid. Similar to the two-component fluid, the
three-component model is capable of eliminating parasitic
currents to the machine precision even when triple junction
points exist.

The variation of the maximum kinetic energy (KEmax) of the
fluid versus time for the binary-fluid test (in Fig. 2) and ternary-
fluid test (in Fig. 3) is shown in Fig. 4 for different values
of the mobility. In the absence of one component [Fig. 4(a)],
the proposed model is in agreement with its two-component
counterpart [26], showing the consistency of the model. It
is worth noting that using higher 6Miγi/ξ leads to a faster
dampening of the parasitic currents and a faster convergence
toward the equilibrium state.

As a benchmark problem, the Laplace test is also conducted.
According to the Laplace law, the pressure difference across
the interface of a 2D droplet is related to the surface tension
via

�p = pin − pout = σ

R
. (23)

In order to verify the Laplace law, the radii of one droplet
(filled with component 1 and surrounded with component 3)
are varied from 15 to 35 in a domain with 200 × 200 lattice
sites. Periodic boundary conditions are imposed on all the
boundaries, and the following parameters are used: ρ1 = 1,
ρ3 = 0.001, τ1 = τ3 = 0.5, and � = 0. The results are shown
in Fig. 5 for four different values of surface tension coefficients.
As can be seen in Fig. 5, the results are in good agreement with
the theoretical solution.

FIG. 7. L2-norm error versus number of grids in the y direction.
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FIG. 8. Density profile versus dimensionless distance for three
different grid resolutions.

B. Two stationary droplets

In this subsection, the classical problem of two circular
droplets that are placed apart from each other in a quiescent
fluid is investigated. The problem setup is shown in Fig. 6. First,
convergence analysis and grid independency of the results are
examined for different grid resolutions. Two droplets with radii
of R = L/4 are located 4R apart (center to center) in a domain
with 2L × L lattice sites, where L = 100, 200, and 400.
The fluid properties are as follows: ρ1 = 1, ρ2 = 0.01, ρ3 =
0.001, σ12 = σ13 = σ23 = 10−4, τ1 = τ2 = τ3 = 0.5, � = 0,
and � = 10−4. The L2-norm error of the nearest distance l

of the two droplets is defined as EL2 =
√

(lLBM−l0)2

l2
0

, where l0

is the initial distance. Figure 7 shows the L2-norm error for
different grid resolutions. As can be seen, close to second-order
convergence is achieved. The grid independency of the results
is also shown in Fig. 8.

To investigate the effects of the additional term in the free
energy [Eq. (4)], the maximum and minimum values of the
order parameters in the computational domain are monitored
and plotted in Fig. 9 for L = 200. Initially, the numerical values
of the order parameters lie between 0 and 1. The maximum
values of C1 and C2 increase rapidly at early times and then
exponentially decrease until they reach their new equilibrium

values [Fig. 9(a)]. It should be mentioned that, because we use
two distribution functions for tracking two of the interfaces
(C1 and C2) and the other order parameter (C3) is obtained
from Eq. (3), the evolution of the maximum value of C3 is
different than those of C1 and C2. Figure 9(b) shows that the
minimum values of C1 and C2 become negative at early times
and then start to rise until they reach a steady state. As can
be seen in Fig. 9, using the additional term [Eq. (4)] in the
free energy limits the variation of the order parameter for each
component and reduces the magnitude of the fluctuations by
about 50%.

To investigate the effects of � in more detail, the profiles
of the order parameters along the centerline (y = 100) are
shown in Fig. 10. It can be seen that at the interface of the
two components the other component also exists, which is
a numerical artifact. Using a nonzero value for � (symbols)
improves this behavior.

C. Spreading of a liquid lens

Spreading of a liquid lens is another benchmark used
for validation of the three-component fluids with triple
conjunctions. A computational domain with 250 × 150
lattice sites is used with periodic boundary conditions in the
x direction and no-slip boundary conditions at the bottom
and top. A droplet with a radius of R = 30 is located in the
center of the interface of the other two components. Five sets
of surface tension coefficients, namely, (σ12,σ13,σ23) =
(10−4,10−4,10−4), (6 × 10−5,6 × 10−5,10−4),
(8 × 10−5,1.4 × 10−4,10−4), (10−4,3 × 10−4,10−4), and
(10−4,10−4,3 × 10−4), are considered in our simulations. The
fluid properties are as follows: ρ1 = 1, ρ2 = 0.05, ρ3 = 0.001,
τ1 = 0.05, and τ2 = τ3 = 0.5. Furthermore, the following
parameters are used: ξ = 4, 6Miγi/ξ = 0.02, � = 0.004,
and � = 10−4. Using the aforementioned parameters,
both partial and total spreading mechanisms will be
simulated.

In addition to the Laplace-Young relation (24) between
surface tension coefficients and contact angles, the distance
between the triple junctions d can be related to contact angles

FIG. 9. Evolution of (a) the maximum values of order parameters (Ci,max) and (b) the minimum values of order parameters (Ci,min) versus
dimensionless time.
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FIG. 10. Profiles of the three order parameters along the center
line (y = 100) at t∗ = 10.

according to Young’s relation [also see Fig. 11(a)] [42],

sin (θ1)

σ23
= sin (θ2)

σ13
= sin (θ3)

σ12
, (24)

d =
[

8A sin2(π − θ2)

2(π − θ2) − sin[2(π − θ2)]

+ 8A sin2(π − θ3)

2(π − θ3) − sin[2(π − θ3)]

]1/2

, (25)

where A is the area of the fluid lens at equilibrium. In 2D,
the final shape of the lens (in the case of partial spread-
ing) is a combination of the two circular arcs, and the
Laplace law gives us the pressure difference among the three

FIG. 11. Time evolution of a circular liquid lens between two layers (a) a schematic of the problem. Surface tension coefficients (σ12,σ13,σ23)
are set to (b) (10−4,10−4,10−4), (c) (6 × 10−5,6 × 10−5,10−4), (d) (8 × 10−5,1.4 × 10−4,10−4), (e) (10−4,3 × 10−4,10−4), and (f)
(10−4,10−4,3 × 10−4). The dashed line shows the initial position of the liquid lens.
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TABLE I. Triple junction distance and pressure difference.

Triple junction distance (d) Pressure difference

Numerical Relative NumericalSurface tension coefficients
(σ12,σ13,σ23) Equation (25) results error (%) Equation (26) results Relative error (%)

(10−4,10−4,10−4) 83.10 80.62 2.99 2.084 × 10−6 2.134 × 10−6 2.40
(6 × 10−5,6 × 10−5,10−4) 117.55 113.07 3.81 5.643 × 10−7 5.922 × 10−6 4.94
(8 × 10−5,1.4 × 10−4,10−4) 67.723 66.046 2.48 2.315 × 10−6 2.378 × 10−6 2.72

components,
σ12

R12
= P1 − P2 = P1 − P3 = σ13

R13
. (26)

As shown in Table I, satisfactory agreement between the
simulation results and the analytical solutions is obtained.

The time evolution of the liquid lens for each set of surface
tension is also shown in Fig. 11. Also included in this figure
is the Gibbs triangle for comparing the free energy of each
set of surface tension. As can be seen in the partial spreading
cases [Figs. 11(b)–11(d)], the free energy possesses a global
maximum inside the Gibbs triangle which causes the mixed
fluid to separate into its components, whereas in the total
spreading cases [Figs. 11(e) and 11(f)], the free energy has
its global maximum outside the Gibbs triangle such that the
separation does not occur without a nonzero value of �. In
other words, using a nonzero value for � makes the free energy
have a global maximum inside the triangle.

A comparative study of the effect of three different
interpolation schemes, namely, linear (τ = τ1C1 + τ2C2 +
τ3C3), harmonic (1/τ = C1/τ1 + C2/τ2 + C3/τ3), and Heav-
iside [Eq. (22)] on the evolution of the relaxation time across
a planar interface is performed in Fig. 12. The order parameter
is prescribed in such a way to change smoothly across the
interface from −0.01 to +1.01 instead of 0 to 1 to account for
the numerical overshooting and undershooting of the order
parameter in actual simulations (see Sec. II B). As shown
in Fig. 12, both linear and Heaviside interpolations of the
relaxation time are symmetric around z = z0, whereas there
is a noticble shift towards higher values of the relaxation time
when the harmonic interpolation is used. Overshooting and
undershooding of the order parameters cause the linear and har-
monic interpolations to take different values of relaxation time
than their specified bulk values (in Fig. 12, each inset shows a

FIG. 12. Profiles of dimensionless relaxation time across the
interface (τ1 = 0.05 and τ2 = τ3 = 0.5).

magnified view of the relaxation time obtained from using each
interpolation). In contrast, the Heaviside interpolation keeps
the relaxation times bounded within their specified bulk values.
To investigate the effect of different interpolations on interface
motion, the spreading of a liquid lens [the case in Fig. 11(e)]
with different interpolation schemes was conducted, and the
results are shown in Fig. 13. The contour of C2 = 0.5 is plotted
for two dimensionless times, namely, t∗ = 2 (the black lines)
and t∗ = 5 (the red lines). As can be seen, the results obtained
using the harmonic interpolation are different from those using
linear and Heaviside relations due to the undershooting and
overshooting of the relaxation time across the interface. At t∗ =
2, the liquid lens obtained using the Heaviside (the dashed line)
and linear (the dashed-dotted line) relations is not separated
from the lower fluid, whereas a separation has happened when
the harmonic interpolation (the solid line) is used. Although
the separation of the interface has occurred earlier, the eventual
outcome is different, and the submerged droplet is in a lower
position compared to the situation where the linear or Heavi-
side relations are used. Therefore, in what follows, we employ
the Heaviside interpolation for updating the relaxation time.

D. Binary droplet collision in binary and ternary fluids

In this section, we model the collision dynamics between
two droplets either with the same physical properties or
different physical properties that are surrounded by another
fluid component. The collision between different immiscible
droplets in a ternary-fluid system [43–50] has different charac-
teristics than that in the binary-fluid system. In addition to new
collision outcomes, e.g., single reflexive separation [44] and

FIG. 13. Contour of C2 = 0.5 for t∗ = 2 (the black col-
ors) and t∗ = 5 (the red colors). ρ1 = 1, ρ2 = 0.05, ρ3 = 0.001,
(σ12,σ13,σ23) = (10−4,3 × 10−4,10−4), τ1 = 0.05, τ2 = τ3 = 0.5,
and � = 0.004.
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FIG. 14. Schematic of the problem setup for droplet collision.

crossing separation [46], encapsulating one fluid in the shells
of the other due to different surface tension coefficients (total
spreading) is one of the most interesting features of immiscible
droplet collision which is useful in some technical applications,
such as drug delivery [46,51]. Our aim here is to demonstrate
the ability of the present model in handling immiscible droplet
collisions with high density and viscosity contrast for both
partial and total spreading scenarios.

A 2D domain with 400 × 250 lattice sites is used for
this purpose. The boundary conditions are symmetric at the
bottom, Neumann at the top, and periodic in the x direction.
Two circular droplets with the same radii of R = 40 are placed
4R apart from center to center. The surrounding gas component
is initially at rest, and after 5000 iterations the droplets are
given a uniform velocity towards each other. A schematic of
the problem is shown in Fig. 14. In addition to two density
ratios (ρ∗

1 = ρ1/ρ3, ρ∗
2 = ρ2/ρ3) and two viscosity ratios

(η∗
1 = η1/η3, η∗

2 = η2/η3), the dynamic behavior of this head-
on collision is described by four dimensionless parameters,
namely, the Weber number (We) and the Ohnesorge number
(Oh) of each droplet,

We1 = 2ρ1U
2
relR

σ13
, We2 = 2ρ2U

2
relR

σ23
, (27)

Oh1 = 16η1√
ρ1Rσ13

, Oh2 = 16η2√
ρ2Rσ23

, (28)

where ρ1 and η1 are the density and viscosity, respectively, of
the first component (the droplet on the left), ρ2 and η2 are the
density and viscosity, respectively, of the second component
(the droplet on the right), and Urel = 2U0 is the relative velocity
of the droplets. The factor 16 in the definition of the Ohnesorge
number is included for consistency with the experimental work
of Qian and Law [52] and with the numerical work of Premnath
and Abraham [53]. The dimensionless time is defined by
t∗ = tUrel/D such that t∗ = 0 represents the moment when the
droplets are set into motion. It is worth noting that the second
set of the aforementioned dimensionless groups is solely used
for the ternary-fluid system.

We will first validate the proposed ternary LBM by setting
the order parameter of one of the components to 0. In other
words, we first consider the collision between two droplets of
the same fluid that are surrounded by another (different) fluid
by setting C2 = 0. Figure 15 illustrates the results obtained
using the current LB model and the experimental observations
[52] at ρ∗

1 = 666, η∗
1 = 119, We1 = 32.8, and Oh1 = 0.615.

A qualitative comparison between the 2D results and the
three-dimensional (3D) LB simulations [53] is also provided in
Fig. 16 for ρ∗

1 = 4, η∗
1 = 4, We1 = 20, and Oh1 = 0.589. As

can be seen in Figs. 15 and 16, satisfactory agreement between
the 2D results and the available experimental and numerical
data is obtained.

Now, we will consider the head-on collision of two droplets
of different fluids in a third component, that is, the binary
droplet collision in a ternary-fluid system. Four different
sets for surface tension coefficients are chosen as listed in
Table II. In order to compare the results between binary and
ternary fluids, C2 is initially set to zero (case 1). Three other
sets for surface tension coefficients are also used to study
the collision dynamics between two different droplets in the
partial spreading (case 2) and total spreading (cases 3 and 4)
regimes. The two colliding droplets have the same densities and
viscosities with ρ∗

1 = ρ∗
2 = 666 and η∗

1 = η∗
2 = 119. The other

numerical parameters are ξ = 4, 6Miγi/ξ = 0.02, � = 0.04,
and � = 0.0005.

The droplet evolution and dimensionless kinetic energy
(KE∗), which is defined as KE∗ = ρu2/2

ρU 2
rel/8

, are shown in Figs. 17

FIG. 15. (a) Current results with (b) experimental work [52] (ρ∗
1 = 666, η∗

1 = 119, We1 = 32.8, Oh1 = 0.615). Note that in the current
results t∗ = 0 is adjusted to match the experimental data.
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FIG. 16. (a) Current results with (b) numerical work [53] (ρ∗
1 = 4, η∗

1 = 4, We1 = 20, Oh1 = 0.589).

and 18, respectively. The kinetic energy is nondimensionalized
by the initial kinetic energy of the droplet. As can be seen
in Fig. 17, for the binary droplet collision (the upper half
of the frames in Fig. 17), the droplets coalesce at the same
time (t∗ = 0.68), similar to the ternary droplet collision (the
lower half of the frames in Fig. 17). Then the two droplets get
stretched vertically and become elongated at t∗ = 3.08. In the
ternary case, the outcome of the collision is a two-component
droplet that breaks up at t∗ = 9.08, whereas a relatively larger
droplet is formed in the binary-fluid system. Tracking the KE∗
distribution reveals that the kinetic energy in the binary-fluid
collision (case 1) is higher than that in the ternary-fluid system
(case 2). This is due to an additional intermolecular force
between two droplets of different fluid components in the
ternary-fluid system.

In the total spreading regime (case 3) in Fig. 18 (the upper
half of the frames), after the two droplets kiss, higher kinetic
energy is released due to different surface tension coefficients.
This kinetic energy is used to minimize the interface between
the two components by placing another component (in this
case, component 2) with a negative value of the spreading
factor between them. Finally, one of the droplets is com-
pletely engulfed by the other one, forming a mixed droplet at
t∗ = 6.68.

In the other total spreading case (case 4) in Fig. 18 (the
lower half of the frames), the two droplets approach each
other, but the third component with a negative value of the
spreading factor prevents the head-on collision. This causes

the approaching droplets to stretch vertically, perpendicular to
their line of motion (t∗ = 1.48). Then, the interfacial tension
forces come into play, and the two droplets recede (t∗ = 3.08),
bouncing off of each other.

In order to investigate the collision of two droplets in more
detail, the total and maximum kinetic energies are plotted in
Figs. 19 and 20, respectively. The total kinetic energy is defined
in the dimensionless form as

KE∗
tot =

∫
�

1
2ρi

(
u2

x + u2
y

)
d�i∫

�
1
8ρiU

2
reld�i

. (29)

Figure 19 shows that the oscillations of the merged droplets,
stemming from the head-on collision, is higher for case 1
compared with the other cases. Also, it can be seen that less than
40% of the initial total kinetic energy can be recovered after
the first oscillation in both binary- and ternary-fluid collisions.

As can be seen in Fig. 20, the head-on collision in the
ternary-fluid system (case 3) has the highest kinetic energy
compared with the other cases. This is likely due to having
higher surface tension values; the entrapment of one of the
components inside the other two components could be respon-
sible for this as well. Finally, we provide an empirical guideline
as how to choose numerical parameters, such as the interface
thickness ξ and mobility Mi . In general, these parameters are
determined based on numerical stability and accuracy. Having
a small ξ is desirable as this improves convergence towards

TABLE II. Fluid properties for different case studies.

Case study Surface tension coefficients Dimensionless parameters

Case 1 Binary (C2 = 0) σ13 = 10−3 We1 = 32.8, Oh1 = 0.615
Case 2 Ternary (total spreading) (σ12,σ13,σ23) = (10−3,10−3,10−3) We1 = 32.8, Oh1 = 0.615

We2 = 32.8, Oh2 = 0.615
Case 3 Ternary (total spreading) (σ12,σ13,σ23) = (10−3,2.5 × 10−3,10−3) We1 = 13.1, Oh1 = 0.389

We2 = 32.8, Oh2 = 0.615
Case 4 Ternary (total spreading) (σ12,σ13,σ23) = (2.5 × 10−3,10−3,10−3) We1 = 32.8, Oh1 = 0.615

We2 = 32.8, Oh2 = 0.615
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FIG. 17. Collision between two droplets. Case 1 (upper half of the frames) and case 2 (lower half of the frames). Vector lengths
are the same for all results and magnified by 1000. The solid lines indicate the order parameters of C1 = 0.5 (the red lines) and
C2 = 0.5 (the green lines).

the sharp-interface solution. A small value for ξ , however,
might lead to numerical instability, especially at higher density
ratios. As suggested in Ref. [54], we use ξ = 5 for a density

ratio of 1000, whereas ξ = 3 is found to be sufficient when
the density ratio is less than 10. Similarly, a high value for
the mobility results in excessive numerical dissipation, which
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FIG. 18. Collision between two droplets. Case 3 (upper half of the frames) and case 4 (lower half of the frames). Vector lengths
are the same for all results and magnified by 1000. The solid lines indicate the order parameters of C1 = 0.5 (the red lines) and
C2 = 0.5 (the green lines).
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FIG. 19. Dimensionless total kinetic energy versus dimensionless
time.

deteriorates the accuracy of the results. On the other hand,
having a too small Mi might cause numerical instability. In
this paper, we choose the mobility in such a way that 6Miγi/ξ

would be in the range of 0.014–0.03 [26] with 6Miγi/ξ =
0.03 for the highest density ratio and 6Miγi/ξ = 0.014 for
low density ratios.

IV. CONCLUSIONS

A ternary LB model for simulating three-component fluid
flows at high density and viscosity ratios was proposed in this
paper. The proposed model is able to handle both partial and

FIG. 20. Maximum dimensionless kinetic energy versus dimen-
sionless time.

total spreadings with density and viscosity ratios of 1000 and
100, respectively, while eliminating the parasitic currents to the
machine precision. Several numerical studies were carried out
to test the accuracy of the model, and the results were found to
be in good agreement with existing experimental and numerical
data. The head-on collision between two droplets was also
considered in both binary- and ternary-fluid systems. The
results demonstrated the capabilities of the model in dealing
with various kinds of ternary-fluid systems occurring in many
natural and engineering phenomena. Although we proposed
and tested the ternary LB model in 2D, its extension to 3D is
straightforward and is the subject of future work.
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