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Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows
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In this paper, we present a simple and accurate lattice Boltzmann (LB) model for immiscible two-phase flows,
which is able to deal with large density contrasts. This model utilizes two LB equations, one of which is used to
solve the conservative Allen-Cahn equation, and the other is adopted to solve the incompressible Navier-Stokes
equations. A forcing distribution function is elaborately designed in the LB equation for the Navier-Stokes
equations, which make it much simpler than the existing LB models. In addition, the proposed model can
achieve superior numerical accuracy compared with previous Allen-Cahn type of LB models. Several benchmark
two-phase problems, including static droplet, layered Poiseuille flow, and spinodal decomposition are simulated
to validate the present LB model. It is found that the present model can achieve relatively small spurious velocity
in the LB community, and the obtained numerical results also show good agreement with the analytical solutions
or some available results. Lastly, we use the present model to investigate the droplet impact on a thin liquid film
with a large density ratio of 1000 and the Reynolds number ranging from 20 to 500. The fascinating phenomena
of droplet splashing is successfully reproduced by the present model and the numerically predicted spreading
radius exhibits to obey the power law reported in the literature.
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I. INTRODUCTION

Two-phase flows are ubiquitous in nature and engineering
applications. Numerical modeling of such flows becomes
an important complement to experimental studies with the
rapid development of computational science, while it may
face some certain challenges owing to complex interfacial
dynamics involving multiple space and time scales. Physically,
the interfacial phenomenon can be recognized as a natural
consequence of intermolecular interactions. In this regard, the
lattice Boltzmann (LB) method [1–3], based on the mesoscopic
kinetic theory, becomes a suitable candidate to model and
simulate two-phase flows.

Over the past three decades, the LB method has received
great success in modeling multiphase fluid systems [1–3] and
some nonlinear equation systems [4,5]. The reasons behind its
success lie in the algorithmic simplicity, nature parallelization,
and easy implementation of complex boundary. Additionally,
thanks to the kinetic nature, the LB method can deal with the
intermolecular interactions in a straightforward manner, which
is also regarded as its unique advantage that distinguishes it
from the traditional computational fluid dynamics methods. Up
to now, a variety of LB models for multiphase flows have been
proposed from different physical pictures, which mainly fall
into four categories, including color-gradient model [6], pseu-
dopotential model [7], free-energy model [8], and phase-field-
based model [9–13]. For the detailed expositions, the readers
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can refer to the recent reviews [14,15] on LB approaches for
multiphase flows and the references therein.

Most of the previously proposed LB models are only able
to handle two-phase flows with small or moderate density
contrasts. Generally, the density ratio of liquid and vapor
phases is larger than 100, and it even could approach 1000
for a realistic water-air two-phase system. Within this context,
to develop a multiphase model that can simulate large-density-
ratio flows is an attractive topic in the LB community. Inamuro
et al. [16] proposed a first LB model based on the free-energy
method that can tolerate large density differences. However,
they need to solve an additional Poisson equation for the
pressure to enforce the incompressible condition, which seems
to be complex, and undermines the simplicity of the LB
method. In addition, an empirical cutoff value is used to
determine fluid density, which could lead to the violation of
the mass conservation, like the level set method [17]. The
extension of the original pseudopotential model [7] to large-
density-ratio cases was attributed to Yuan and Schaefer [18].
They evaluated the performances of different equations of state
in the pseudopotential model and found that a large density
ratio can be reached with a suitable choice of equation of
state. However, it is noticed that their studies only focus on
the stationary two-phase problems, and the model will suffer
from some limitations more or less when it is readily applied
to dynamic two-phase problems. To remove this limitation,
Li et al. [19] presented an improved pseudopotential model
that can satisfy thermodynamic consistency. Meanwhile it can
improve numerical stability of the pseudopotential method at a
large density ratio for dynamic flows, which was demonstrated
by the simulation of a droplet splashing on a liquid film with
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the largest density ratio of 700. But they also declared in the
literature that it would induce numerical instability when the
density ratio was increased to 1000 in this case. Ba et al. [20]
also developed a color-gradient-based LB model for simulating
two-phase flows with a high density ratio, in which a modified
equilibrium distribution function and a simple source term are
introduced. They significantly improved the performance of
the color-gradient method and achieved satisfactory results in
the simulation of droplet splashing problem with the largest
density ratio of 100. On the other hand, several researchers
have also attempted to develop a large-density-ratio LB model
based on the phase-field theory, which has become increasingly
popular in modeling multiphase flows [21]. Zheng et al. [22]
proposed a LB two-phase model based on the Cahn-Hilliard
phase-field equation and claimed that their model can simulate
large-density-ratio flows. Actually, it is noted that they only
consider the Navier-Stokes equations on the average density
of binary fluids instead of the real fluid density, and therefore
their model in theory is only able to deal with density-matched
binary fluids, which is also numerically proved by Fakhari and
Rahimian [23]. Lee et al. [10,11] also presented another LB
model for large-density-ratio two-phase flows from the phase-
field viewpoint. The key point of their model in achieving a
large density ratio is the use of a stable mixing difference
scheme for computing gradient terms, which unfortunately
could lead to the violation of mass and momentum conser-
vation [24]. Besides, an inconsistency between the recovered
interfacial equation and the target equation in their models was
also found [12,25]. Wang et al. [26] proposed an interesting
LB flux model for two-phase flows with large density ratios, in
which a stable high-order weighted essentially non-oscillator
difference scheme is used to solve the Cahn-Hilliard equation,
and a like finite volume method for particle distribution
function is utilized to solve the incompressible Navier-Stokes
equations. Recently, Ren et al. [27] proposed a LB model
from the perspective of the Allen-Cahn phase-field equation,
while they only concentrated on two-phase flows limited
to small or moderate density ratios, and whether it can be
applicable for large-density-ratio flows has not been discussed.
In addition, their model contains many complex gradient terms,
which seem to be implemented with difficulty. More recently,
Fakhari and Bolster [28] developed a simple LB model based
on the Allen-Cahn phase-field equation that can simulate
large-density-ratio two-phase flows. This model utilized a LB
equation proposed by Geier et al. [29] to track the interface,
which is found to contain some artificial terms in the recovered
interfacial equation [27,30]. Therefore the model of Fakhari
and Bolster [28] will inherit this weakness in terms of interface
capturing, which may affect the numerical accuracy in solving
two-phase flows.

In this paper, we intend to present a simple, accurate, and
also robust two-phase model for large-density-ratio flows in the
framework of the LB method. The proposed LB model is based
on the Allen-Cahn phase-field theory, which only contains
at most a second-order gradient term. Therefore the present
model can achieve a high numerical accuracy in interface
tracking, compared with the previous LB models [9–12,23,25]
based on the four-order Cahn-Hilliard equation. In addition, a
force distribution function is introduced in this model, which
can be much simpler than those of the existing LB models

[10–12,25,27,28]. The inconsistency of the recovered
interfacial equation with the target equation in Fakhari’s
model [28] is also remedied in this model by the incorpo-
ration of a proper source term [30]. Through the Chapman-
Enskog analyis, our model can recover both the conservative
Allen-Cahn and the incompressible Navier-Stokes equations
correctly, which can be demonstrated to be more accurate
than all the previous Allen-Cahn based LB models [27,28].
The rest of the paper is arranged as follows. In Sec. II, the
macroscopic governing equations are first given, and a LB
model for two-phase flows based on the Allen-Cahn phase-field
theory is then presented. Numerical experiments to validate the
present model and a detailed comparison with some previous
LB models can be found in Sec. III, and finally we made a brief
summary in Sec. IV.

II. LB MODEL FOR TWO-PHASE FLOWS

In this section, we first give a brief introduction on the
governing equations in the framework of the Allen-Cahn
phase-field theory [31,32], and then present a LB model
for two-phase incompressible flows. Based on the collision
operator used, the LB method can be roughly divided into
three categories: the single-relaxation-time or so-called BGK
method [33], the two-relaxation-time method [34], and the
multiple-relaxation-time (MRT) method [35]. Considering
its simplicity and high computational efficiency, the present
model is constructed based on the BGK collision operator and
its extension to the advanced MRT version can be conducted
directly, which constitutes one of our future research branches.

A. Governing equations

The conservative Allen-Cahn equation can be expressed
by [31,32]

∂φ

∂t
+ ∇ · (φu) = ∇ · [M(∇φ − λn)], (1)

where M is the mobility, n is the unit vector normal to the
interface,

n = ∇φ

|∇φ| , (2)

and λ is a function of φ defined by

λ = 4φ(1 − φ)

W
, (3)

where W is the interface thickness, φ taking 1 and 0 represents
the liquid and gas phase fluids, respectively, and the interface
is marked by the contour level of φ = 0.5. Here we consider
the incompressible two-phase flows, and the fluid velocity u in
Eq. (1) is governed by the following Navier-Stokes equations
with the force [36],

∇ · u = 0, (4a)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · [μ(∇u + ∇uT )]

+ Fs + G, (4b)

where ρ is the fluid density, p is the hydrodynamic pressure,
μ is the dynamic viscosity by μ = ρν, ν is the kinematic
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viscosity, Fs is the surface tension force, and G is the pos-
sible body force. In the literature [37], there exist several
different forms of the surface tension force; here we choose
the widely used one of the potential form in the phase-field
methods [12,21,25,38],

Fs = μφ∇φ, (5)

where μφ is the chemical potential defined by

μφ = 4βφ(φ − 1)(φ − 0.5) − k∇2φ, (6)

where k and β are physical parameters that depend on the
interface thickness and the surface tension (σ ),

k = 3

2
σW, β = 12σ

W
. (7)

B. LB model for the conservative Allen-Cahn equation

The LB evolution equation with the BGK collision operator
for the conservative Allen-Cahn equation can be written

as [4,30]

fi(x + ciδt ,t + δt ) − fi(x,t) = − 1

τf

[
fi(x,t) − f

eq
i (x,t)

]
+ δtFi(x,t), (8)

where fi(x,t) is the particle distribution function, τf is the
nondimensional relaxation time related to the mobility, Fi(x,t)
is the source term, and a simple form of the equilibrium
distribution function f

eq
i (x,t) is given by

f
eq
i = ωiφ

(
1 + ci · u

c2
s

)
, (9)

where cs is the sound speed, ci are the discrete velocities, and
ωi are the weighting coefficients. ci and ωi depend on the
choice of the lattice model. For the two-dimensional flows
considered here, the D2Q5 or D2Q9 lattice model can be
applied in the LB algorithm for the Allen-Cahn equation.
Considering the consistency with the LB algorithm for Navier-
Stokes equations, in this work we adopt the popular D2Q9
lattice model [12,13,33,39]. Then the weighting coefficients
ωi can be given by ω0 = 4/9, ω1−4 = 1/9, ω5−8 = 1/36, and
the discrete velocities ci are

ci =
⎧⎨
⎩

(0,0)c, i = 0,

(cos[(i − 1)π/2], sin[(i − 1)π/2])c, i = 1–4,√
2(cos[(i − 5)π/2 + π/4], sin[(i − 5)π/2 + π/4])c, i = 5–8,

(10)

where c = δx/δt is the lattice speed with δx and δt representing
the grid spacing and the time increment, respectively, and cs =
c/

√
3. By convention, δx and δt are set as the length and time

units, i.e., δx = δt = 1.
To recover the Allen-Cahn equation exactly with the multi-

scale analysis, the source term Fi in Eq. (8) should be defined
as [30]

Fi =
(

1 − 1

2τf

)
ωici · [

∂t (φu) + c2
s λn

]
c2
s

, (11)

where the time derivative term ∂t (φu) is introduced to elim-
inate the artificial term in the recovered equation, which is
similar to the technique used in LB models [12,13,38] for the
Cahn-Hilliard equation. One notices that in the existing LB
model [28] based on the Allen-Cahn theory, the term ∂t (φu)
is not included, which results in the deviation between the
recovered equation and the target equation [27,30].

The order parameter in the present model can be computed
by

φ =
∑

i

fi . (12)

The distribution of fluid density in a two-phase system physi-
cally is consistent with that of the order parameter. To satisfy
this physical property, the fluid density should take the linear
interpolation,

ρ = φ(ρl − ρg) + ρg, (13)

where ρl and ρg represent the densities of the liquid and gas
phases. Following the Chapman-Enskog analysis in Ref. [30],

it is found that the conservative Allen-Cahn equation can be
recovered correctly from the LB equation (8) and the mobility
can be determined by

M = c2
s (τf − 0.5)δt. (14)

C. LB model for the Navier-Stokes equations

The LB equation with the BGK collision operator for the
Navier-Stokes equations can be expressed as [40,41]

gi(x + ciδt ,t + δt ) − gi(x,t) = − 1

τg

[
gi(x,t) − g

eq
i (x,t)

]
+ δtGi(x,t), (15)

where gi(x,t) is the distribution function for solving the flow
field, g

eq
i (x,t) is its corresponding equilibrium distribution

function, τg is the dimensionless relaxation time related to
the viscosity, and Gi(x,t) is the force distribution function.
To satisfy the divergence-free condition of velocity, g

eq
i (x,t)

should be elaborately designed as [12,38]

g
eq
i =

{ p

c2
s
(ωi − 1) + ρsi(u), i = 0,

p

c2
s
ωi + ρsi(u), i �= 0

(16)

with

si(u) = ωi

[
ci · u
c2
s

+ (ci · u)2

2c4
s

− u · u
2c2

s

]
. (17)

For the two-dimensional flows, the D2Q9 lattice model is also
adopted for flow field and the related physical coefficients ωi,ci

are also chosen as those of the previous section.
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Different from the previous LB models [10–12,25,27,28],
a force distribution function is given by

Gi =
(

1 − 1

2τg

)
ωi

[
u · ∇ρ + ci ·F

c2
s

+u∇ρ :
(
cici − c2

s I
)

c2
s

]
,

(18)

where F is the total force,

F = Fs + G. (19)

We would like to point out that the force distribution function
given in Eq. (18) can be much simpler than those of the
previous models [10–12,25,27,28]. In addition, the present LB
model with the force term (18) can recover the Navier-Stokes
equations correctly using the Chapman-Enskog analysis (see
the Appendix for the details). Substituting Eqs. (5) and (13)
into Eq. (18), one can further simplify Eq. (18) as

Gi =
(

1 − 1

2τg

)

×ωi

[
ci · (μφ∇φ + G)

c2
s

+ (ρl − ρg)u∇φ : cici

c2
s

]
. (20)

Taking the zeroth- and the first-order moments of the distri-
bution function gi , the macroscopic quantities u and p can be
evaluated as [12,38]

ρu =
∑

i

cigi + 0.5δtF, (21a)

p = c2
s

(1 − ω0)

⎡
⎣∑

i �=0

gi + δt

2
u · ∇ρ + ρs0(u)

⎤
⎦, (21b)

which can be further recast as

ρu =
∑

i

cigi + 0.5δt (μφ∇φ + G), (22a)

p = c2
s

(1 − ω0)

⎡
⎣∑

i �=0

gi + δt

2
(ρl − ρg)u · ∇φ + ρs0(u)

⎤
⎦,

(22b)

with the substitutions of Eqs. (5) and (13). Based on the
Chapman-Enskog analysis, the fluid kinematic viscosity can
be determined by

ν = c2
s (τg − 0.5)δt . (23)

In a two-phase system, the viscosity is no longer a uniform
value due to its jump at the liquid-gas interface. There are
several manners in which to treat the viscosity across the
interface. To be smooth across the interface, the viscosity in the
diffusion-interface methods is usually supposed to be a linear
function of the order parameter [9],

ν = φ(νl − νg) + νg, (24)

where νl and νg are the kinematic viscosities of the liquid and
gas phases. In addition to Eq. (24), another popular treatment
to determine the viscosity is the inverse linear form [11,28],

1

ν
= φ

(
1

νl

− 1

νg

)
+ 1

νg

. (25)

Oftentimes, to avoid the sharp-interface limit of the phase-
field methods, a step function is also applied for the dynamic
viscosity [27],

μ =
{
μl, φ � 0.5,

μg, φ < 0.5,
(26)

where μl and μg are the dynamic viscosities of two different
phases. The scheme (26) can achieve a considerable accuracy
in tracking the interface, while similar to the sharp-interface
methods, it could be unstable when it is applied to interfacial
dynamic problems with large topology change [42]. In this
work, a simple linear form as used for density is adopted, if
not specified.

For numerical iterations, the derivative terms in the model
should be discretized with suitable difference schemes. For
simplicity, we adopt the explicit Euler scheme to compute
the temporal derivative in Eq. (11), i.e., ∂t (φu) = [φ(t)u(t) −
φ(t − δt )u(t − δt )]/δt [4,12]. As commonly used in LB lit-
eratures [12,13,25,38], the gradient term is computed by the
second-order isotropic central scheme,

∇φ(x) =
∑
i �=0

ωiciφ(x + ckδt )

c2
s δt

(27)

and the Laplace operator is calculated by

∇2φ(x) =
∑
i �=0

2ωi[φ(x + ciδt ) − φ(x)]

c2
s δ

2
t

. (28)

Occasionally, the gradient term can be computed with the
nonequilibrium part in some certain LB approaches [5,30]
for the convection-diffusion equations. To derive the computa-
tional scheme, we first introduce the multiscale expansions [2],

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + · · ·, (29a)

∂t = ε∂t1 + ε2∂t2 , ∇ = ε∇1, Fi = εFi
(1) + ε2Fi

(2),

(29b)

where ε is a small parameter. Applying the Taylor expansion
and multiscale formulas to Eq. (8), one can derive the consec-
utive equations in ε,

D1if
(0)
i = − 1

τf δt

f
(1)
i + Fi

(1), (30a)

∂t2f
(0)
i +

(
1 − 1

2τf

)
D1if

(1)
i + δt

2
D1iFi

(1)

= − 1

τf δt

f
(2)
i + Fi

(2), (30b)

where D1i = ∂t1 + ci · ∇1. From Eq. (30a), one can easily
obtain the first-order moment of f

(1)
i ,

∑
i

cif
(1)
i = −τf δt

[
c2
s ∇1φ + 1

2τf

∂t1 (φu)

−
(

1 − 1

2τf

)
c2
s λn(1)

]
. (31)
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Multiplying ε on both sides of Eq. (31), we can rewrite Eq. (31)
as ∑

i

ci

(
fi − f

(eq)
i

) + δt

2
∂t (φu)

= c2
s δt∇φ

[
−τf +

(
τf − 1

2

)
λ

|∇φ|
]
, (32)

where the approximation εf
(1)
i ≈ fi − f

eq
i has been applied,

and the time derivative term at t2 diffusion scale has been
neglected. After some algebraic manipulations, one can ul-
timately derive the computational schemes for the gradient of
the phase-field variable and its gradient norm [30]

|∇φ| = −|C| − B

A
, (33a)

∇φ = C

A + B
|∇φ|

, (33b)

where A = −c2
s τf δt , B = Mδtλ, and C = ∑

i ci(fi − f
eq
i ) +

0.5δt∂t (φu). From Eqs. (33a) and (33b), we can clearly observe
that the gradient can be calculated locally from the nonequi-
librium part of the distribution function without any finite
differences involved. In the following, we intend to present
a discussion on the accuracy of the nonequilibrium scheme,
which is not given in Ref. [30]. Obviously, the error arises
from the estimate of C, where the high-order terms of the
nonequilibrium part (f (k)

i ,k � 2) and the term − δt

2 ε2∂t2 (φu)
have been removed. We only concentrate on the effect of
the second-order term of the nonequilibrium part, since its
higher-order terms are of little importance with the increasing
order of ε [2,43]. In this case, we can derive the expression of
the main truncation error term,

∑
i

cif
(2)
i = −τf δt

[
1

2τf

∂t2 (φu) − M∂t1 (2∇1φ − λn(1))

−M∇1 · (∇1 · φ� · u)

]
, (34)

where Eq. (30b) has been used. According to Refs. [43,44], it
is known that the lattice spacing and time interval satisfy the
relation δt ∝ δ2

x at the diffusion scale, and consequently, we can
find

∑
i cif

(2)
i ∝ δ2

x and δt

2 ∂t2 (φu) ∝ δ2
x . Based on the above

results, we can derive the relation C = ∑
i ci(fi − f

eq
i ) +

0.5δt∂t (φu) + O(δ2
x), which indicates that the nonequilibrium

scheme can also achieve a second-order accuracy in space as
the finite difference scheme. In practice, when the |∇φ| and
∇φ are computed by Eqs. (33a) and (33b), the unit normal
vector n can then be obtained. This treatment on the gradient
term enables the collision process to be implemented locally, in
addition to the computation of μφ , which is one of the striking
features in LB approaches. Therefore the scheme will be
adopted in our simulations, unless otherwise stated. However,
we find that the velocity actually satisfies an implicit equation,
when Eqs. (33a) and (33b) are applied for the statistics of the
velocity, and for simplicity we just applied Eqs. (27) and (28)
in this step.

At the end of this section, we would like to give some
remarks on the present model for two-phase flows. Firstly,
the present model is developed based on the conservative
Allen-Cahn equation, which contains a lower-order diffusion
term compared with the fourth-order Cahn-Hilliard equation.
From the theoretical point of view, the Cahn-Hilliard equation
cannot be directly recovered from the LB models through
the second-order Chapman-Enskog analysis. Therefore the
Allen-Cahn based model in theory can achieve a higher
numerical accuracy in solving the index function φ and also
the density field via Eq. (13) than the Cahn-Hilliard type
of LB models. The higher-precision solution of φ plays a
significant role in simulating large-density-ratio flows since
a small deviation could be more likely to lead an unphysically
negative value of fluid density, causing numerical instabilities.
It is worth noting that a type of large-density-ratio LB mod-
els [10,11] have been proposed based on the Cahn-Hilliard
equation, which is attributed to the use of a mixed scheme that
combines the central and biased differences. However, it
will induce the violations of mass and momentum conserva-
tion [24]. On the contrary, in our model the isotropic central
scheme and the local nonequilibrium scheme are applied,
which not only preserve a second-order accuracy in space, but
also can ensure the global mass conservation of a two-phase
system. Secondly, a force distribution function for flow field is
proposed in the present model, which can be much simpler than
those of the existing Allen-Cahn based LB models [27,28]. It
is noted that our model only contains one type of nonlocal
gradient term for the order parameter, which is much smaller
than those of the previous model [27]. In addition, the gradient
term and its modulus in our model can be computed with local
nonequilibrium schemes, which enables the collision process
to be conducted locally if μφ has been given. Whereas, in the
previous models [27,28], only the central difference schemes
are applied, and thus the collision process cannot be conducted
locally. Thirdly, both the conservative Allen-Cahn equation
and the incompressible Navier-Stokes equations can be re-
covered exactly from the present model with the multiscale
analysis. Whereas, the model of Fakhari and Bolster [28] con-
tains some artificial terms in the recovered interfacial equation.
The numerical experiments conducted below will demonstrate
that the present model is more accurate than the previous
Allen-Cahn based LB models [27,28]. Lastly, we would like
to stress that the present model is a standard LB scheme for
simulating large-density-ratio two-phase flows without the use
of an advanced finite difference or finite volume method [26],
therefore it can naturally inherit the advantages of the LB
method in dealing with complex physical boundary and parallel
computing.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, several typical benchmark problems, in-
cluding static droplet, layered Poiseuille flows, and spinodal
decomposition are used to validate the present LB model
for large-density-ratio flows. We attempt to conduct detailed
comparisons between the present results and the analytical
solutions or some available results. Lastly, we also investigated
droplet impact on a thin liquid film, where the effect of the
Reynolds number is discussed in detail.
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FIG. 1. Static droplet tests with density ratio ρl/ρg = 1000 : 1. (a) The velocity distribution of the whole domain at the equilibrium state.
The solid and dashed lines represent the equilibrium shape of the droplet and its initial shape, respectively; (b) the density distributions along
the horizontal center line (y = Ny/2) at different values of the mobility.

A. Static droplet

The static droplet is a basic two-phase problem, which
has been widely used to verify the developed numerical
methods [10,12,19,20,23,25]. In this section, we will simulate
this problem with large density ratio to validate the present
LB model. Initially, a liquid droplet with the radius of R = 50
surrounded by the gas phase is located at the center of the
square domain Ny×Nx = 200×200 and the periodic boundary
conditions are applied at all boundaries. The distribution profile
of the order parameter is initialized by

φ(x,y) = 0.5 + 0.5 tanh
2[R − (x − 100)2 − (y − 100)2]

W
,

(35)

which enables its value to be smooth across the interface. In the
simulation, we set the density ratio to be ρl/ρg = 1000 : 1, and
some other physical parameters are given as νl = νg = 0.1,
σ = 0.001, W = 5. Figure 1(a) depicts the interface pattern
of the droplet at the equilibrium state, together with the initial
one given by Eq. (35). It can be found that they line up over
each other exactly, which indicates that the present model has
a high accuracy in tracking the interface. Furthermore, we
quantitatively plotted in Fig. 1(b) the density distribution along
the horizontal center line with different values of the mobility
M . It is shown that numerical predictions of the density field
are all in good agreement with the analytical solution.

The spurious velocity around the interface is a commonly
concerned problem in LB approaches for two-phase flows,
and cannot be completely eliminated in the framework of the
LB method [45]. In Fig. 1(a), we also display the velocity
distribution in the whole computational domain obtained by
the present model. It can be found that the spurious velocities
indeed exist at the vicinity of the interface, and their maximum

magnitude computed by |u|max = (
√

u2 + v2)max has an order
of 10−9. The effect of the density ratio on the spurious velocities
is investigated. We simulated this problem with a wide range
of density ratios from 10 to 1000, and the obtained results
showed that the spurious velocities at least have the order
of 10−8. We also examined the effect of the dimensionless
Laplace number defined by Rσ/νl on the spurious velocity.
Different Laplace numbers are obtained by changing the sur-
face tension coefficient. The numerical experiments indicate
that the maximum magnitudes of the spurious velocities for
all situations have an order of 10−9 for the Laplace number
between 0.05 and 5. Lastly in this subsection, we further
conducted comparisons between the present model and some
previously improved LB models in terms of the spurious
velocity. It has been reported that the maximum amplitude
of spurious velocities in an improved Shan-Chen model [46]
has the order of 10−3. Recently, Ba et al. [20] developed an
improved color-gradient-based model for high density ratio,
which produced spurious velocities with the order of 10−5.
As for the Cahn-Hilliard type of LB model [12], they can
obtain spurious velocities at the level of 10−6. From the above
discussion, it can be concluded that the present LB model is
able to produce relatively small spurious velocities.

B. Layered Poiseuille flow

The layered Poiseuille flow is a classical two-phase prob-
lem, which can provide a good benchmark for validating the de-
veloped LB approaches [20,25–27,47,48]. To our knowledge,
most of the previous studies are limited to the small density
ratio less than 10, due to the numerical instability problem. In
this section, we will simulate the layered two-phase Poiseuille
flows with the largest density ratio of 1000, and also conduct
comparisons of the present model with the existing Allen-Cahn
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FIG. 2. Comparisons of the horizontal velocity profiles obtained by the present model and the existing Allen-Cahn based LB models [27,28]
with various density ratios: (a) ρl : ρg = 10 : 1; (b) ρl : ρg = 100 : 1; (c) ρl : ρg = 150 : 1; (d) ρl : ρg = 1000 : 1. The solid lines represent the
corresponding analytical solutions.

based LB models [27,28]. Consider a channel flow of two
immiscible fluids driven by a constant body force G = (Gx,0).
Initially, the gas phase fluid is placed in the upper region of
0 < y � h and the region of −h � y � 0 is filled with the
liquid phase fluid. Periodic boundary conditions are applied in
the x direction, and the bottom and top boundaries are the solid
walls, which are treated by the halfway bounce-back boundary
conditions. Based on these boundary conditions, one can derive
the analytical solution for the horizontal velocity profile (ux),

ux(y) =

⎧⎪⎨
⎪⎩

Gxh
2

2μg

[
−(

y

h

)2 − y

h

(
μg−μl

μg+μl

)
+ 2μg

μg+μl

]
, 0 < y � h,

Gxh
2

2μl

[
−(

y

h

)2 − y

h

(
μg−μl

μg+μl

)
+ 2μl

μg+μl

]
, −h � y � 0,

(36)

where Gx = uc(μl + μg)/h2, which provides a steady hori-
zontal velocity of uc at the center. To quantitatively describe the
accuracy of the present model and also conveniently compare

with the existing LB models, the following relative error is
used:

Eu =
∑

y

∣∣un
x(y,t) − ua

x(y)
∣∣∑

y

∣∣ua
x(y)

∣∣ , (37)

where the subscripts n and a denote the numerical and
analytical solutions.

In the simulation, the computational grid is chosen to be
Ny×Nx = 100×10, and the initial distribution of the order
parameter is set as

φ(x,y) = 0.5 + 0.5 tanh
2(0.5Ny − y)

W
, (38)

which gives the profile of the planar interface. uc is fixed as
a small value of 10−4, which ensures that the incompressible
limit can be satisfied, and some other related parameters are
given as W = 5, σ = 0.001, νl = 0.1, and M = 0.1. Four
different cases of the density ratios ρl/ρg = 10,100,150,1000
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TABLE I. Relative errors of the horizontal velocity (ux) in layered Poiseuille tests.

Density ratio Present LB model Model of Ren et al. [27] Model of Fakhari and Bolster [28]
(ρl/ρg)

10 8.9×10−3 1.0×10−2 6.2×10−2

100 6.9×10−3 4.4×10−2 2.7×10−1

150 5.4×10−3 8.2×10−2 3.0×10−1

1000 3.2×10−2 1.1×10−1 3.9×10−1

are considered, where the corresponding kinematic viscosity
ratios νg/νl are 1 for the former three cases, and 10 for the
latter case. Here the dynamic viscosity is given by Eq. (26) in
the present test of our model. Note that the two-phase system
with ρl/ρg = 1000 and μl/μg = 100 considered here is very
close to the realistic water-air system at room temperature and
normal atmospheric pressure. Figure 2 shows the profiles of the
horizontal velocity (ux) with various density ratios obtained by
the present model, together with the corresponding analytical
solutions. For comparisons, we also simulated the above cases
with the previous Allen-Cahn based LB models [27,28] under
identical computational conditions, and the obtained numerical
results are also presented in Fig. 2. It can be observed from
Fig. 2 that the numerical results of the present model agree
well with the analytical solutions for all density ratios, while
some obvious discrepancies with the analytical solutions are
found in the results of the existing Allen-Cahn based LB mod-
els [27,28], especially at high density ratios. We also conducted
a quantitative comparison between the present model and the
previous LB models [27,28]. The relative errors of the velocity
ux with these LB models were measured and the results are
summarized in Table I. It is found that the previous models
produce large relative errors, and they all increase significantly
with the density ratio. In contrast, a much smaller relative
error can be derived by the present model, which also seems
to be independent of the density ratio. Based on the above
discussion, we can see that the present model is more accurate
than the previous Allen-Cahn based LB models [27,28].

C. Spinodal decomposition

Spinodal decomposition [49] is a fundamental property
of a fluid mixture with two different species. For suitable
compositions and quenches, the initial homogeneous mixture
is unstable in the presence of small fluctuations, and then
the spinodal decomposition phenomenon will take place.
This phenomenon, ubiquitous in physics and chemistry, has
been studied extensively. Several researchers have also in-
vestigated the spinodal decomposition problem using the LB
approaches [7,8,25,50], while they mainly focus on the process
of phase separation with small or moderate density ratios.
In this section, we intend to simulate this problem with the
large density ratio of 1000 by the present LB model, where
the gradient terms are computed by Eqs. (27) and (28). This
exercise is devoted to the demonstration of the capability
of our method in studying complex high-density-ratio two-
phase flows. The computational mesh used here is chosen
to be Ny×Nx = 200×200. The periodic boundary conditions
are applied at all boundaries. In the simulation, the initial
distribution of the order parameter with small fluctuations can

be given by

φ(x,y) = 1
3 + rand(x,y), (39)

where rand(x,y) is a random function with the maximum
amplitude of 0.01. Then a small perturbation can be imposed
on a homogeneous density field via Eq. (13), where ρl and ρg

are set to be 1000 and 1. We only consider binary fluids with
the viscosity ratio of νg/νl = 10, which approaches that of a
water-air system. The remaining parameters in the simulation
are fixed as σ = 0.2, W = 4, and M = 0.1. Figure 3 depicts
the time evolution of the density distribution during the phase
separating process, where the time (t) has been nondimension-
alized by the viscous time of the liquid phase ρlνlW/σ . It can
be found that the early stage of phase separation induces small
fluctuations of the density into large-scale inhomogeneities.
Then some tiny droplets with random shapes are formed in
the system. The droplet sizes increase with time, and some of
them also coalesce into the larger ones, which leads to the
eventual separation of binary fluid components. The above
phase separating processes are results of the hydrodynamics
and surface tension action, which conform to the expectation.

D. Droplet impact on a thin liquid film

Lastly, to show the capacity of the present model, we
consider a complex problem of droplet impact dynamics with
large density ratio. Droplet impact on liquid surfaces [51] is
a familiar spectacle in the natural event of a falling raindrop
on the wet ground or a puddle. Further, it plays a prominent
role in many technical applications, such as ink jet printing,
spray cooling, and and coating. In spite of its ubiquity and
extensive research [51–54], numerical simulation of such flows
still poses some challenges due to complex interfacial changes
in topology, and yet there exists a large density difference for
a water-air system. In addition, a numerical singularity may be
produced at the impact point. In this section, we will simulate
a two-dimensional droplet impact on a preexisting thin liquid
film with a large density ratio of 1000 by the present LB model,
in the absence of the gravitational field.

The simulations are performed on a uniform computational
mesh with the size of L×H = 1500×500, as illustrated in
Fig. 4. A wetting liquid film with the height of Hw = 0.1H is
initially located at the bottom wall, and a circular droplet with
the radius (R) of 100 lattice units is just placed on the upper
region of the liquid film. In the simulation, the distribution of
the order parameter can be initialized by

φ(x,y) = 0.5 + 0.5 tanh
2(Hw − y)

W
, (40)

033309-8



PHASE-FIELD-BASED LATTICE BOLTZMANN MODELING … PHYSICAL REVIEW E 97, 033309 (2018)

FIG. 3. Time evolution of the density distribution during the phase separating processes, (a) t = 0; (b) t = 0.05; (c) t = 0.25; (d) t = 0.5;
(e) t = 5; (f) t = 25; (g) t = 50; (h) t = 125.

and also

φ(x,y) = 0.5 + 0.5 tanh

× 2[R−(x−0.5L)2−(y−R−Hw)2]

W
, y > Hw,

(41)

where W is the interface thickness and is set to be 5. The
velocity field at the initial time can be assigned by

(u,v) =
{

(0, − φU ), y > Hw,

(0,0), y � Hw,
(42)

where U is the impact velocity with a fixed value of 0.05. The
periodic boundary conditions are applied at the left and right
boundaries, while the no-slip bounce-back boundary condition
is imposed at the bottom wall and the open boundary condition
is utilized at the top boundary. Two major dimensionless
parameters governing droplet impact are the Reynolds number

FIG. 4. Schematic of the initial setup for the droplet impact on a
thin liquid film.

and the Weber number, which are respectively defined by [51]

Re = ρlDU

μl

(43)

and

We = ρlDU 2

σ
, (44)

where D is the droplet diameter. The Weber number has been
taken fixed and equals We = 8000, as commonly used in
other studies [10,52,55]. The density ratio of the liquid and
gas phases is set to ρl/ρg = 1000:1. Three typical Reynolds
numbers Re = 500, 100, and 20 are considered in this work,
which are derived by tuning the kinematic viscosity of the
liquid phase while keeping the gas kinematic viscosity as
a constant. With this strategy, it is found that the lowest
achievable liquid kinematic viscosity is 0.02 at the largest Re
of 500, and the viscosity ratio (νg/νl) at this situation is 10,
which is very close to that of a realistic water-air two-phase
system. With the driving of the impact velocity, the system
is released and the droplet will instantly impact onto the
underneath film. Here we mainly concentrate on the interfacial
dynamics and the variation law of the spreading radius versus
time. Figures 5–7 depict typical scenic representations of the
droplet impact process at three different Reynolds numbers of
20, 100, and 500, where the time instants t∗ is the normalized
time defined by t∗ = tU/D; t is the iteration step. For high
Re of 500, the droplet moves downward instantly with slight
deformation at the initial stage, and some tiny bubble-ring
entrapments are visible in the neck connecting the droplet
and film. The bubble entrapment phenomenon has also been
reported in the recent studies on the droplet impact [53,54].
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FIG. 5. Snapshots of droplet impact on a thin liquid film with
Re = 500, We = 8000, and ρl/ρg = 1000. The time instants t∗ have
been normalized by the characteristic time D/U .

Then the droplet continues to spread, followed by the formation
of the ejecta sheet at the intersection region between the droplet
and the liquid layer. The ejecta sheet grows into a splashing
lamella [known as crown in axisymmetric or three-dimensional
(3D) geometry] propagating radially with increasing time and
tends to bend at its end rim. The splashing phenomenon is
also observed in a moderate Re of 100, as shown in Fig. 6,
while the extent is significantly reduced. This is ascribed to
the increasing frictional force between the liquid phase and its
ambient vapor phase at a larger viscosity, and then the interface
layer can be more stable. As the Reynolds number is lowered to
a small value of 20, we do not observe the splashing behavior
of the droplet in Fig. 7, as expected. The droplet only merges
with the thin liquid film, which evolves in a manner of the
outward moving surface wave. This process of droplet impact
is oftentimes named as deposition, which is in line with the
results of the previous studies [10,19].

FIG. 6. Snapshots of droplet impact on a thin liquid film with
Re = 100, We = 8000, and ρl/ρg = 1000. The time instants t∗ have
been normalized by the characteristic time D/U .

We also conducted a quantitative study on the spreading
radius, which is a concerning physical quantity in droplet
impact dynamics [51]. Previous research [10,19,20,52,55] has
indicated that the growth of the spreading radius generally
can be described by the power law r/D = C

√
Ut/D, where

C is a coefficient that depends on the flow geometry. For
the axisymmetric or 3D modeling of the droplet impact, the
coefficientC is found to be 1.1 by Josseranda and Zaleskib [55].
Whereas, for the plane two-dimensional situation, the scaled
prefactor C is found to be larger than 1.1, as reported in several
literatures [10,15,20,52]. Figure 8 shows the time variation
of the numerically predicted spreading radius by the present
model. For a comparison, the theoretical result of the fitting
power formula is also presented. The comparison between
them shows a good agreement in general, except for a slight
deviation at the initial instants. The slight deviation is probably
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FIG. 7. Snapshots of droplet impact on a thin liquid film with
Re = 20, We = 8000, and ρl/ρg = 1000. The time instants t∗ have
been normalized by the characteristic time D/U .

attributed to the LB intrinsic property that it falls into the cate-
gory of diffusion-interface methods. In the diffusion-interface
method, the sustainable interface thickness is generally larger
than three lattice units, below which the algorithm becomes
unstable or the interface shape is distorted. At the initial stage of
splashing, the spreading radius variation is rather small, which
has a considerable size with interface width, and therefore
it may corrode the accuracy of the numerically predicted
spreading radius. In addition, from Fig. 8 we also found that the
spreading radius in the present simulation generally exhibits
obeyance of the power law r/D = 1.35

√
Ut/D.

IV. SUMMARY

Numerical modeling of two-phase flows with large density
ratios is still a challenging task in the framework of the LB
approach. In this paper, we propose a simple and accurate LB
model for two-phase systems, which is capable of simulating
large-density-ratio flows. The proposed LB model is based on

10
−2

10
−1

10
0

10
−1

10
0

Ut/D

r/
D

Re=500
Re=100

r/D=1.35(Ut/D)1/2

FIG. 8. The numerically predicted spreading radius versus the
dimensionless time. The solid line represents the theoretical power
law.

the conservative phase-field equation, which involves a lower-
order diffusion term compared with the commonly used Cahn-
Hilliard equation in interface capturing. Therefore, the present
model is expected to achieve a better numerical accuracy
and stability. In addition, a force distribution function is also
elaborately designed in this model such that it contains only
one nonlocal macroscopic quantity, which is much simpler than
the previous phase-field-based LB models [10–12,25,27,28].
The multiscale analysis also demonstrates that both the con-
servative Allen-Cahn equation and the incompressible Navier-
Stokes equations can be derived correctly from the present
model. To validate the present model, we first simulated two
basic steady problems of static droplet and layered Poiseuille
flows, which have their own analytical solutions. In the former
test, it is found that the present model can accurately capture
the density field distributions in the bulk regions and also across
the interface at the density ratio of 1000. In addition, it is
also shown that the present model can obtain relatively small
spurious velocities in the LB community, with the maximum
magnitude of the order of 10−9. In the latter test, we simulated
the channel flow with density ratios ranging from 10 to 1000,
and also conducted detailed comparisons with the previous
Allen-Cahn based LB models [27,28]. It is found that the
present model can obtain satisfactory results in the velocity
predictions, and is also more accurate than the previous LB
models [27,28]. Next, we consider two dynamic problems of
spinodal decomposition and droplet impact on a thin liquid film
with a large density ratio of 1000. The phase separation process
can be clearly observed in the system, which is in line with the
expectation. The present model also successfully reproduces
the classical splashing phenomenon, and the predicted spread-
ing radius is found to exhibit the power law reported in the
literature, which provides a good validation of the present LB
model in dealing with complex high-density-ratio two-phase
flows. Finally, we anticipate that our numerical method will be
useful to scientific applications, such as microfluidics, material
science, and oil recovery industry.
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APPENDIX: CHAPMAN-ENSKOG ANALYSIS
OF THE PRESENT MODEL

The Chapman-Enskog analysis is now performed to demon-
strate the consistency of the LB evolution equation (15) with
the incompressible Navier-Stokes equations. The moment
conditions are first given based on the expressions of the
equilibrium and force distribution functions:∑

i

g
eq
i = 0,

∑
i

ciαg
eq
i = ρuα,

∑
i

ciαciβg
eq
i = ρuαuβ + pδαβ,

∑
i

ciαciβciγ g
eq
i = ρc2

s �αβγ θuθ , (A1)

∑
i

Gi =
(

1 − 1

2τg

)
uα∂αρ,

∑
i

ciαGi =
(

1 − 1

2τg

)
Fα,

� =:
∑

i

ciαciβGi =
(

1 − 1

2τg

)[
uα∂β

(
ρc2

s

)
+uβ∂α

(
ρc2

s

) + (
uγ ∂γ ρc2

s

)
δαβ

]
, (A2)

where δαβ is the Kronecker delta function, �αβγ θ = δαβδγ θ +
δαγ δβθ + δαθ δβγ . To derive the macroscopic equations, we
expand the particle distribution function, the time and space
derivatives, and the force in consecutive scales of ε,

gi = g
(0)
i + εg

(1)
i + ε2g

(2)
i + · · ·, (A3a)

∂t = ε∂t1 + ε2∂t2 , ∂α = ε∂1α, (A3b)

Fα = εF (1)
α , (A3c)

where ε is a small expansion parameter. Applying the Taylor
expansion to Eq. (15), and substituting Eq. (A3) into the
expanded result, we can obtain the following multiscale equa-
tions:

ε0 : g
(0)
i = g

(eq)
i , (A4a)

ε1 : D1ig
(0)
i = − 1

τgδt

g
(1)
i + G

(1)
i , (A4b)

ε2 : ∂t2g
(0)
i + D1ig

(1)
i + δt

2
D2

1ig
(0)
i = − 1

τgδt

g
(2)
i , (A4c)

where D1i = ∂t1 + ciα∂1α . The substitution of Eq. (A4b) into
Eq. (A4c) yields

∂t2g
(0)
i + D1i

(
1 − 1

2τg

)
g

(1)
i = − 1

τgδt

g
(2)
i − δt

2
D1iG

(1)
i . (A5)

Following Refs. [12,38], the zero-order moment of gi can be
defined as ∑

k

gk = −δt

2
uα∂αρ. (A6)

Applying the expansion formula (A3) to Eqs. (21a) and (A6),
one can easily derive

∑
i

g
(1)
i = −δt

2
uα∂1αρ,

∑
i

g
(n)
i = 0 (n � 2), (A7)

∑
i

ciαg
(1)
i = −δt

2
F (1)

α ,

∑
i

ciαg
(n)
i = 0 (n � 2). (A8)

The recovered equations at ε scale can be obtained by summing
Eq. (A4b) and Eq. (A4b) × ciβ over i, respectively,

∂1αuα = 0, (A9)

∂t1 (ρuβ ) + ∂1α(ρuαuβ + pδαβ) = F
(1)
β . (A10)

Similarly, the recovered equations at ε2 scale can be derived
from Eq. (A5):

∂t1

(
−δt

2
uα∂1αρ

)
+ ∂1α

(
−δt

2
F (1)

α

)

= −δt

2

[
∂t1 (uα∂1αρ) + ∂1αF (1)

α

]
(A11)

∂t2 (ρuβ ) +
(

1 − 1

2τg

)
∂1α�(1) = −δt

2
∂1α�(1), (A12)

where �(1) = ∑
i ciαciβg

(1)
i is the first-order momentum flux

tensor determined below, and � = ε�(1). From Eq. (A4b), one
can get

�(1) =
∑

i

ciαciβg
(1)
i = −τgδt

∑
i

ciαciβ

[
D1ig

(0)
i − G

(1)
i

]
= −τgδt c

2
s [∂1α(ρuβ) + ∂1β(ρuα) + (∂1γ ρuγ )δαβ]

+ τgδt�
(1), (A13)

where the terms of O(δtMa2) have been neglected under the
incompressible limit. Substituting Eq. (A13) into Eq. (A12),
one can simplify Eq. (A12) as

∂t2 (ρuβ) − ∂1α[νρ(∂1αuβ + ∂1βuα)] = 0, (A14)

where ν = c2
s δt (τg − 1

2 ) is the kinematic viscosity. Combining
Eqs. (A9) and (A11) at ε and ε2 scales, together with Eqs. (A10)
and (A14), we have

∂αuα = 0, (A15)

∂t (ρuβ ) + ∂α(ρuαuβ + pδαβ)

= ∂1α[νρ(∂1αuβ + ∂1βuα)] + Fβ, (A16)

which clearly shows that the incompressible Navier-Stokes
equations can be exactly recovered from the present LB model.
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