
PHYSICAL REVIEW E 97, 033308 (2018)

Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets
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We present a lattice Boltzmann model for charged leaky dielectric multiphase fluids in the context of electrified
jet simulations, which are of interest for a number of production technologies including electrospinning. The
role of nonlinear rheology on the dynamics of electrified jets is considered by exploiting the Carreau model for
pseudoplastic fluids. We report exploratory simulations of charged droplets at rest and under a constant electric
field, and we provide results for charged jet formation under electrospinning conditions.
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I. INTRODUCTION

The dynamics of charged leaky dielectric jets present a ma-
jor interest, both as an outstanding problem in nonequilibrium
thermodynamics as well as for its numerous applications in
science and engineering [1–3]. In particular, recent years have
witnessed a surge of interest towards the manufacturing of
electrospun polymeric nanofibers, mostly on account of their
prospective applications, such as tissue engineering, air and
water filtration, optoelectronics, drug delivery, and regenera-
tive medicine [3–5]. As a consequence, several experimental
studies have focused on the characterization and production of
one-dimensional elongated nanostructures [5–9]. Electrospun
nanofibers are typically produced at laboratory scale via the
uniaxial stretching of a leaky dielectric jet, which is ejected
at a nozzle from an electrified charged polymer solution. The
charged jet elongates under the effect of an external electro-
static field applied between the spinneret and a conductive
collector and eventually undergoes electromechanical (e.g.,
whipping) instabilities due to various sources of disturbance,
such as mechanical vibrations at the spinneret, hydrodynamic
friction with the surrounding fluid, and others [10]. While such
instabilities can be detrimental in some respect, making an
accurate position of individual fibers on target substrates very
difficult, in other experiments they are sought after since they
result in thinner cross sections, hence finer electrospun fibers,
as they hit the collector [4]. This follows from a plain argument
of mass conservation: whipping instabilities generate longer
jets, hence thinner cross sections [11].

The computational modeling of the electrospinning process
is based on two main families of techniques: particle methods
and Lagrangian fluid methods. The former is based on the
representation of the polymer jet as a discrete collection of
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discrete particles (beads) connected via elastic springs with
frictional coupling (dissipative dashpots) and interacting via
long-range Coulomb electrostatics [10,12–14]. The latter, on
the other hand, describes the jet as a continuum media, obeying
the Navier-Stokes equations for a charged fluid in Lagrangian
form [15–17]. Both methods are grid free, hence well suited to
describe abrupt changes of the jet morphology without taxing
the grid resolution, as it is the case for Eulerian grid methods.

In this respect, grid-based methods, such as lattice Boltz-
mann method (LBM), are not expected to offer a competitive
alternative to the two aforementioned classes of methods.
Nevertheless, owing to its efficiency, especially on parallel
computers, and its flexibility towards the inclusion of physical
effects beyond single-phase hydrodynamics, it appears worth
exploring the possibility of using LBM also in the framework
of electrified fluids and jets. For instance, in the last decade
significant improvements in LBM for modeling microfluidic
flows containing electrostatic interactions have been achieved
[18,19], opening new applications of LBM in electrohydrody-
namic problems [20–24]. In particular, LBM was successfully
employed to simulate deformations and breakup of conductive
vapor bubbles, bubble deformation due to electrostriction, and
dynamics of drops with different electric permittivity. All these
investigations usually exploit the approach originally intro-
duced by Kupershtokh and Medvedev [19], where dielectric
liquids are assumed with zero free charge density, so that the
charge carriers are essentially locally bounded to the material
[25]. Within this assumption, charge carriers are explicitly
modeled by a convective transport equation solved by a second
LB solver, taking into account the rates of ionization and
recombination of charge carriers fluctuating around a local
value (distribution) of equilibrium.

In the 1960s, Taylor provided several considerations for
dealing with electrified fluid in a series of papers [26–28].
In particular, Taylor discovered that a moving charged fluid
cannot be considered either as a perfect dielectric or as a perfect
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conductor. Instead, the fluid acts as a “leaky dielectric liquid,”
where a nonzero free charge is mainly accumulated on the
interface between the charged liquid and the gaseous phase
[29]. As a consequence, the charge produces electric stresses
different from those observed in perfect conductors or perfect
dielectrics. Indeed, in the last cases, the charge induces a stress
which is perpendicular to the interface, altering the interface
shape to balance the extra stress. In the electrospinning process,
the nonzero electrostatic field tangent to the liquid interface
produces a nonzero tangential stress on the interface which is
balanced from the viscous force [16].

The present paper exploits the entropic variant of LBM
[30]. In particular, the use of the entropic lattice Boltzmann
method (ELBM) allows to extend the LBM application also in
the presence of intense electrostatic forces, acting on charged
leaky dielectric liquids, which is of main interest for modeling
the electrospinning process. In this context, the largest part of
the charge is modeled to lie along the interface between the
liquid and the gaseous phase in similarity with previous works
[31,32]. Further, the present ELBM is generalized to the case of
non-Newtonian flows with a shear-thinning viscosity in order
to account for the rheological properties of electrospun jets.
Here, we adopt the entropic approach introduced by Ansumali
and Karlin in Ref. [33] in order to preserve locally the second
principle (H theorem) also in the presence of sharp changes in
the fluid viscosity and structure.

The paper is organized as follows. In Sec. II we present
the basic features of the LB extension to the case of charged
multiphase fluids. In Sec. III, we present results for the case of
charged multiphase fluids at rest and we report on preliminary
results for charged multiphase jets under conditions related to
electrospinning experiments.

II. MODEL

We consider a single species charged fluid as composed
of pointlike particles and neglect correlations stemming from
excluded volume interactions. Following Boltzmann’s descrip-
tion, the state of the fluid is determined by the distribution
function fp(�r,t), being the probability of finding at time t the
fluid at position �r and moving with discrete velocity �cp, with
p = 1,b where b is the number of lattice directions. Here, the
velocities �cp are also viewed as vectors connecting a lattice
site �r to its lattice neighbors. The ELBM equation reads

fp(�r + �cp�t,t + δt)

= fp(�r,t) − αβ
[
fp − f eq

p (ρ,�u)
] + Sp(�r,t), (1)

where the product αβ plays the role of a collision frequency,
Sp is a source term (see below), and f

eq
p is the Maxwell-

Boltzmann distribution computed at density ρ and velocity
�u [34]. The macroscopic variables are given by the density
ρ = ∑

p fp and the fluid velocity �u = 1/ρ
∑

p �cpf . In the
following, we refer to lattice units where the mesh spacing
and time step �t are conveniently set to unity. Also, we adopt
the so-called D2Q9 scheme, composed by eight discrete speeds
(connecting first and second lattice neighbors) and one extra
null vectors accounting for particles at rest. In this scheme,
here, the f

eq
p are chosen as a second-order Mach-number

expansion

f eq
p = wpρ

[
1 + �u · �cp

c2
s

+ (�u · �cp)2 − c2
s u

2

2c4
s

]
(2)

where the wp are weights equal to 4/9 for the rest particles—
1/9 and 1/36, respectively, for the smallest and largest veloci-
ties �cp—and cs is the speed of sound that in lattice units is equal
to 1/

√
3. At the same time, we consider a unit fluid molecular

mass, so that the thermal energy is equal to kBT = c2
s with kB

the Boltzmann constant and T the temperature. Following the
approach of Refs. [33–35], the factor β in Eq. (1) depends on
the kinematic viscosity ν by the relation

β = c2
s

2ν + c2
s

, (3)

while α is the largest value of the over-relaxation parameter so
that the local entropy reduction can be avoided, ensuring the H
theorem. In particular, α is computed as the root of the scalar
nonlinear equation [30,33]

H [f + α(f eq − f )] = H (f ), (4)

where H denotes the Boltzmann’s entropy function, defined in
discrete form [36] as

H (f ) ≡
∑

p

fp ln

(
fp

wp

)
. (5)

In Eq. (1), the source term Sp takes into account the global
effect of all the internal and external forces �F . This is assessed
by the exact difference method proposed by Kupershtokh et al.
[37], which reads

Sp = f eq
p (ρ,�u + ��u) − f eq

p (ρ,�u), (6)

where ��u = �F/ρ. In bulk conditions, the ELBM is intrinsi-
cally second-order accurate in space and time, and, in order to
ensure the same accuracy in the presence of forces, the local
velocity is taken at half time step:

ρ �u =
∑

p

fp(�r,t)�cp + 1

2
�F . (7)

Here, the total body force �F = �Fint + �Fel includes the
interparticle force �Fint and the electric force �Fel. The electric
force acting on the boundary point �r between a gas and a fluid
with the local nonuniform permittivity ε(�r) in an electric field
�E reads [25,29]

�Fel = q �E − 1

2
|E|2∇ε + 1

2
∇

(
|E|2ρ ∂ε

∂ρ

)

= q �E + 1

2
ρ

∂ε

∂ρ
∇|E|2, (8)

where q is the local free charge carried on the fluid. In the last
equation, the vacuum permittivity ε0 was assumed equal to 1
as in the Gaussian centimeter-gram-second (cgs) unit system,
so that the charge in lattice units is length3/2 mass1/2 time−1 in
similarity with the statcoulomb definition (note that Coulomb’s
constant is also 1). For the sake of convenience, we report
in Table I the units conversion Table I in cgs dimensions
from lattice units for several physical quantities shown in the
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TABLE I. Symbols employed in order of appearance, their def-
initions, relative dimensions in two-dimensional (2D) lattice units,
and conversion values in the three-dimensional (3D) Gaussian cgs
system of units. The conversion to 3D units is obtained by multiplying
the 2D square area �l2 for an extra node �l along the z axis. Note
that �m denotes the mass unit equal to 5 × 10−10 g (water density),
�l is the length unit equal to 10−3cm, and time step �t is the time
unit equal to 8.3 × 10−7 s. The last number was tuned in order to set
the kinematic viscosity ν = 1/6 �l2 �t−1 = 0.2 cm2s−1 in similarity
with the viscosity value adopted in the Lagrangian model of Ref. [12].

Symbol Definition 2D lattice units 3D cgs units

ρ Mass density 1 �m �l−2 0.5 g cm−3

u Velocity 1 �l �t−1 1200 cm s−1

ν Kinematic viscosity 1 �l2 �t−1 1.2 cm2 s−1

q Charge 1 �l3/2 �m1/2 �t−1 8.5 × 10−4 statC
E Electric field 1 �l−1/2 �m1/2 �t−1 848.5 statV cm−1

φ Electric potential 1 �l1/2 �m1/2 �t−1 8.485 × 10−1 statV
ε Relative permittivity
a0 Initial jet radius 1 �l 10−3cm
K Mean curvature 1 �l−1 1000 cm−1

γ̇ Shear rate 1 �t−1 1.2 × 106 s−1

� Stress 1 �m �t−2 7.2 × 105 g cm−1 s−2

λ Relaxation time 1 �t 8.3 × 10−7 s
n Index flow
p Pressure 1 �m �t−2 7.2 × 105 g cm−1 s−2

σ Surface tension 1 �l �m �t−2 720 g s−2

following. As in Ref. [19], we consider a fluid with permittivity
ε = 1 + ρ/ρ0 with ρ0 an arbitrary constant (in the following
taken for simplicity equal to 1) so that it is ρ(∂ε/∂ρ) = ε − 1.
As a consequence, Eq. (8) reduces to

�Fel = q �E + ε − 1

2
∇|E|2. (9)

In the following, we assume that the magnetic induction
effects can be neglected so ∇ × �E = 0, and the system follows
the Gauss law ∇ · (ε �E) = q. Since �E = −∇φ with φ the
electric potential, the Poisson equation div[ε(�r)∇φ] = −q(�r)
can be solved at each lattice node �r , given the boundary
conditions of the system and the local charge q(�r) at the
node (specified below). In particular, we determine the electric
potential by solving numerically the two-dimensional Poisson
equation by means of a successive over-relaxation algorithm
and the Gauss-Seidel method [38]. Note that the Poisson
equation includes the nonuniformity of the permittivity ε(�r),
and it is solved on the fly during the simulation. Hence, the
electric force �Fel = −q∇φ is added into the ELBM by Eq. (6).

Since we are modeling a leaky dielectric fluid, we assume
that the free charge in the system is mainly distributed over
the liquid-gaseous interface. Further, in similarity to previous
electrospinning models [16,17], the relaxation time of free
charge in the system is assumed to be irrelevant. In other words,
the free charge in bulk liquid relaxes to the liquid interface in
a smaller time than any other characteristic time in the system
[39]. This is a well-established assumption of a leaky dielectric
fluid (for further details see Ref. [29]). The liquid charge in the
point �r is given as

q = qb + qs, (10)

which is the sum of a surface charge qs and a small bulk term
qb. The bulk term qb is taken as

qb(�r) = Qb

ρ(�r) θ (ρ(�r); ρ0)∫
ρ(�r) θ (ρ(�r); ρ0)d�r , (11)

where Qb denotes the total charge in the bulk, the denominator
acts to keep constant the charge due to the charge conservation
principle, and θ (ρ; ρ0) denotes a smoothed version of the
Heaviside step function switching from zero to one at ρ0 (equal
to 1 in all the following simulations) in order to select only the
liquid phase. The term qs is modeled as a proportional to the
absolute density gradient

qs(�r) = Qs

|∇ρ(�r)|2∫ |∇ρ(�r)|2d�r , (12)

where Qs denotes the total charge over the surface, and the
denominator ensures the charge conservation principle as in
the previous case. This approach is usually referred to as the
constant surface charge model. It is important to highlight that
such charge model is different from the method adopted by
Kupershtokh et al. [19], where the charge carriers are treated
by using an additional LB component with zero mass (passive
scalar) to model the polarizability of a dielectric liquid with
zero free charge. Since in the present model the charge is
directly modeled over the interface, we do not need to introduce
any extra LB component to model the surface charge. Indeed,
the constant surface charge model was already adopted in
Refs. [31,32] as a strategy to simplify the charge transport and
distribution on the droplet interface. Nonetheless, the constant
surface charge model fails in describing a distributed charge on
the drop interface whenever the charge density is high, since
the curvature surface alters the local charge density [16]. In
order to address the issue, we assume that the curvature biases
the surface charge density as in a conductive liquid, following
the power law introduced by McAllister [40], which states

qs = qs,max(K/Kmax)
1
4 . (13)

Here, K denotes the mean curvature K = ∇ · n̂ with the local
interface normal n̂ = ∇ρ(�r)/|∇ρ(�r)| [41], while qs,max is the
maximum surface charge at the maximum curvature Kmax

chosen as a reference value for the system under investigation.
It is worth emphasizing that treating a leaky dielectric as a
conductive liquid is a simplification already made by several
authors (e.g., Taylor [26], Yarin et al. [42], etc.). For the sake
of simplicity, we take in the following the maximum curvature
Kmax equal to Kd value, defined as the curvature doubling the
local surface charge density. Thus, we rewrite Eq. (10) as

q(�r) = Qb

ρ(�r) θ (ρ(�r); ρ0)∫
ρ(�r) θ (ρ(�r); ρ0)d�r

+Qs

|∇ρ(�r)|2[1 + (K/Kd )
1
4
]

∫ |∇ρ(�r)|2[1 + (K/Kd )
1
4
]
d�r

. (14)

The total charge of the system is conserved and equal to Q =
Qb + Qs .

In addition, the fluid is subjected to an internal thermody-
namic force �Fint promoting a phase separation, in similarity
with the approach originally introduced by Mazloomi et al.
[43] in the context of the ELBM. The phase separation force
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is accounted for by means of the Shan-Chen method [44,45].
We construct the local force as

�Fint(�r,t) = −Gψ[ρ(�r,t)]
∑

p∈fluid

wpψ[ρ(�r + �cp,t)]�cp

−Gw ψ[ρ(�r,t)]
∑

p∈wall

wpψ[ρ(�r,t)]�cp, (15)

with the sum
∑

p∈fluid running over lattice nodes where the
fluid is allowed, that is, not belonging to the wall, and

∑
p∈wall

runs over nodes belonging to the wall. G and Gw are fluid-fluid
and fluid-wall interaction strengths, respectively. In Eq. (15),
ψ is an effective number density, which is taken for simplicity
as ψ(ρ) = ρ0[1 − exp(−ρ/ρ0)], ρ0 being an arbitrary constant
[46] (in the following assumed equal to 1).

A. Extension to non-Newtonian flows

In the electrospinning process, the rheological behavior
of polymeric liquid with shear-rate-dependent viscosity is
expected to play a significant role in jet dynamics. As a
consequence, we now generalize the present model to the
case of non-Newtonian flows, in similarity with the approach
reported in Refs. [47–49]. The shear rate γ̇ is a functional of the
density distribution function f . In particular, the strain tensor
�η,δ reads [47,50]

�η,δ = − 1

2ρτc2
s

�η,δ, (16)

where

�η,δ =
∑

p

(
fp − f eq

p

)�cpη�cpδ (17)

is the stress tensor with η and δ running over the spatial
dimensions. Note that τ in Eq. (16) is defined as the inverse
of the product αβ, where α was computed by Eq. (4), and
β depends by Eq. (3) on the kinematic viscosity ν. We now
rewrite Eq. (16) as

γ̇ = �

ρτ (γ̇ )c2
s

, (18)

where γ̇ and � are computed as matrix 2-norm γ̇ = 2||�||2
and � = ||�||2 of the shear and stress tensor [47], respectively.
Note that in the last equation we exploit a constitutive relation
between the kinematic viscosity ν and the shear rate γ̇ , so that
τ = τ (γ̇ ). As a consequence, γ̇ is computed as the root of the
scalar nonlinear Eq. (18).

We should now consider the general trend observed in
electrospun polymeric filaments [51]. We highlight as main
features that a polymeric spinning solution at low shear rate
behaves as a quasi-Newtonian fluid with zero shear kinematic
viscosity ν0, since the initial condition can be recovered, while
at a high shear rate a nonreversible disentanglement is present.
In particular, it is possible to identify a relaxation time λ at
which the shear thinning starts, which is equal to the inverse
value of the shear rate at that instant. At the very high shear
rate, a quasi-Newtonian behavior is again observed as soon as
the alignment of the polymer chains is extremely high (almost
complete). The last region is characterized by a final viscosity
value (infinite viscosity ν∞), which is lower than ν0.

In the present paper, we exploit the Carreau model [52],
which is able to describe all the mentioned rheological prop-
erties. The Carreau model states that

ν(γ̇ ) = ν∞ + (ν0 − ν∞)[1 + (λγ̇ )2](n−1)/2, (19)

where n is the flow index (n < 1 for a pseudoplastic fluid).
Obtaining γ̇ by resolving Eq. (18) and ν(γ̇ ) by Eq. (19),
and assuming a slow variation of ν(γ̇ ) over the time �t , the
local parameter β is finally estimated by Eq. (3). Note that a
validation of a similar implementation in a LB scheme of the
Carreau model was given in Ref. [47].

B. Summary of the model

To solve Eq. (1), we exploit the method of splitting the
model procedure into physical process stages. Hence, the time
step is given by the sequential implementation of the following
key points.

(1) Compute Boltzmann’s entropy function, and determine
α by solving Eq. (4).

(2) Solve the nonlinear Eq. (18) to compute the local rate
strain γ̇ , and determine the local viscosity ν as a function of
the rheological Eq. (19). Hence, determine β from Eq. (3).

(3) Compute the local charge q by Eq. (14), and solve the
Poisson equation for assessing the electric force �Fel = −q∇φ.

(4) Compute the phase separation force �Fint by Eq. (15).
(5) Apply Eq. (1).

III. NUMERICAL RESULTS

A. Charged drop

In order to assess the properties of our implementation for
charged multiphase systems, we have initially run a set of
simulations modeling a charged leaky dielectric fluid system
obeying the Shan-Chen equation of state [46]. In order to
assess the static behavior, we take a two-dimensional periodic
mesh made of 320 × 320 nodes, and prepare the system by
creating a circular drop of density ρ = 2.0 and radius R = 40
in lattice units, immersed in the second background phase
at lower density ρb = 0.16. Further, the strength of nonideal
interactions was set equal to G = −5, G/Go

crit = 1.25 where
Go

crit = −4 is the critical Shan-Chen coupling at the critical
density ρcrit = ln 2 in the absence of electric fields. Since we
aim to model a leaky dielectric fluid, the ratio Qs/Qb is taken
equal to 10, so that the largest part of the charge lies over
the surface. The total charge Q = Qs + Qb was set equal
to 2.13, and q(�r) was computed by Eq. (14). Whenever the
Poisson equation is solved, a uniform negative charge is added
to obtain a system with net charge zero. Hence, the electric
force �Fel = q(−∇φ) is added into the ELBM by Eq. (6), where
q is computed by Eq. (14) with Kd equal to 1. The liquid is
Newtonian with kinematic viscosity ν = 1/6.

The stationary configuration of the described system is
obtained after 1000 time steps. Hence, we inspect the electric
field (see Fig. 1) at rest conditions in order to analyze the
balance of forces acting at the interface, including Shan-
Chen pressure and capillary and electrostatic forces, the latter
pointing normal to the interface [see Fig. 1(b)]. Here, we
observe that the largest part of the electric field is located over
the liquid surface where the charge distribution is higher. In
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FIG. 1. Profile of the electric field magnitude | �E| (a), and its
vectorial representation (b). Both quantities refer to the charged drop
at rest.

particular, at the boundary of the drop the magnitude of the
electric field | �E| is equal to 3.5 × 10−3.

It is of interest to estimate the various forces which concur
to provide a stable configuration of the droplet. The mechanical
balance reads as follows:

pL + pel = pV + pcap (20)

where pL and pV are the liquid and vapor pressure, respec-
tively, pcap = σ/R is the capillary pressure (given the surface
tension σ and the drop radius R), and pel is the repulsive
electrostatic pressure. The latter can be estimated by standard
considerations in electrostatics, namely,

pel = Qs
�Es · �n

2πR
(21)

where Es is the electric field at the surface:

pel

pcap
= QsEs

2πσ
. (22)

FIG. 2. Two snapshots of density ρ for a charged drop under an
external electric field Eext equal to 0.1 (a) and 0.5 (b) taken as soon
as the drop reaches the point of coordinates (280,160).

In actual numbers with σ = 5.8 × 10−2, this ratio is equal
to 1/50. This shows that electrostatic forces act as a small
perturbation on top of the neutral multiphase physics.

Next, we investigate the effects of a uniform external electric
field Eext of magnitude pointing along the x axis. Using the
previous configuration at the equilibrium as the starting point
of our simulation, we set Eext at two different values equal to
0.1 and 0.5. For each one of the two cases, we report a snapshot
of the fluid density ρ taken as soon as the liquid drop touches
the point of coordinates (280,160) in lattice units. The set in
Fig. 2 highlights the significant motion of the charged drop to
the right in accordance with the direction of the electric field.
In the figure, we note that a sizable change in the drop shape is
present only for the case Eext = 0.5. In order to elucidate this
effect, it is instructive to assess the strength of the electrostatic
field in units of capillary forces, namely,

Ẽ ≡ QEext

2πR

R

σ
= QEext

2πσ
. (23)

In actual numbers, this ratio is equal to 0.5 and 3 for the case at
lower and higher Eext, respectively. This shows that the electric
force magnitude is sufficiently large to provide an alteration
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FIG. 3. Alteration of charge density q due to the mean curvature
K . The alteration is estimated as δq = q − qK=0, where qK=0 is
computed with Eq. (14) with K = 0 everywhere.

of its shape only in the case at higher Eext. In particular, the
shape shows an elongation towards the direction of the electric
field Eext, which results from the effect of the curvature on the
surface charge.

In Fig. 3, we report the alteration of charge density due
to the mean curvature term K of Eq. (14). The alteration is
estimated as δq = q − qK=0, where qK=0 is computed with
Eq. (14) with K = 0 everywhere, corresponding to a constant
surface charge model without curvature effect correction. Here,
we note an accumulation of charge on the rightmost part of
the drop, where the mean curvature K shows a maximum
value equal to 5.17 × 10−2, which corresponds to a charge
accumulation δq equal to 1 × 10−3, in the following denoted
δ+
q . The accumulation of charge is counterbalanced by a

negative charge δ−
q distributed over the almost straight surface

part of the drop (just behind the rightmost protrusion in
Fig. 3). Both partial charges δ+

q and δ−
q favor the presence of a

protrusion in the drop shape. In order to analyze this effect, we
report in Fig. 4 the mean curvature computed at the same time
t = 1250δt for two simulations, both at Eext = 0.5 differing
for the inclusion of the curvature effects in the constant surface
charge model of Eq. (14). Even though the circular shape of
the drop is deformed by the external electric field in both cases,
the curvature effects increase the protrusion on the drop shape
[see Fig. 4(b)]. Further, the charge differences provide a shift
in the electric force acting on the drop surface, the effect of
which accumulates in time, so that the alteration in the drop
shape increases in time.

B. Charged multiphase jet in the electrospinning setup

We set up a system modeling the electrospinning process,
containing a charged Shan-Chen fluid. The system is a mesh
made of 320 × 320 nodes (see Fig. 5). The system geometry
presents, on the left side, a nozzle of diameter D = 40, provid-
ing an initial jet radius a0 = 20, that reproduces the needle of
the actual electrospinning apparatus where the charged fluid
is injected, while on the top and bottom sides we impose

FIG. 4. Mean curvature K(x,y,) computed at the same time t =
1250 δt with same surface charge Qs at Eext = 0.5 with two constant
surface charge models: without the curvature effect (a), and with the
curvature effect (b).

the bounce back boundary condition. As a consequence, the
system is open with the inlet nodes located inside (left side)
the nozzle (at x = 1). Similarly, we set outlet nodes on the right
side (at x = 320) where the jet will impinge under the effect of
the external electric field. Such electric field is chosen to mimic
the potential difference that is normally applied between the
nozzle and a conductive collector in the real electrospinning
setup [53]. The computational setup is quite sensitive to the
choice of the simulation parameters, and numerical stability
has to be guaranteed by finely tuning several parameters, in
particular the density and velocity of inlet and outlet nodes,
the Shan-Chen coupling constants of fluid-fluid and fluid-wall
interactions, the charge constant, and the magnitude of the
external electric field. After preliminary simulations, we obtain
a consistent set of parameters that guarantees a stable and
well-shaped charged jet ejected from the nozzle.

The initial density of the two phases is 2.0 and 0.16
for the liquid and gaseous phase, respectively. The initial
configuration consists of the liquid phase filling the inner space
of a nozzle with a liquid drop just outside the needle [see
Fig. 5(a)]. All remaining fluid nodes are initialized to gaseous
density.

Both the Shan-Chen constants for the fluid-fluid G and
fluid-wall Gw interaction are set to −5. As in the previous
section, for the resolution of the Poisson equation, a uniform
negative charge is added to the system in order to counterbal-
ance the positive charge and obtain a system with net charge
zero. Further, we impose the Dirichlet boundary condition in
the following form: we impose the electric potential φl = 0
on the left side (x = 0), while the electric potential on the
right side (x = 321) was set equal to φr = −32.2, providing
a background electric field Eback = (φr − φl)/322, which is
imposed between the two opposite sides (left and right) of the
system. On the upper and bottom sides, the Dirichlet boundary
conditions are set equal to φu(x) = φb(x) = x(φr − φl)/322.
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FIG. 5. (a) Density distribution ρ of the initial configuration for
the electrospinning setup. (b) Electric field magnitude | �E|.

Note that the last condition is equivalent to impose an electric
field �E of magnitude 0.1 oriented along the x axis.

Since in a typical electrospinning setup the liquid phase
is always connected to a generator addressing a charge, it is
reasonable to assume that, whenever the stretching of the liquid
jet increases the jet interface, extra charge rapidly reaches the
liquid boundary in order to preserve the value of charge surface
density. As a consequence, the charge conservation condition
cannot be applied (the liquid jet is not insulated). Instead,
we assume the conservation condition of the surface charge
density value for the same mean curvature, so that Eq. (14) is
rewritten as

q(�r) = ξbρ(�r) θ (ρ(�r); ρ0) + ξs |∇ρ(�r)|2[1 + (K/Kd )
1
4
]
,

(24)

where we have adopted a similar condition also for the bulk
charge term, ξb and ξs being two proportionality constants, in
the following taken equal to 1 × 10−4 and 6 × 10−2, respec-
tively. Note that the two proportionality constants were tuned
in order to obtain a mean ratio Qs/Qb between the surface and
bulk charge close to the target value 10, as in the previous case.

At the inlet, we set the fluid velocity in accordance with the
Poiseuille velocity profile, while the density is set to 2.0. In

particular, at each time step, we compute the mean velocity of
the fluid inside the nozzle, then we used this value to set up
the Poiseuille profile. As a consequence, the velocities at the
inlet nodes are not fixed but can change during the simulation
according to the actual mean velocity measured inside the
nozzle. The outlet nodes (on the right edge) are put in contact
with a gas reservoir with ρ = 0.16, so that the liquid exits by
convection.

We run three different simulations, all starting from the
same initial configuration. In the first simulation the liquid is
Newtonian with kinematic viscosity ν = 1/6, in the following
denoted case 1. In the other two, we employ the Carreau model
(see Sec. II A) with zero shear kinematic viscosity ν0 = 1/6,
and infinite viscosity ν∞ = 0.001. The flow index n is taken
equal to 0.75 and 0.5, for the cases labeled b and c, respectively,
while the relaxation time λ was set equal to 1000 for the two
last cases.

The internal electric field computed by the Poisson solver
(see Sec. II) is computed on the fly during the simulation.
In Fig. 5(b) we report the electric field magnitude | �E| for
the initial configuration. Here, we note a maximum value of
| �E| close to the drop interface, which is due to the higher
surface charge density. Further, a lower value of | �E| is ob-
served in the nozzle as a consequence of the larger dielectric
constant ε � 3 in the liquid phase (versus ε � 1 in the gaseous
phase).

We now report in Fig. 6 several snapshots taken over
the time evolution of the system labeled case b. In all the
cases, we observe the formation of a liquid charged jet, which
is ejected from the nozzle. Further, we show in Fig. 7 the
velocity component ux measured at the extreme (rightmost)
point of the drop surface versus time t . Here, for all cases
under investigation, we note that the velocity trend shows the
presence of a quasistationary point [see Fig. 6(a)], where the
viscous forces balance the external electric force in agreement
with previous theoretical investigations [10,54–56]. In partic-
ular, such quasistationary point is dependent on the rheology
via the viscous stress, since a different viscosity alters the
balance point with the electric forces, providing a time shift
of such regime. Indeed, the simulation case c reaches the
quasistationary condition in a shorter time (as shown in Fig. 7),
since the viscous stress is weaker in sustaining the expanding
electrostatic pressure in the liquid phase.

After the jet touches the collector, the jet shape fluctuates
around a mean profile, providing a stationary regime. In
particular, at this stage the jet shows a hyperbolic profile [see
Fig. 8(b)] which appears to be in qualitative agreement with the
characteristic shape of the jet experimentally observed close
to the injecting nozzle by the Rafailovich and Zussman groups
[57] [see Fig. 8(a)] and in consistency with previous theoretical
results on the jet conical shape [11,58–62].

In Fig. 9, the effects of the local charge density and the
Carreau model terms in the present ELBM are investigated.
Here, we note that the jet diameter is quite sensitive to the
inclusion of such effects. In particular, we observe a larger
jet diameter (see right panel of Fig. 9), whenever these terms
are not included in the model, showing a model failure in
minimizing the jet width.

To better compare our results with experimental data
from the literature, we report the Ohnesorge number, which
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FIG. 6. Series of snapshots of the fluid density ρ for the electrospinning simulation case b with index flow n = 0.75 and relaxation time
λ = 1000 taken at time steps 600 (a), 5000 (b), 7500 (d), and 8800 (d).

describes the inertial, elastic, and capillary force balance.
Similarly, we exploit the Deborah number, which relates the
elastic stress relaxation time to the Rayleigh time scale for the
inertial-capillary breakup of an inviscid jet.

FIG. 7. Velocity component ux registered at the extreme point
(rightmost point) of the drop surface vs time for all the three cases
under investigation.

In the context of the electrospinning process [63], the
Ohnesorge and Deborah numbers are

Oh = ν0

√
ρ

σa0
, De = λ

√
σ

ρa3
0

, (25)

where ρ is the mass density of the jet, σ is the surface tension,
ν0 is the zero shear kinematic viscosity, λ is the relaxation time
(see Sec. II A), and a0 is the initial radius of the jet.

In our simulation, we estimate Oh ≈ 0.22, and De ≈ 1.93
for the Ohnesorge and Deborah number, respectively, while
these two dimensionless numbers are in the value ranges
Oh ≈ 0.1–5.0 and De ≈ 0.1–30 for a typical electrospinning
scenario [64,65].

In order to characterize the stationary regime, we report
the mean values of several observables measured at the inlet.
We take as a reference point the Cartesian coordinate (x =
1,z = 160), which corresponds to the center of the nozzle
diameter. Here, we measure the velocity along �x equal to
2.8 × 10−2, 5.3 × 10−2, and 6.1 × 10−2 in lattice units, for the
cases labeled a, b, and c, respectively. Further, we observe in all
the three cases almost the same values in the electric field along
�x equal to 5 × 10−2 in lattice units, so we explain the velocity
trend as a consequence of the lower viscosity depending on the
different rheology in the three cases.
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FIG. 8. (a) A rectilinear section of a jet in an electrospinning
experiment of a solution of 5 wt% polyethylene oxide in water. Figure
adapted with permission from Ref. [57]. Copyrighted by the American
Physical Society. (b) A snapshot of the fluid density ρ in the stationary
regime after the jet has touched the right side of the simulation box in
case b. (c) The corresponding velocity field magnitude |u(x,y)| and
the LIC representation of the velocity field.

In particular, we observe a drag effect that is not depending
on the local kinematic viscosity value at the inlet (νinlet ≈ 1/6
in all the three cases). Instead, this is due to the lower viscous
force acting along the jet path outside the nozzle [as shown in
Fig. 10(b)].

FIG. 9. Two sections of the jet profile ρ(x,y) at time step 10 000
for case b (a), and for a simulation without the local charge density
and the Carreau model terms included in the ELBM (b).

FIG. 10. (a) Mean value of the stress � computed as matrix 2-
norm 〈||�||2〉t of the stress tensor measured along the central axis
of the jet y = 160 averaged over a time interval of 15 000 steps.
(b) Mean value of the kinematic viscosity ν computed with Eq. (19)
along the central axis of the jet y = 160, and averaged over a time
interval of 15 000 steps.

In order to characterize the stationary regime, we report
in Fig. 8(c) the magnitude of the velocity field, and the
line integral convolution (LIC) visualization technique [66],
highlighting the fine details of the flow field. As expected,
we observe a higher value of u(x,z) along the jet towards the
collector. In particular, we analyze the profile of the velocity
in a jet cross section along what is generally observed in the
experimental process.

We investigate the effect of pseudoplastic rheology on the
stress tensor �. In Fig. 10(a) we report the mean value of the
stress � measured along the central axis of the jet y = 160, and
averaged over a time interval of 15 000 steps in the stationary
regime for the three cases under investigation.

For all cases shown in Fig. 10, we observe the presence of a
drift in the � profile starting from x = 240. This is mainly due
to the larger magnitude of the external electric force, which
is originated by an increase in the surface-to-volume ratio.
Since in a leaky dielectric the charge density lies mainly on the
surface, such increase in the surface-to-volume ratio provides
a growth of the charge-to-mass ratio. As a consequence, the jet
undergoes a further stretching.

In Fig. 10, we also note a decreasing trend of the stress � by
increasing the pseudoplasticity of the fluid (decreasing the flow
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index n). Nonetheless, we observe a small shift in the stress
magnitude. This is essentially due to the low value of relaxation
time λ in the Carreau model adopted in our simulation, which
provides a small decrease in the kinematic viscosity ν. In
order to clarify this point, we report in Fig. 10(b) the mean
value of the kinematic viscosity 〈ν〉 again assessed along the
central axis of the jet y = 160, and averaged over the stationary
regime time, where we observe a small decrease of 〈ν〉 along
the stretching direction as a function of the pseudoplastic
behavior in the fluid. These results look promising, and we
plan to investigate systematically the effect of the rheological
parameters on the jet dynamics in a future work.

IV. SUMMARY

Summarizing, we developed a Shan-Chen model for
charged leaky dielectric fluids mainly aimed at modeling the
electrospinning process. The curvature effects on the charged
surface were included in our theoretical treatment, and we gen-
eralized the model to non-Newtonian flows in order to account
for the peculiar rheological behavior. Different scenarios were
investigated to test the model. We initially investigated the
effect of strong electric fields on the droplet shape evolution.
We also probed the jet formation under electrospinning-like

conditions, obtaining a good agreement with both experimental
results and previous theoretical works present in literature. At
first glance, the pseudoplastic behavior alters the jet dynamics,
although a more systematic investigation requires an extensive
test of the rheological parameters. Work along these lines is
currently underway.

The preliminary applications of the presented ELBM look
promising, although more systematic numerical investigations,
as well as theoretical analysis, need to be undertaken. Nonethe-
less, the actual effort can be regarded as a significant forward
step to extend the applicability of the ELBM to the context
of electrospinning systems, providing a useful computational
tool in the completion of the others presently available in the
literature.
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