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Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology
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In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible
two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-
gradient model except that an additional regularization step is introduced prior to the collision step. In the
regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part
of the total distribution function, and it can be easily extended to other discrete velocity models no matter
whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely
related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples,
including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the
droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the
proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK
color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-
relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while
keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting
the critical capillary number of droplet breakup.
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I. INTRODUCTION

Numerical modeling and simulation of immiscible multi-
phase flows have attracted considerable attention for decades,
as such flows are not only rich in fundamental fluid mechanics
phenomena, but also present in numerous engineering and
environmental applications [1–4]. Traditionally, multiphase
flows are simulated by solving the macroscopic Navier-Stokes
equations (NSEs) together with various approaches to track
or capture the interface between different fluids. Among these
approaches, the front-tracking method, volume-of-fluid (VOF)
method, and level-set method are commonly used. While the
front-tracking method is not suitable for simulating interface
breakup and coalescence, the VOF and level-set methods
require an interface reconstruction or reinitialization step to
represent or correct the interface, which may be nonphysical or
complex to implement. These disadvantages can be overcome
by the lattice Boltzmann (LB) method, which tracks evolution
of the distribution function of an assembly of molecules and
is built upon microscopic models and mesoscopic kinetic
equations [5]. The LB method has several advantages over
traditional Navier-Stokes-based solvers, such as the algorithm
simplicity and parallelizability, and the ease of handling
complex boundaries [6]. In addition, its kinetic nature allows
a simple incorporation of microscopic physics without suffer-
ing from the limitations in terms of length and time scales
typical of molecular dynamics simulations. As such, the LB
method is particularly useful in the simulation of multiphase,
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multicomponent flows. We refer the reader to Refs. [1,7–13]
for a more detailed review.

The Bhatnagar-Gross-Krook (BGK) model [14,15] is the
most widely used LB model for its algorithm simplicity and
programming efficiency, which uses a single relaxation time in
the collision operator. However, it suffers from poor numerical
stability and low accuracy when the fluid viscosity is beyond
a certain range [12]. As a remedy, several improved models
have been proposed, including the multiple-relaxation-time
(MRT) model [16–18], the entropic LB model [19–21], and
the regularized lattice Boltzmann (RLB) model [22–24]. The
MRT model improves numerical stability by relaxing the
hydrodynamic and nonhydrodynamic moments with different
relaxation times. Since matrix calculations are involved in
collision step, this model requires more computational time
than the BGK model, and also, there is no universal criteria
for choosing the most stable and reliable set of relaxation
times [25]. In the entropic LB model, the monotonicity of the
H-function is ensured by solving the nonlinear equation of
a corrective coefficient for the relaxation time. The entropic
model has shown great boosts in numerical stability [26],
but a considerable computational cost is required to solve
the nonlinear equation, making the entropic model more
computationally expensive, even when compared to the MRT
model [27]. By contrast, the RLB model can enhance the
stability while retaining the simplicity of the BGK model by
introducing an algebraic regularization or precollision step
prior to the collision step without any matrix calculations or
solution of additional nonlinear equations. Latt and Chopard
[22] pointed out that the key idea of the RLB model is to enforce
symmetrical property by preserving only the first-order term
in the nonequilibrium part of the distribution function [22].

2470-0045/2018/97(3)/033307(13) 033307-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.033307&domain=pdf&date_stamp=2018-03-13
https://doi.org/10.1103/PhysRevE.97.033307


BA, WANG, LIU, LI, AND HE PHYSICAL REVIEW E 97, 033307 (2018)

Zhang et al. [24] interpreted the regularization procedure in
terms of the Hermite expansion and used the orthogonality
relation between Hermite polynomials and Gauss-Hermite
quadrature to reconstruct the nonequilibrium part such that
the required nonequilibrium properties are preserved while
filtering the undesirable high-order ghost (nonhydrodynamic)
moments. Montessori et al. [25] recently showed that the
regularization step can be loosely viewed as an equivalence
to the early matrix LB schemes [28], where the hydrody-
namic and ghost modes are relaxed at two different relaxation
rates. As an analog to the MRT model, the RLB model
has been demonstrated to substantially increase the stability
and accuracy of LB simulations [25,27], indicating great
potential in numerical investigation of various flow problems.
Up to now, the study and applications of the RLB model
have mostly been on single-phase flows [25,29–33], and the
capability of the RLB model in multiphase flow simulations
has been rarely examined except for the recent works by Otomo
et al. [34,35], in which a RLB interparticle-potential model
was developed to study two-phase displacement. However,
their RLB interparticle-potential model may inherit some
deficiencies of the original interparticle-potential model [7],
e.g., the NSEs cannot be recovered exactly, and it suffers
from poor numerical stability for moderate or large viscos-
ity ratios [36]. Moreover, a dynamically changing viscos-
ity has not yet been considered, which is inherent to non-
Newtonian fluids frequently encountered in industry and daily
life.

The aim of the present work is to develop a RLB version
of the color-gradient model. In particular, we emphasize
the capability of the model in dealing with power-law non-
Newtonian rheology. Unlike Newtonian fluids, the viscosity
of power-law fluids depends on the local shear rate, and
often varies over a wide range especially for the fluids with
moderate or strong rheological properties [32,37–39], posing
a great challenge for LB models. It is therefore adopted for
the examination of the present RLB model. Like the BGK
color-gradient model [40,41], the present RLB model uses
a forcing term to realize the interfacial tension effect and
a recoloring algorithm to produce phase segregation. The
Chapman-Enskog (C-E) multiscale analysis is first used to
derive the constraint equations for the nonequilibrium part of
total distribution function. We then propose to directly solve
the constraint equations through the pseudo-inverse method,
which does not need prior knowledge about the form of
the nonequilibrium part and can be easily extended to other
discrete velocity models. The resulting expressions for the
nonequilibrium part are only related to macroscopic variables
and velocity gradients that can be evaluated locally. Finally,
the capability and accuracy of the present RLB model are
tested by three typical numerical examples, including the
single-phase and two-phase layered power-law fluid flows

between two parallel plates, and the deformation and breakup
of a Newtonian droplet immersed in a power-law matrix fluid
subject to a simple shear flow.

II. NUMERICAL METHOD

A. RLB model for immiscible two-phase flows

The present LBM is developed based on the color-gradient
model proposed by Halliday and his coworkers [40,41]. Dis-
tribution functions fi,R and fi,B are introduced to represent
two immiscible fluids, red fluid and blue fluid, and the total
distribution function is defined by fi = fi,R + fi,B , where the
subscript “i” denotes the ith direction of the lattice velocity,
and the subscripts “R” and “B” refer to the red and blue fluids,
respectively.

In each time step, the color-gradient model consists of three
steps, i.e., the collision step, recoloring step, and streaming
step. First, the total distribution function undergoes the colli-
sion step as

f
†
i (x,t) = fi(x,t) − 1

τ

[
fi(x,t) − f

eq
i (x,t)

] + F̂iδt , (1)

where the BGK approximation with a single relaxation time
τ is used for the collision term; f

†
i (x,t) is the postcollision

total distribution function at the position x and time ε, F̂i is
the forcing term, and δt is the time step. f eq

i is the equilibrium
distribution function of fi is given by

f
eq
i = ρωi

[
1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− u2

2c2
s

]
, (2)

where ρ = ρR + ρB is the total density with ρR and ρB

being the densities of red and blue fluids, respectively; u
is the local fluid velocity; cs = c/

√
3 is the speed of sound

with c = δx/δt being the lattice speed, in which δx is the
lattice space (for the sake of simplicity, δx = δt = 1 is used
hereafter); ωi is the weight factor; and ei is the lattice velocity
vector in the ith direction. In this study, a two-dimensional
(2D) nine-velocity model (D2Q9) and a three-dimensional
(3D) 19-velocity model (D3Q19) are adopted for 2D and 3D
simulations, respectively. For these two models, the lattice
velocities and the weight factors are given as follows:

D2Q9:

[e0, e1,· · ·,e8]

=
[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
, (3)

ωi =
⎧⎨
⎩

4/9, i = 0;
1/9, i = 1,2,3,4;
1/36, i = 5,6,7,8.

(4)

D3Q19:

[e0, e1, · · ·, e18] =
⎡
⎣0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1

⎤
⎦,

(5)
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ωi =
⎧⎨
⎩

1/3, i = 0;
1/18, i = 1,2,3,4,5,6;
1/36, i = 7,8,9, . . . ,18.

(6)

The forcing term F̂i in Eq. (1) contributes to the mixed
interfacial region and creates an interfacial tension. According
to Halliday et al. [41], the forcing term is given by

F̂i = ωi

(
1 − 1

2τ

)[
ei − u

c2
s

+ (ei · u)ei

c4
s

]
· F, (7)

where the interfacial tension force F is introduced based on the
continuum surface force method [42] and is expressed as

F(x,t) = − 1
2σκ∇ρN, (8)

where σ is an interfacial tension parameter. ρN is the color
indicator defined by

ρN (x,t) = ρR(x,t) − ρB(x,t)

ρR(x,t) + ρB(x,t)
, − 1 � ρN � 1, (9)

and κ is the local interface curvature, which is expressed as

κ = −∇S · n = −[(I − n ⊗ n) · ∇] · n, (10)

where n is the interfacial unit normal vector defined by n =
−∇ρN/|∇ρN |. Then the local fluid velocity is calculated by
[43]

ρu(x,t) =
∑

i

fi(x,t)ei + 1

2
F(x,t)δt . (11)

Using the C-E expansion, Eq. (1) can be reduced to the NSEs
in the low-frequency, long-wavelength limit with Eqs. (2) and
(7). The resulting equations are

∂ρ

∂t
+ ∇ · (ρu) = 0, (12a)

∂ρu
∂t

+ ∇ · (ρuu) = −∇p + ∇ · [μ(∇u + ∇uT )] + F,

(12b)

where p = ρc2
s is the pressure, and μ = ρc2

s δt (τ − 0.5) is
the dynamic viscosity of the fluid mixture. In this work,
the pure red and blue fluids are assumed to have equal
densities: ρ̃R = ρ̃B . To account for unequal viscosities of both
fluids, a harmonic mean is utilized for the viscosity of fluid
mixture [44,45]:

1

μ(ρN )
= 1 + ρN

2μR

+ 1 − ρN

2μB

, (13)

where μk (k = R or B) is the dynamic viscosity of fluid k.
To keep a sharp interface and produce phase segregation,

the recoloring step is then applied. Compared to the original
recoloring algorithm of Gunstensen et al. [46], the recoloring
algorithm proposed by Latva-Kokko and Rothman [47] is
known to reduce spurious velocities at the interface and
overcome the lattice pinning problem. Following Ref. [47],
the recolored distribution functions of red and blue fluids are

given by

f
††
i,R(x,t) = ρR

ρ
f

†
i (x,t) + β

ρRρB

ρ
ωi

ei · ∇ρN

|∇ρN | ,

f
††
i,B(x,t) = ρB

ρ
f

†
i (x,t) − β

ρRρB

ρ
ωi

ei · ∇ρN

|∇ρN | , (14)

where f
††
i,R(x,t) and f

††
i,B(x,t) are the recolored distribution

functions of red and blue fluids, respectively, and β is a
segregation parameter related to the interface thickness. In the
present work, β is chosen as 0.7 to maintain a narrow interface
thickness (around four or five lattices) and keep spurious
velocities at a low level [41,44]. In addition, Liu et al. [48]
indicated that such a choice is necessary to reproduce correct
interface behavior.

After the recoloring step, the streaming step for both red
and blue distribution functions is performed:

fi,k(x + eiδt ,t + δt ) = f
††
i,k(x,t), k = R or B. (15)

With the poststreaming distribution functions, the density
of each fluid is calculated by

ρk =
∑

i

fi,k, k = R or B. (16)

It is known that the standard BGK model has been success-
fully applied to the simulation of non-Newtonian fluid flows,
but it is often restricted to a small range of dynamic viscosities
because of low numerical accuracy or instability. To allow
for the power-law fluids with moderate or strong rheological
properties in which the viscosities often vary within a wide
range, we propose to use a RLB model instead of the standard
BGK model. The RLB model is as simple as the BGK model
except that an additional regularization step is applied prior to
the collision step; see Eq. (1). In the regularization step, the
total distribution function is divided into an equilibrium part
f

eq
i and a nonequilibrium part f

neq
i , and the nonequilibrium

part is then approximated by the first-order term of fi in the
C-E expansion [22]. This means

fi(x,t) = fi
eq(x,t) + f

(1)
i (x,t)δt , (17)

where f
(1)
i is the nonequilibrium part of the first order in the

C-E expansion.
Substituting the regularization step into Eq. (1), the evolu-

tion equation for the collision step reads as

f
†
i (x,t) = fi

eq(x,t) +
(

1 − 1

τ

)
f

(1)
i (x,t)δt + F̂iδt . (18)

It can be shown using the C-E expansion (see Appendix A)
that Eq. (18) can recover the target NSEs [see Eq. (12)] if f

(1)
i

satisfies the following constraints:∑
i

f
(1)
i = 0, (19a)

∑
i

eiαf
(1)
i = −1

2
Fα, (19b)

∑
i

eiαeiβf
(1)
i = ηSαβ, (19c)
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with η = −2τρc2
s and

Sαβ = [(∂αuβ + ∂βuα)/2] + [
(uαFβ + uβFα)/4τρc2

s

]
, (20)

where the subscripts α and β denote the coordinate directions.
It can be seen from Eq. (19) that the number of unknown
f

(1)
i is more than the number of known constraint equations,

which are 9 (or 19) and 6 (or 10), respectively, for the D2Q9
(or D3Q19) model. The problem of solving for f

(1)
i in Eq.

(19) is underdetermined and has many possible solutions.
In previous studies, the expressions of f

(1)
i were usually

constructed by the C-E expansion or the Hermite expansion
[22,24,29,32,49]. Here we propose to directly solve Eq. (19)
for f

(1)
i by using the pseudo-inverse method [50,51], which

is based on a philosophy that the norm of solution is made
minimum. The pseudo-inverse method is particularly suitable
to find an optimum solution to the underdetermined equations,
e.g., Eq. (19). With the pseudo-inverse method, one can
obtain the analytical expressions of f

(1)
i which are given by

(see Appendix B for the derivation)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f
(1)
0

f
(1)
1

f
(1)
2

f
(1)
3

f
(1)
4

f
(1)
5

f
(1)
6

f
(1)
7

f
(1)
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

36

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −12 0 −12
−3 0 6 0 −12

0 −3 −12 0 6
3 0 6 0 −12
0 3 −12 0 6

−3 −3 6 9 6
3 −3 6 −9 6
3 3 6 9 6

−3 3 6 −9 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Fx

Fy

ηSxx

ηSxy

ηSyy

⎞
⎟⎟⎟⎟⎟⎠,

(21)

for the D2Q9 model and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f
(1)
0

f
(1)
1

f
(1)
2

f
(1)
3

f
(1)
4

f
(1)
5

f
(1)
6

f
(1)
7

f
(1)
8

f
(1)
9

f
(1)
10

f
(1)
11

f
(1)
12

f
(1)
13

f
(1)
14

f
(1)
15

f
(1)
16

f
(1)
17

f
(1)
18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

420

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −100 0 0 −100 0 −100
−21 0 0 10 0 0 −60 0 −60

21 0 0 10 0 0 −60 0 −60
0 −21 0 −60 0 0 10 0 −60
0 21 0 −60 0 0 10 0 −60
0 0 −21 −60 0 0 −60 0 10
0 0 21 −60 0 0 −60 0 10

−21 −21 0 50 105 0 50 0 −20
21 −21 0 50 −105 0 50 0 −20

−21 21 0 50 −105 0 50 0 −20
21 21 0 50 105 0 50 0 −20

−21 0 −21 50 0 105 −20 0 50
21 0 −21 50 0 −105 −20 0 50

−21 0 21 50 0 −105 −20 0 50
21 0 21 50 0 105 −20 0 50
0 −21 −21 −20 0 0 50 105 50
0 21 −21 −20 0 0 50 −105 50
0 −21 21 −20 0 0 50 −105 50
0 21 21 −20 0 0 50 105 50

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fx

Fy

Fz

ηSxx

ηSxy

ηSxz

ηSyy

ηSyz

ηSzz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

for the D3Q19 model. In Eqs. (21) and (22), the second-order
tensor Sαβ can be calculated locally from the nonequilibrium
part of the distribution function [see Eq. (19c)],

Sαβ = 1

η

∑
i

eiαeiβf
(1)
i = 1

η

∑
i

eiαeiβ

(
fi − f

eq
i

)
, (23)

which can avoid the evaluation of the derivatives through the
finite difference approximation and thus is more consistent
with the philosophy of the LBM. As can be seen from Eqs. (21)
and (22), the body force term is explicitly included in f

(1)
i ,

which suggests that a direct use of the previously proposed

f
(1)
i [22],

f
(1)
i = ωi

2c4
s

(
eiαeiβ − c2

s δαβ

) ∑
i

eiαeiβ

(
fi − f

eq
i

)
, (24)

is invalid when the body force is taken into account. In addition,
the pseudo-inverse method is directly applied for the solution
of f

(1)
i , which does not need a priori knowledge regarding the

form of f
(1)
i and can be straightforwardly extended to other

discrete velocity models. Finally, it is worth noting that the
regularization step that neglects high-order terms in f

neq
i can

ensure the symmetry of distribution function with respect to
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spatial reflection, thus improving the stability and accuracy of
numerical simulations.

B. Modeling of power-law non-Newtonian fluid

For the power-law non-Newtonian fluid, the dynamic vis-
cosity is not a constant but a function of the shear rate |γ̇ |, and
is given by

μ = μp|γ̇ |n−1, (25)

where γ̇ is the shear rate tensor defined by γ̇ = ∇u + (∇u)T

and |γ̇ | = √
(γ̇ : γ̇ )/2; μp and n are the consistency constant

and the power-law index, respectively. Depending on the value
of n, the power-law fluids can be divided into three types: the
shear-thinning or pseudo-plastic fluid for n < 1, the Newtonian
fluid for n = 1, and the shear-thickening or dilatant fluid for
n > 1. Note that, as a part of Sαβ , the local shear rate tensor
γ̇ involved in the viscosity calculation of the power-law fluid
can be simply calculated by Eq. (20) once the value of Sαβ is
obtained from Eq. (23). With the local shear rate tensor, the
relaxation time τ in Eq. (1) is calculated in the following way:
μR and μB are first calculated by Eq. (25), the viscosity μ of
the fluid mixture is then calculated by Eq. (13), and finally τ

is obtained from μ = ρc2
s δt (τ − 0.5), which is shown below

Eq. (12).

III. RESULTS AND DISCUSSION

A. Single-phase power-law fluid flows between
two parallel plates

To test the stability and accuracy of the present model,
the benchmark case regarding a single-phase power-law fluid
flow between two parallel plates is first considered. The flow
is driven by a constant pressure gradient in the x direction,
∂p/∂x = −1.5 × 10−7, and the channel has a height of H in
the y direction. When the flow reaches the steady state, an
analytical solution for the x component of the velocity can be
obtained as [52]

u∗
x(y) = n

1 + n

(
− 1

μp

∂p

∂x

) 1
n

[(
H

2

) 1+n
n

−
∣∣∣∣y − H

2

∣∣∣∣
1+n
n

]
,

y ∈ [0,H ], (26)

from which the maximum velocity u∗
x, max is easily calculated:

u∗
x, max = n

1 + n

(
− 1

μp

∂p

∂x

) 1
n
(

H

2

) 1+n
n

. (27)

The simulations are run in a 10 × 40 lattice domain.
Periodic boundary conditions are applied in the x direction,
while no-slip boundary conditions, which are realized by the
half-way bounce-back rule, are used on the top and bottom
walls. A broad range of power-law indices are considered:
n = 0.1,0.2,0.5,1,1.5, and 2. In the simulations, μp is an
adjustable parameter varying with n, and it is selected such
that the analytical value of u∗

x, max given by Eq. (27) is fixed at
1 × 10−3 in order to minimize the compressibility errors. The
convergence criterion is selected as

Ec =
∑

x ‖u(x,t) − u(x,t − 100δt )‖∑
x ‖u(x,t)‖ < 10−8. (28)

TABLE I. Relative errors of the velocity obtained by using the
BGK and RLB models at different values of n in the single-phase
power-law fluid flows.

n Eu-BGK Eu-RLB

0.1 Not converged 1.524 × 10−2

0.2 Not converged 5.112 × 10−3

0.5 1.562 × 10−3 1.495 × 10−3

1 8.193 × 10−4 7.223 × 10−4

1.5 6.496 × 10−4 5.515 × 10−4

2 5.864 × 10−4 4.949 × 10−4

To quantify the accuracy of the simulated results, we
compute the relative L2-norm error of the velocity in
the steady state. The relative error is defined as Eu =√∑

y [ux(y) − u∗
x(y)]2/

∑
y [u∗

x(y)]2 , where ux is the x com-
ponent of the simulated velocity. Table I shows the relative
errors of the velocity at different values of n, where the results
obtained by the BGK model are also illustrated for comparison
with the present RLB results.

It is found that all the simulations reach the steady state
when the RLB model is used, but the simulations with n � 0.2
cannot converge when the BGK model is used, because in
the central part of the channel, the velocity distribution is
extremely even for a low power-law index, which could lead
to very high viscosities, thus deteriorating the stability or
accuracy of the BGK model. In addition, the simulated results
from the RLB model all agree well with the analytical solutions
with the relative errors below 1.524 × 10−2. For the power-law
indices above 0.5, the relative errors obtained by using the RLB
and BGK models are on the same order of 10−3 or even smaller.
These results indicate that the proposed RLB model can offer
substantial improvements in stability over the BGK model and
it is eligible in the simulation of power-law fluid flows with a
wide range of power-law indices.

It should also be noted that for n � 0.2, the relative errors
are higher because the macroscopic quantities, e.g., the velocity
and viscosity, vary dramatically either in a thin layer or over
an extremely wide range. It is expected that the accuracy
of the simulated results can be improved by increasing grid
resolution. Table II shows the relative errors of the velocity
obtained by the RLB model for three different grid resolutions
at n = 0.1 and n = 0.2. As expected, the relative errors are
effectively reduced with increasing the grid number.

B. Two-phase power-law fluid flows between two parallel plates

To assess the capability of the present model in describing
two-phase interface and dealing with different viscosities of the

TABLE II. Relative errors of the velocity obtained by the RLB
model at n = 0.1 and n = 0.2 for different grid resolutions.

Eu-RLB

Grid resolution n = 0.1 n = 0.2

X × Y = 10 × 40 1.524 × 10−2 5.112 × 10−3

X × Y = 20 × 80 3.698 × 10−3 1.149 × 10−3

X × Y = 30 × 120 1.538 × 10−3 4.088 × 10−4
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binary fluids, we simulate the two-phase power-law fluid flows
between two parallel plates. As shown in Fig. 1, two plates are
apart from each other by a distance of 2H in the y direction.
The red and blue fluids fill the central (|y| � Yi) and bilateral
(Yi < |y| � H ) regions of the channel, respectively. The lattice
domain is set to be 5 × 200 with Yi = 50. The flow is driven
by a constant pressure gradient of −∂p/∂x = 2.0 × 10−8, and
all the boundary conditions are the same as those in the above
single-phase flow simulations.

When the flow reaches the steady state, an analytical
solution for the x component of the velocity is given by [39]

FIG. 1. Schematic of the two-phase layered flow between two
parallel plates.

u∗
x(y) =

⎧⎨
⎩

nR

1+nR

(− 1
μ

p

R

∂p

∂x

) 1
nR

(
Yi

1+nR
nR − |y|

1+nR
nR

) + nB

1+nB

(− 1
μ

p

B

∂p

∂x

) 1
nB

(
H

1+nB
nB − Yi

1+nB
nB

)
, if |y| � Yi ;

nB

1+nB

(− 1
μ

p

B

∂p

∂x

) 1
nB

(
H

1+nB
nB − |y|

1+nB
nB

)
, otherwise,

(29)

where nR and nB are the power-law indices of the red and blue
fluids, respectively.

To consider different viscosities of the binary fluids, a
parameter λp is introduced, which is defined by the consistency
constants of both power-law fluids as λp = μ

p

R/μ
p

B . Different
values of λp are obtained by varying μ

p

R while keeping μ
p

B

fixed. The interfacial tension is fixed at σ = 5 × 10−3. Simu-
lations are carried out at λp = 0.1,1, and 10 for (a) nR = 0.2,
nB = 1, (b) nR = 1.8, nB = 1, (c) nR = 0.2, nB = 1.8, and
(d) nR = 1.8, nB = 0.2. Table III shows the relative errors of
the simulated results obtained with the present RLB model and
the BGK model.

Similar to the observations in the single-phase flow sim-
ulations, when the RLB model is used, all the simulations
can converge and the simulated results show an acceptable
accuracy with the relative errors on the order of 10−2 or even
smaller. By contrast, the BGK simulations become unstable as
long as there exists a shear-thinning fluid in binary fluids. In
addition, the relative errors are found to be almost independent

TABLE III. Relative errors of the velocity obtained with BGK and
RLB models for different flow conditions in the two-phase layered
power-law fluid flows. Note that the parameter λp is defined as λp =
μ

p

R/μ
p

B .

λp nR nB Eu-BGK Eu-RLB

0.1 0.2 1 Not converged 7.62 × 10−4

1 0.2 1 Not converged 7.63 × 10−4

10 0.2 1 Not converged 7.94 × 10−4

0.1 1.8 1 3.66 × 10−2 3.66 × 10−2

1 1.8 1 3.59 × 10−2 3.59 × 10−2

10 1.8 1 2.91 × 10−2 2.90 × 10−2

0.1 0.2 1.8 Not converged 1.01 × 10−2

1 0.2 1.8 Not converged 1.01 × 10−2

10 0.2 1.8 Not converged 1.00 × 10−2

0.1 1.8 0.2 Not converged 3.69 × 10−2

1 1.8 0.2 Not converged 3.69 × 10−2

10 1.8 0.2 Not converged 3.69 × 10−2

of the value of λp for each group of nR and nB , because the
analytical velocity profiles are almost identical at different λp

for the constant values of nR and nB , which can be seen from
Fig. 2. As a comparison, Fig. 2 also plots the simulated results
by the RLB model. Note that in each case the velocities and po-
sition are normalized by the maximum analytical velocity u∗

max
and the half channel height H, respectively. A good agreement
between the simulated and analytical results is observed for all
the cases considered. Again, we find that the relative errors can
be reduced by increasing grid resolution. For example, in the
case of λp = 1, nR = 1.8, and nB = 0.2, the relative errors of
the velocity are, respectively, 3.69 × 10−2, 1.81 × 10−2, and
1.09 × 10−2 for the grid resolutions of 4 × 200, 8 × 400, and
12 × 600; and in the case of λp = 1, nR = 0.2, and nB = 1.8,
the relative errors are, respectively, 1.01 × 10−2, 5.02 × 10−3,

and 2.53 × 10−3 for the grid resolutions of 4 × 200, 8 × 400,

and 12 × 600.

C. Droplet deformation and breakup in a power-law shear flow

To validate the RLB model in capturing the dynamic
interface, in particular with topological changes, we simulate
the droplet deformation and breakup in a power-law shear
flow, and the simulated results and the computing time are
quantitatively compared with those obtained by the MRT
model, which is known to have better stability and accuracy
over the BGK model as well. As illustrated in Fig. 3, a spherical
droplet with radius R is initially placed in the middle of two
parallel plates. The two plates are apart from each other by a
distance of H and move at an equal speed of U but in opposite
directions. The resulting shear rate is γ̇0 = 2U/H, and the wall
confinement is defined as 2R/H . In what follows, we use the
subscripts “R” and “B” to denote the droplet and the matrix
fluid, respectively. When the droplet is subject to a simple shear
flow, two primary forces, the capillary and viscous forces, are
exerted on the droplet, and their relative magnitude is measured
by the capillary number, which is defined by Ca = μBγ̇0R/σ .
In addition, the inertial force can also influence the dynamical
behavior of the droplet, and its importance is described by the
Reynolds number, defined by Re = ρBγ̇0R

2/μB .
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FIG. 2. Simulated and analytical velocity profiles at λp = 0.1,1, and 10 for four different groups of nR and nB : (a) nR= 0.2, nB= 1, (b)
nR= 1.8, nB= 1, (c) nR= 0.2, nB= 1.8, and (d) nR= 1.8, nB= 0.2. The simulated results from the RLB model and analytical solutions are
represented by the discrete symbols and lines, respectively. Note that in each case the velocities and position are normalized by the maximum
analytical velocity u∗

max and the half channel height H , respectively.

Previous works have indicated [39,53,54] that the non-
Newtonian rheology of the matrix fluid has a more significant
effect on the droplet behavior than that of the droplet. Thus,
we will focus on the fluid systems with a Newtonian droplet
suspended in a power-law matrix. According to Eq. (25), the
viscosity of the matrix fluid in the definitions of Ca and Re is
given by μB = μ

p

B |γ̇ |nB−1 with |γ̇ | = γ̇0 as an estimate. In the
present study, three typical power-law indices are considered,
i.e., nB = 0.2,1, and 1.8, which correspond to shear-thinning,
Newtonian, and shear-thickening fluids, respectively. For small
Re and Ca, the droplet would eventually deform to an ellip-
soidal shape, and the droplet deformation can be quantified

FIG. 3. Illustration of a single droplet in a simple shear flow.

by the deformation parameter D = (L − B)/(L + B), where
L and B are the lengths of the long and short axes of the
ellipsoidal droplet, respectively. Since the pioneering work
of Taylor [55], a number of theoretical or phenomenological
models [56–58] have been developed to predict the deforma-
tion parameter in Newtonian fluid systems. Among them, the
MMSH model [58] considers both the wall confinement and the
transient effect, and exhibits an excellent prediction accuracy
against experiment data. The MMSH model is given by

DMMSH = DMM

[
1 + Cs

1 + 2.5λ

1 + λ

(
R

H

)3
]
, (30)

DMM =

√
m2

1 + Ca2 −
√

m2
1 + (

1 − m2
2

)
Ca2

m2Ca
, (31)

where λ = μR/μB is the viscosity ratio, m1 = 40(λ +
1)/[(2λ + 3) × (19λ + 16)], m2 = [5/(2λ + 3)] + [3Ca2/

(2 + 6Ca2)], and 64 × 64 × 256 is a shape parameter, which
is taken as 5.699 for a droplet placed in the middle of two
plates. The MMSH model will be applied to validate our
simulation results regarding Newtonian fluid systems and
serve as a reference for quantifying the non-Newtonian
rheological effects.
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FIG. 4. (a) Deformation parameter D as a function of the capillary
number for three different matrix fluids at Re = 0.1, λ = 1, and
2R/H = 0.5. The solid line represents the predictions from the
MMSH model. The inverted triangles and crosses are both the
Newtonian fluid results: the former from the MRT model, and the
latter from the experiments of Sibillo et al. [60]. (b) Final droplet
shapes at Ca = 0.25 for the shear-thinning (nB = 0.2), Newtonian
(nB = 1), and shear-thickening (nB = 1.8) matrix fluids.

First, we conduct the simulations on the droplet deformation
for Re = 0.1 and λ = 1 over a range of capillary numbers from
0.05 to 0.25. The domain size is set to be 180 × 110 × 80
with the droplet radius R = 20, which were found to produce
grid-independent results [39]. Note that only one half domain is
used in the y direction due to the symmetry of the problem. The
half-way bounce-back scheme [59] is applied on the top and
bottom walls, while periodic boundary conditions are imposed
in the x and y directions.

Figure 4 plots the deformation parameter D as a function
of the capillary number for three different values of nB , where
the predictions from the MMSH model, the experimental data
of Sibillo et al. in a Newtonian system [60], and the simulated
results from the MRT color-gradient model are also plotted
for comparison. Note that the MRT color-gradient model for
power-law fluids has been presented and well validated in our
recent work [39]. It is seen in the Newtonian case (nB = 1) that
the deformation parameter obtained by the RLB model exhibits
a linear dependence on Ca, and all the results are in good
agreement with the MMSH predictions, the experimental data,
and the simulated results from the MRT model. This indicates
that the present RLB model can provide accurate predictions
of the droplet deformation. Consistent with the Newtonian
case, the linear dependence of D on Ca is also observed
in either shear-thinning or shear-thickening case. However,
compared to the Newtonian case, the deformation parameter
at each capillary number is bigger in the shear-thickening case
(nB = 1.8) but smaller in the shear-thinning case (nB = 0.2).
In addition, as illustrated in Fig. 4(b), a larger deformation
parameter corresponds to a smaller inclination angle with
respect to the horizontal plane, which signifies that the droplet
orients more in the flow direction with increasing deformation.
These results regarding the power-law fluid systems agree
well with our previous findings obtained with the MRT color-
gradient model.

TABLE IV. The values of deformation parameter and run time
obtained by the RLB and MRT models for a Newtonian droplet in the
shear-thinning (nB = 0.2), Newtonian (nB = 1) and shear-thickening
(nB = 1.8) matrix fluids at Re = 0.1, Ca = 0.1, 2R/H = 0.5, and
λ = 1. Note that the run time tphy is the time required for a simulation
when reaching γ̇0t = 3. For nB = 1 the predicted value of the
deformation parameter from the MMSH model is 0.1268.

Model nB D tphy/s

RLB 0.2 0.0951 5534.98
MRT 0.2 0.0950 6463.78
RLB 1 0.1293 5490.77
MRT 1 0.1292 6475.79
RLB 1.8 0.1586 5441.84
MRT 1.8 0.1585 6563.96

Like the present RLB model, the MRT model is also
known to have better numerical stability and accuracy over the
standard BGK model. To further assess the present model, we
make a quantitative comparison of the MRT and RLB models
in terms of the model accuracy and computing efficiency. The
message-passing interface parallelized codes are developed for
both models and are applied to 3D simulations of the droplet
deformation with Re = 0.1, λ = 1, 2R/H = 0.5, and Ca =
0.1 for three different matrix fluids: nB = 0.2,1, and 1.8. Each
of the simulations is run using 60 cores on a High Performance
Computing Cluster that consists of 110 computing nodes with
each node equipped with 64GB of DDR4 RAM and two Intel
Xeon E5-2690 v3 processors. Table IV shows the simulated
deformation parameters from the RLB and MRT models,
which are almost the same with the difference of around
1 × 10−4 for each nB . This indicates that the two models are
equally accurate in simulating droplet deformation. In addition,
we quantify the run time tphy required for a simulation when
reaching γ̇0t = 3, which is also listed in Table IV. It is clear that
the run time of the present RLB model is always less than that
of the MRT model for a constant nB . Specifically, in contrast
to MRT model, the use of RLB model can decrease the run
time by 14.4%, 15.2%, and 17.1% for nB = 0.2,1, and 1.8,
respectively. Thus, the present RLB color-gradient model is
preferred for the simulation of power-law fluid flows instead
of its MRT counterpart.

A number of theoretical, experimental and numerical stud-
ies have revealed that when Ca is above a critical value, the
droplet won’t reach a steady shape but continues to deform and
eventually breaks into daughter droplets [61–64]. To capture
the droplet breakup, we increase the capillary number and carry
out the simulations in a 240 × 100 × 80 lattice domain, which
is long enough for the droplet to be stretched freely in the flow
direction. The boundary conditions, Re, λ, confinement ratio,
and the power-law indices are all kept the same as those in the
droplet deformation simulations.

Figure 5 illustrates the simulated results of the present RLB
model in three different matrix fluids. In this figure, empty
symbols are used in the cases where no droplet breakup is
observed, and filled symbols represent binary breakup, where
the droplet splits into two daughter droplets. Following this
definition, the critical capillary number (Cac) lies between the
empty and filled symbols in Fig. 5. It is seen in Newtonian
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FIG. 5. Capillary numbers at which the droplet achieves a steady
shape or experiences breakup for different power-law indices of the
matrix fluid. No droplet breakup and binary breakup are represented
by empty symbols and filled symbols, respectively. Inset shows either
the droplet shapes before and after the breakup or the steady droplet
shape.

system that the simulated critical capillary number is in the
range of 0.375–0.4, which agrees well with our previous
results from the MRT color-gradient model [39]. Note that
the present critical capillary number at nB = 1 is a little higher
than that obtained by Janssen et al. (Cac = 0.374) using the
boundary integral method [63]; and on the other hand, it is
closer to the previous experimental data (Cac = 0.41) [63]
in comparison with the numerical result of Janssen et al.
In addition, the values of the critical capillary number are
0.5–0.525 in the shear-thinning matrix fluid (nB = 0.2) and
0.325–0.35 in the shear-thickening matrix fluid (nB = 1.8),
suggesting that an increase in power-law index decreases the
critical capillary number for droplet breakup. This trend is
qualitatively consistent with our previous finding in Ref. [39],
where three different power-law indices of nB = 0.5,1, and 1.5
were considered at various confinement ratios.

IV. CONCLUSIONS

In this work, a regularized lattice Boltzmann color-gradient
model is developed to simulate immiscible two-phase flows
with power-law rheology. Like the standard BGK color-
gradient model, this model uses a forcing term to realize the
interfacial tension effect and a recoloring algorithm to produce
phase segregation. However, an additional regularization step
is introduced prior to the collision step. In the regularization
step, the nonequilibrium part of the total distribution function is
approximated by its first-order term f

(1)
i . The constraint equa-

tions forf (1)
i are derived using the Chapman-Enskog expansion

and are directly solved by the pseudo-inverse method, which
does not need prior knowledge about the form off (1)

i and can be
easily extended to other discrete velocity models. The resulting
expressions of f

(1)
i are related only to macroscopic variables

and velocity gradients, which can be evaluated locally. The
stability and accuracy of the RLB model are first tested by two

benchmark cases with analytical solutions: the single-phase
and two-phase power-law fluid flows between two parallel
plates. Results show that the present model is capable of
simulating power-law fluids with a wide range of power-law
indices and has better numerical stability and accuracy over
the BGK model. The RLB color-gradient model is then used to
simulate the deformation and breakup of a Newtonian droplet
in a power-law shear flow. Through quantification of droplet
deformation and run time at different power-law indices, the
present model is found to have the same accuracy but higher
computing efficiency compared to its MRT counterpart. In
addition, the critical capillary number for droplet breakup is
dependent on the power-law index, and increasing power-law
index leads to a decrease in the critical capillary number,
consistent with our previous finding in Ref. [39]. The present
RLB color-gradient model can offer an accurate and efficient
tool for the simulation of non-Newtonian fluid flows and/or
Newtonian two-phase flows with high viscosity ratio.
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APPENDIX A: CHAPMAN-ENSKOG ANALYSIS OF THE
RLB MODEL FOR NAVIER-STOKES EQUATIONS

By introducing a regularization step prior to the collision
step, the evolution equations of the distribution functions in
the RLB color-gradient model are given by

fi(x,t) = fi
eq(x,t) + f

(1)
i (x,t)δt , (A1)

f
†
i (x,t) = fi(x,t) − 1

τ

[
fi(x,t) − f

eq
i (x,t)

] + F̂iδt , (A2)

f
††
i,R(x,t) = ρR

ρ
f

†
i (x,t) + β

ρRρB

ρ
ωi

ei · ∇ρN

|∇ρN | ,

f
††
i,B(x,t) = ρB

ρ
f

†
i (x,t) − β

ρRρB

ρ
ωi

ei · ∇ρN

|∇ρN | , (A3)

fi,k(x + eiδt ,t + δt ) = f
††
i,k(x,t), k = R or B, (A4)

which are known as the regularization step, BGK collision step,
recoloring step, and streaming step, respectively. Note that the
forcing term F̂i is given by Eq. (7). According to the recoloring
step, one can get

f
††
i,R(x,t) + f

††
i,B(x,t) = f

†
i (x,t). (A5)

In addition, from the streaming step, it is easy to obtain

fi,R(x + eiδt ,t + δt ) + fi,B(x + eiδt ,t + δt )

= f
††
i,R(x,t) + f

††
i,B(x,t). (A6)
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Using Eq. (A5), Eq. (A6) is further written as

fi(x + eiδt ,t + δt ) = f
†
i (x,t). (A7)

Combination of Eqs. (A1), (A2), and (A7) leads to the
evolution equation of the total distribution function in the RLB
color-gradient model:

fi(x + eiδt ,t + δt ) − fi(x,t) = − 1

τ
f

(1)
i (x,t)δt + F̂iδt . (A8)

It is easily justified that the equilibrium distribution func-
tion, defined in Eq. (2), and the forcing term satisfy the
following equations:∑

i

f
eq
i = ρ,

∑
i

eif
eq
i = ρu,

∑
i

eieif
eq
i = ρuu + ρc2

s I,

∑
i

eiαeiβeiγ f
eq
i = ρc2

s � · u

= ρc2
s (uαδβγ + uβδαγ + uγ δαβ),∑

i

F̂i = 0,
∑

i

ei F̂i =
(

1 − 1

2τ

)
F,

∑
i

eiei F̂i =
(

1 − 1

2τ

)
(uF + Fu), (A9)

where the total density and momentum are calculated by

ρ =
∑

i

fi, (A10)

ρu(x,t) =
∑

i

fi(x,t)ei + 1

2
F(x,t)δt . (A11)

Applying the Taylor expansion to the left-hand side of
Eq. (A8), one can get

Difi + δt

2
D2

i fi = − 1

τa

(
f

(1)
i ε

) + F̂i , (A12)

where Di = ∂t + eiα∂α , and τa = τδt . Introducing the C-E
expansion:

fi = fi
eq + εf

(1)
i + ε2f

(2)
i + o(ε3),

∂t = ε∂t0 + ε2∂t1, ∇ = ε∇0,

F = εF(0), F̂i = εF̂
(0)
i , (A13)

where ε is the expansion parameter, and substituting Eq. (A13)
into Eq. (A12), we have

(ε∂t0 + ε2∂t1 + εei · ∇0) · [
f

eq
i + εf

(1)
i + ε2f

(2)
i + o(ε3)

]
+ δt

2
(ε∂t0 + ε2∂t1 + εei · ∇0)2

· [f eq
i + εf

(1)
i + ε2f

(2)
i + o(ε3)

]
= − 1

τa

εf
(1)
i + εF̂

(0)
i . (A14)

The following equations can be obtained by matching the
terms at different orders of ε:

O(ε) : (∂t0 + ei · ∇0)f eq
i = − 1

τa

f
(1)
i + F̂

(0)
i , (A15)

O(ε2) : ∂t1f
eq
i + (∂t0 + ei · ∇0)f (1)

i + δt

2
(∂t0 + ei · ∇0)2f

eq
i

= 0. (A16)

Substitution of Eq. (A15) into Eq. (A16) leads to

O(ε2) : ∂t1f
eq
i + (∂t0 + ei · ∇0)

[(
1 − 1

2τ

)
f

(1)
i

]

+ δt

2
(∂t0 + ei · ∇0)F̂ (0)

i = 0. (A17)

Combining Eqs. (A9)–((A11 and (A13), one can obtain the
following solvability conditions for f

(n)
i (n = 1,2, . . .):∑

i

f
(n)
i = 0, n � 1,

∑
i

eiαf
(1)
i = −1

2
F (0)

α δt ,

∑
i

eif
(n)
i = 0, n > 1. (A18)

The zeroth and first order moments of Eq. (A15) lead to

∂t0ρ + ∇0α · (ρuα) = 0, (A19)

∂t0(ρuα) + ∇0β · (
ρuαuβ + ρc2

s δαβ

) = F (0)
α . (A20)

Similarly, the moments of Eq. (A17) lead to

∂t1ρ = 0, (A21)

∂t1(ρuα) + ∇0β ·
[(

1 − 1

2τ

) ∑
i

eiαeiβf
(1)
i

]
+ δt

2
∇0β ·

[(
1 − 1

2τ

)(
uαFβ

(0) + uβFα
(0)

)] = 0, (A22)

where the second order tensor
∑

i eiαeiβf
(1)
i can be calculated by

∑
i

eieif
(1)
i = −τa

[
∂t0

∑
i

eieif
eq
i + ∇0 ·

∑
i

eieieif
eq
i −

∑
i

eiei F̂
(0)
i

]
,

= −τa

[
∂t0

(
ρuu + ρc2

s I
) + ∇0 · (

ρc2
s � · u

) −
(

1 − 1

2τ

)
(uF(0) + F(0)u)

]
. (A23)

Note that Eq. (A15) has been used in the above derivation.
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By virtue of Eqs. (A19) and (A20), the first term on the right-hand side of Eq. (A23) can be written as

∂t0
(
ρuαuβ + ρc2

s δαβ

) = ∂t0(ρuαuβ) − c2
s ∇0γ · (ρuγ )δαβ

= uβ∂t0(ρuα) + uα∂t0(ρuβ) − uαuβ∂t0(ρ) − c2
s ∇0γ · (ρuγ )δαβ

= uβ

[
F (0)

α − ∇0γ · (
ρuαuγ + ρc2

s δαγ

)] + uα

[
F

(0)
β − ∇0γ · (

ρuβuγ + ρc2
s δγβ

)]
+uαuβ∇0γ · (ρuγ ) − c2

s ∇0γ · (ρuγ )δαβ

= uβF (0)
α + uαF

(0)
β − ∇0γ · (ρuγ uβuα) − c2

s uβ∇0α(ρ) − c2
s uα∇0β(ρ) − c2

s ∇0γ · (ρuγ )δαβ. (A24)

The second term on the right-hand side of Eq. (A23) reads as

∇0 · (
ρc2

s � · u
) = ∇0γ

[
ρc2

s (uαδβγ + uβδαγ + uγ δαβ)
]
,

= c2
s ∇0γ (ρuγ )δαβ + ∇0β

(
ρc2

s uα

) + ∇0α

(
ρc2

s uβ

)
,

= c2
s ∇0γ (ρuγ )δαβ + ρc2

s ∇0β(uα) + uαc2
s ∇0β(ρ) + ρc2

s ∇0α(uβ) + uβc2
s ∇0α(ρ). (A25)

Then Eq. (A23) becomes∑
i

eiαeiβf
(1)
i = −τa

[
ρc2

s ∇0β(uα) + ρc2
s ∇0α(uβ) − ∇0γ · (ρuγ uβuα) + 1

2τ

(
uβF (0)

α + uαF
(0)
β

)]

= −τaρc2
s (∇0u + ∇0uT ) − δt

2
(uF(0) + F(0)u) + o(u3). (A26)

Substituting Eq. (A26) into Eq. (A22), we have

∂t1(ρuα) + ∇0 ·
{(

1 − 1

2τ

)[
−τaρc2

s (∇0u + ∇0uT ) − δt

2
(uF(0) + F(0)u)

]}
+ δt

2
∇0 ·

[(
1 − 1

2τ

)
(uF(0) + F(0)u)

]
= 0;

⇒ ∂t1(ρuα) = ∇0 ·
[(

τ − 1

2

)
ρc2

s (∇0u + ∇0uT )

]
δt . (A27)

Through the calculations of ε× Eq. (A19) + ε2× Eq. (A21) and ε× Eq. (A20) + ε2× Eq. (A27), the target Navier-Stokes
equations [Eq. (12)] can be recovered exactly with the pressure and fluid viscosity given by p = ρc2

s and μ = c2
s δt (τ − 0.5),

respectively.

APPENDIX B: DESCRIPTION ON HOW TO COMPUTE NONEQUILIBRIUM PART OF DISTRIBUTION FUNCTION

In this appendix, we take the D2Q9 lattice as an example to describe how to compute the nonequilibrium part f
(1)
i from

Eq. (19).
First, Eq. (19) can be expressed in a matrix form as Af (1)= b, where

A =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 1 0 1 0 1 1 1 1
0 0 0 0 0 1 −1 1 −1
0 0 1 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎠, (B1)

b = (
0 − 1

2Fx − 1
2Fy ηSxx ηSxy ηSyy

)T
, (B2)

f (1) = (
f

(1)
0 f

(1)
1 f

(1)
2 f

(1)
3 f

(1)
4 f

(1)
5 f

(1)
6 f

(1)
7 f

(1)
8

)T
. (B3)

Then, following Campbell and Meyer [51], the pseudo-inverse of A is given by

A−1 = AT (AAT )−1 = 1

36

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

20 0 0 −12 0 −12
8 6 0 6 0 −12
8 0 6 −12 0 6
8 6 0 6 0 −12
8 0 −6 −12 0 6

−4 6 6 6 9 6
−4 −6 6 6 −9 6
−4 −6 −6 6 9 6
−4 6 −6 6 −9 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

where AT and A−1 denote the transport and inverse of a matrix A, respectively.
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Finally, f (1) is calculated by

f (1) = A−1b = 1

36

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

20 0 0 −12 0 −12
8 6 0 6 0 −12
8 0 6 −12 0 6
8 6 0 6 0 −12
8 0 −6 −12 0 6

−4 6 6 6 9 6
−4 −6 6 6 −9 6
−4 −6 −6 6 9 6
−4 6 −6 6 −9 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

− 1
2Fx

− 1
2Fy

ηSxx

ηSxy

ηSyy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

36

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −12 0 −12
−3 0 6 0 −12

0 −3 −12 0 6
3 0 6 0 −12
0 3 −12 0 6

−3 −3 6 9 6
3 −3 6 −9 6
3 3 6 9 6

−3 3 6 −9 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Fx

Fy

ηSxx

ηSxy

ηSyy

⎞
⎟⎟⎟⎟⎟⎠. (B5)
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