
PHYSICAL REVIEW E 97, 033304 (2018)

Modeling flow and transport in fracture networks using graphs
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Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason,
accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface
applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling
flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to
incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and
transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify
uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden,
we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by
comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity
DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to
our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with
large number of fractures, we are in a unique position to perform such a comparison. We show that the graph
approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the
DFN approach. We show that this is due to graph algorithm’s underprediction of the pressure gradients across
intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel
times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the
DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly
improve and the results are very accurate. The good accuracy and the low computational cost, with O(104)
times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty
quantification methods.
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I. INTRODUCTION

Fracture networks are the main pathways for fluid flow and
transport in the subsurface within low-permeability rock [1–3].
Prediction of fluid migration in these fractures is critical for
several energy and national security applications such as hy-
drocarbon extraction from unconventional resources, geother-
mal energy extraction, nuclear waste disposal, and detection of
underground nuclear explosions [4–7]. The pathways formed
in the fracture networks and the fine-scale heterogeneity that
they give rise to depend heavily on the connectivity and
geometrical features such as size and aperture of the fractures.
Higher fracture density leads to better connectivity, which
in turn increases the chances for more flow and transport.
Furthermore, the larger the fracture size, the chances for
connectivity with other fractures is higher, and the larger the
aperture, the more fluid volume can move in that fracture.
Modeling approaches have to ensure that these connectivity
and geometrical features of fracture networks are reasonably
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captured for accurate predictions. Discrete fracture network
(DFN) modeling is one such approach. In this method, fractures
are represented as two-dimensional planar objects in three-
dimensional space (for example, see Fig. 1), and flow is
solved using a Darcy solver [8] while transport is solved using
an advection-dispersion equation (ADE) solver [9,10] or via
particle tracking [11]. The DFN method allows for explicit
incorporation of fracture characteristics such as fracture size,
aperture, etc., from a geological site and one does not have
to use upscaling techniques or averaged parameters needed in
continuum methods [12]. In addition, upscaling in continuum
methods leads to tensorial parameters in the governing equa-
tions, e.g., tensor permeability for flow and tensor diffusivity
for ADE. One then has to seek higher-order discretization
techniques [13] to solve these governing equations, in addition
to the special care needed to handle some of the resulting
artifacts of the solution such as oscillations [14,15].

In the last ten years there have been major advances in DFN
simulation capabilities and high-fidelity simulations on large
explicit three-dimensional fracture networks is now possible.
One major challenge with the DFN approach that needs
attention is generating conforming meshes that can resolve
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FIG. 1. Discrete fracture network made up of 6330 circular
fracture whose radii are sampled from three independent truncated
power-law distributions. Fractures are colored by family. There are
about 13×106 grid cells in this model.

the small features resulting from the stochastic creation of the
networks. Methods such as the feature rejection algorithm for
meshing (FRAM) [16] have been proposed to overcome this
issue effectively, which generates a mesh that is fine at an
intersection and becomes increasingly coarse away from an
intersection. Other research teams have opted to use mortar
methods [17] or extended finite elements [18] to alleviate the
problem of having conforming meshes within fracture planes
along intersections. The advantage of conforming meshes is
that particle tracking methods [19] can be used to simulate
transport in a more natural way, which skirts the undesirable,
yet common issues associated with numerical dispersion when
resolving transport on unstructured meshes in an Eulerian
framework.

Even with these advances, the number of mesh cells grows
with the number of fractures that are included in the network.
Even for a modest sized DFN with about 6300 fractures, as
shown in Fig. 1, the number of unknowns [degrees of freedom
(DOFs), hereafter] to solve flow are nearly 13×106. For target
applications where the range of length scales can range up
to four orders of magnitude [20], the number of DOFs can be
multiple 109. A common workaround is to not include fractures
below a given length scale. However, while ignoring these
smaller-scale fractures gives reasonable first breakthrough
predictions, the tails tend to be inaccurate. For example, Karra
et al. [4] have shown that for improving production curve
tail estimates one needs to incorporate smaller-scale fractures,
that are typically ignored. Such large DOF domains may be
solvable using high-performance computing (HPC) software,
for instance, using DFNWORKS [21] for DFN generation and
PFLOTRAN [22] for solving flow and transport. Even then, the
stochastic nature of the models dominate the flow and transport
behavior that are only known in a statistical sense, and hence
one has to account for uncertainty. However, incorporating
such large domains in an uncertainty quantification (UQ)
framework, where hundreds (or more) of such realizations
have to be run, is computationally intractable, not to mention

processing the copious amounts of data generated would be
challenging.

We present a model-reduction technique to reduce the
computational complexity by solving flow and transport on
a graph representation of a DFN. The topology of the nodes
and edges of the graph is determined by the fracture network
and weights on nodes and edges seek to capture geometric and
hydraulic properties of the fracture planes. We adopt a mapping
where each intersection in the DFN is represented by a node
on the graph, which ensures that the connectivity of the DFN
is maintained. The geometrical information of the fractures
such as distance between the intersections, fracture apertures,
as well as flow and transport properties, such as permeability
and porosity, are incorporated in weights assigned to the edges
connecting the nodes. Additional nodes are placed in the graph
to incorporate boundary conditions at the inflow and outflow
boundaries. The idea behind solving on an equivalent graph is
that: (i) the number of DOFs to be solved depend on the number
of nodes on the graph, which in our case will depend on the
number of fracture intersections; and (ii) we avoid meshing
on each individual fracture, which is a highly time-consuming
step in a DFN model construction. Now that high-fidelity flow
and transport simulations on explicit three-dimensional DFN
can be performed at large scales, it provides us the opportunity
to examine how the simplifying assumptions used in the low-
order models influence the computational burden and quan-
tities of interest. We use our in-house developed DFNWORKS

HPC suite for this purpose. In particular, we aim to address the
tradeoff between computational speed and accuracy relative
to the fully resolved networks. Furthermore, by performing
accuracy studies, we can infer how much correction one needs
to make on the graph-based reduced model predictions.

It is worth noting that recent applications of graph theory
to fracture networks have helped gain insight into the structure
and connectivity of these networks. Valentini et al. [23] were
one of the first ones to use graph equivalent of natural fracture
systems to study their features. Andresen et al. [24] have
mapped two-dimensional fracture outcrops from south-east
Sweden into graphs, and used various graph-based metrics
such as clustering and efficiency to study their topology and
connectivity. Santiago et al. [25] have developed an algorithm
to process images of two-dimensional outcrops into graphs and
used graph theory centrality measures to identify key nodes for
flow. Hyman et al. [26] used graph-based techniques to identify
subnetworks that give similar first passage time as the full DFN.
However, with their approach one needs to still solve flow and
transport on the DFN equivalent of the subnetwork. Ghaffari
et al. [27] have mapped two-dimensional fracture networks into
graphs with fractures represented as nodes and their intersec-
tions being edges on the graphs, similar to Andersen et al. [24].
They then solved for steady flow on this graph by solving the
graph Laplacian to calculate the velocity distribution in the net-
work. However, their work was restricted to two-dimensional
fracture networks while we focus on more realistic three-
dimensional fracture networks. Furthermore, we compare the
graph-based reduced model and the high-fidelity DFN model,
in terms of accuracy as well as computational performance.

We find that solving flow and transport on the equivalent
graph is O(104) times faster, thereby one can feasibly incor-
porate a DFN model with a wide range of fracture sizes from
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millimeters to kilometers, within a UQ framework. We show
good accuracy for small networks while for larger networks
where small-scale heterogeneity is more prominent, deviations
from the high-fidelity DFN results are observed. For the larger
networks, we show that the graph-based approach generally
overpredicts tracer breakthrough times, always within an order
of magnitude of the DFN predictions. The systematic bias in the
graph method makes it amenable to UQ correction techniques.

In this paper, by flow we mean flow of a fluid (e.g., water)
in a fractured porous medium, and by transport, we mean
transport of a conservative tracer in this flow field. The paper is
organized as follows. A brief overview of the DFN approach,
the governing equations, and solution methodology used to
solve these governing equations on a given DFN, are detailed
in Sec. II A. Details of the DFN to graph mapping methodology
along with the flow and transport solution algorithm on the
equivalent graph are discussed in Sec. II B. Breakthrough
curves obtained using the full DFN and the equivalent graphs
are compared and analyzed in Sec. III. Finally, conclusions are
drawn in Sec. IV.

II. METHODOLOGY

In this section, we give an overview of the methods used to
generate DFNs, and to solve flow and transport on them. We
also discuss the algorithm for solving flow and transport on a
graph along with the method we developed to convert a DFN
to an equivalent graph.

A. Discrete fracture network

The computational suite DFNWORKS [21] is used for DFN
generation, meshing, and solving flow and transport on DFN.
The approaches used to generate DFNs, and to solve flow and
transport using DFNWORKS are briefly described in this section.
For more details, we refer the interested reader to Ref. [21].

1. Generation and meshing

Statistical distributions of fracture characteristics taken
from field measurements are used to stochastically generate
fractures. Characteristics include size, location, aperture, and
orientation. Individual fractures are then meshed using the
LAGRIT toolkit [28]. Care is taken to ensure that the meshes
are conforming at the intersections using the feature rejection
algorithm (FRAM) [16]. FRAM uses a minimum length that
is user defined for feature representation in the DFN. All
the geometric features below the minimum length are not
resolved. The algorithm also generates meshes that are fine
at the fracture intersections to resolve the smaller features for
accuracy, and coarsens away from the intersections, thereby
reducing the overall number of grid cells and computational
resources needed.

2. Flow

The generated and meshed DFN is then used to solve for
steady-state flow. The governing equation solved is a result of
balance of mass and Darcy’s model, given by [8]:

∇ · [k(x)∇p] = 0, (1)

where k is the spatially varying permeability and p is the
liquid pressure. Equation (1) is numerically integrated using
a two-point flux finite volume method, subject to pressure
boundary conditions at the inlet and outlet boundaries. We
use the subsurface flow solver PFLOTRAN [22] for this pur-
pose. To get an accurate solution that maintains local mass
balance, PFLOTRAN reads Voronoi control volumes for the DFN
Delaunay triangular mesh. Voronoi meshes, by construction,
ensure that the line joining two cell-centers is perpendicular
to the face between the the two control volumes, leading to
accurate two-point flux calculations. LAGRIT is used to perform
the conversion from Delaunay to Voronoi.

3. Transport

The particle tracking approach is used to calculate the
breakthrough curves of a conservative tracer in the flow field
governed by Eq. (1). Trajectory x(t) of a given particle is
evaluated by integrating the kinematic equation

dx(t)

dt
= v(x(t)), x(0) = xinit, (2)

where xinit is the initial position of the particle. The time taken
for the particle to travel from the inlet to the domain outlet,
is then calculated. For solving Eq. (2), one needs a particle’s
velocity vector at every location, which is related to Darcy
velocity vector q at that location via

v(x) = q(x)

ϕ
, (3)

whereϕ is the porosity, that can be assumed to be fairly constant
in rock. A uniform mass is assigned to each particle.

Since two-point flux finite volume formulation gives only
the normal component of the Darcy velocity qn from the
pressure solution at the Voronoi cell-centers via the Darcy
model:

qn := q · n = −k(x)∇p · n, (4)

where n is the unit normal, a velocity reconstruction method
[29] is used to calculate velocity vectors at center of the Voronoi
control volumes (which are vertices of the corresponding
Delaunay mesh). Once the Darcy velocity vector q is known
at the Delaunay vertices, Eqs. (2), (3) are used to integrate for
the particle path lines. A predictor-corrector method is used to
perform this integration. Details of the particle tracking method
used for DFN can be found in Ref. [19].

B. Graph flow and transport algorithm

In this section, we present the mapping between DFN and
graph that we adopt. Then we derive general flow governing
equations on a graph followed by a description of the approach
to solve these equations. The methodology used to calculate
the conservative tracer transport breakthrough on a graph from
the flow solution on the said graph is finally described.

1. Discrete fracture network to graph mapping

Consider a fracture plane with two intersections i and j ,
such as those shown in Fig. 3. We build a graph G with nodes
i, j corresponding to these intersections while the edge on the
graph corresponds to the fracture plane. A node is added to the
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FIG. 2. The general work flow in our proposed method involves building an equivalent graph for a given DFN. The connectivity of DFN
is transformed into the graph connectivity. (Left) Eight fracture DFN with a mesh that is used for performing the high-fidelity flow and
transport calculations. (Right) Equivalent graph with nodes (red spheres) representing fracture intersections. The geometric information of the
fractures such as distance between intersections, apertures, etc., are stored in weights of the edges between the graph nodes. Properties such as
permeability, porosity, and viscosity are also stored in these weights. The mesh to resolve the full network has 179792 triangular elements with
88200 vertices, while the graph representation has 15 nodes.

graph for each inflow or outflow plane. Edge weights wij on the
graph are based on geometric and hydrological properties of the
fracture plane. Figure 2 illustrates the workflow of converting
a DFN into an equivalent graph for an eight fracture network.
Nodes are shown as red spheres and edges are black lines.
The mesh to resolve the full network has 179 792 triangular
elements with 88200 vertices, while the graph representation
has only 15 nodes.

2. Flow

Let N be the number of nodes in G. Assuming steady flow,
the balance of mass for the fluid at a node i in G, can be written
as

N∑

j=1

Qij = 0, (5)

where j is a node that is adjacent (or connected) to i, Qij is the
mass flux that flows through the connection i to j . One can then
relate Qij to pressures Pi, Pj at the nodes i, j , respectively,
through an equivalent Darcy’s model

qij = κij

μLij

(Pi − Pj ), (6)

Qij = qijαij , (7)

where qij is the mass flux per unit area, κij is the permeability of
the fracture plane with intersections i, j and μ is the viscosity.
If li , lj be the lengths of the intersections, with xi , xj being
the centroids of the intersections [see Fig. 3], and if aij is the
fracture aperture, then the area αij in Eq. (7) through which
the fluid flows as it moves from i to j can be approximated
to aij (li + lj )/2. Also, Lij in Eq. (6) is set to the Euclidean
distance between xi and xj , ‖xi − xj‖, where ‖ · ‖ is the
Euclidean norm.

Equations (5)–(7) imply that

N∑

j=1

wij (Pi − Pj ) = 0, (8)

where wij := κijαij

μLij

.

Now, if we assign wij as weights to edges of G, then one
can define an adjacency matrix [30] A whose elements are wij .
Note that when there is no connection between two nodes p

and q, the entry Apq is zero. Defining the degree of vertex m

as km := ∑
n Amn, one can rewrite Eq. (8) conveniently, in the

following matrix form

(D − A)P = 0, (9)

where D is a diagonal matrix with elements Dmm = km, P is
a vector of pressure values Pm.

The matrix L := D − A is the graph Laplacian. In order
to solve Eq. (9), one needs to provide boundary conditions in
terms of the pressure values at the inlet and outlet nodes. For
a boundary node b, this is done by setting Lbj = δbj , where δ

is the Kronecker delta, and by replacing the bth value in the 0
vector on the right-hand side of Eq. (9) with the known value
of the pressure at b. After solving for the pressure values at the
nodes, Eqs. (6), (7) are used to evaluate the mass flux of water
through the graph edges.

i

j

fracture 
plane

lj

li

xi

xj

FIG. 3. Illustration of a single fracture plane showing how the
geometrical information of fractures is used to map the intersections
i, j to nodes of an equivalent graph.
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3. Transport

To calculate the breakthrough of a conservative tracer
traveling from the inlet to outlet nodes on G, we propose a
method that is along the lines of the particle tracking method.
The steps for this method are as follows.

(i) The mass flux per unit area (qij ) of water on the graph
edges is first calculated.

(ii) For a particle traveling from node i to node j , the
particle’s velocity is then calculated as vij = qij

ϕij
, where ϕij

is the porosity assigned to the edge connecting nodes i, j .
(iii) Once vij is known, the time taken for a particle to travel

from node i to node j is calculated, via

tij = Lij

vij

= Lijϕij

qij

. (10)

In Eq. (10), we assume that a particle takes a straight line path
over the distance Lij .

(iv) When a node i has multiple connected nodes, in order
to decide which node the particle has to travel to, a probability
proportional to qij is assigned to the particle.

In our calculations, we set ϕij to a constant value of ϕ that
is same as the value used in high-fidelity DFN simulations.

4. Transport bias correction

For large networks, the breakthrough times predicted by
the graph transport algorithm for particles tend to be biased
in comparison to the DFN breakthrough times so that the
breakthrough occurs later for the graph algorithm. The bias
will be discussed further in Sec. III; here we focus on how it
can be corrected. Simulating transport on these large networks
is often computationally demanding, so it is important to note
that our bias correction approach requires the use of a single
high-fidelity DFN realization. Other members of the ensemble
from which the realization was drawn can then be accurately
simulated using the graph model.

The basic approach to the bias correction is to use a power
law to improve the graph algorithm’s prediction for the time to
travel from one fracture intersection to another. This is based
on the ansatz that both the DFN and graph travel times follow
a power-law distribution [31–33]. By examining a single high-
fidelity DFN simulation in detail, we can obtain a wealth of
information about the time to travel along a fracture from one
intersection to another. This is because particles typically travel
through numerous fracture intersections and a DFN simulation
tracks a large number of particles. The power law that is used
takes the form

t cij = Ctαij (11)

where t cij is a corrected estimate of the time to travel from
node i to node j in the graph and tij is from Eq. (10). The
power, α is estimated by a linear regression relating log tij to the
corresponding values from the high-fidelity DFN realization.

III. COMPARISON BETWEEN DFN AND GRAPH

In this section, we compare breakthrough curves as well as
CPU times between the high-fidelity DFN runs and the graph
approach.

FIG. 4. Comparison between DFN and graph approaches for eight
fractures with homogeneous permeability (Case 1). (Top) Shows the
breakthrough curve comparison. Time is in seconds. (Bottom) Shows
the particle statistics between fracture intersections. The four subplots
on the bottom left side are individual particle statistics with all the
particles traveling through the same connection shown with the same
color. The four subplots on the bottom right side are the average
statistics of all the particles traveling through the same connection.

A. Breakthrough comparison

Breakthrough is a typical quantity of interest in subsur-
face flow and transport problems, and hence we compare
breakthrough curves and quantify the differences seen. For
the purposes of this comparison, we construct four frac-
ture networks with varying degrees of complexity. In all
cases fracture centers are uniformly distributed throughout
the domain and orientations are also uniformly random. The
four cases with corresponding breakthrough comparison plots
are:

Case 1. Eight uniformly sized square fractures (side length
3 m) with permeability being the same on all the fractures
(Fig. 4);

Case 2. The same network as in Case 1, but with permeabil-
ity varying between fractures. Permeabilities are sampled from
a log normal distribution with log variance of one, a moderate
level of hydraulic heterogeneity (Fig. 5);
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FIG. 5. Comparison between DFN and graph approaches for eight
fractures with heterogeneous permeability (Case 2). (Top) Shows the
breakthrough curve comparison. Time is in seconds. (Bottom) Shows
the particle statistics between fracture intersections. The four subplots
on the bottom left side are individual particle statistics with all the
particles traveling through the same connection shown with the same
color. The four subplots on the bottom right side are the average
statistics of all the particles traveling through the same connection.

Case 3. 150 uniformly sized square fractures (side length
of 1.5 m) with same permeability on all fractures (Fig. 6);

Case 4. Moderate sized network composed of approxi-
mately 500 circular fractures. Fracture radii are sampled from
a truncated power-law distribution with exponent α = 2.6 and
upper and lower cutoffs of 1 m and 5 m. The average P32 value,
total surface area over domain volume, of the networks is 2.78,
a moderate network density. The permeability of the fractures
is positively correlated to the fracture radius via a power-law
relationship [34] (Fig. 7).

Table I shows the parameters used in the flow simulations
of the four cases. To analyze the reason for any differences
seen between the two approaches, we have also plotted the
statistics of flow and transport quantities of individual as well
as average of particles traveling through each connection in
Figs. 4–7. Each connection here is the connection between two
intersections on a fracture, as described in Sec. II B 1. These

FIG. 6. Comparison between DFN and graph approaches for 150
fractures with homogeneous permeability (Case 3). (Top) Shows the
breakthrough curve comparison. Time is in seconds. (Bottom) Shows
the particle statistics between fracture intersections. The four subplots
on the bottom left side are individual particle statistics with all the
particles traveling through the same connection shown with the same
color. The four subplots on the bottom right side are the average
statistics of all the particles traveling through the same connection.

quantities include distance traveled by a particle between any
two intersections on fracture, the particle’s speed as well as the
travel time over the distance, and the pressure gradient across
the two intersections.

The breakthrough curves match very well for both Case 1
(Fig. 4) and Case 2 (Fig. 5), along with excellent correlation
between the average DFN and graph particle flow and transport
quantities. For Case 3, the graph predicts slower breakthrough
than DFN for the most part. The reason being graph under-
predicts the pressure gradients across intersections by several
orders of magnitudes (note the log scale in pressure gradient
data), and thus the particles traveling on these connections
have several orders of magnitude slower speeds and longer
travel times. However, toward the end, DFN breakthrough is
slower. This is because there are some connections in the DFN
where the particles have to travel more distance, on an average,
than the graph approach. One possible reason for this is that
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FIG. 7. Comparison between DFN and graph approaches for 500
fractures with heterogeneous permeability (Case 4). (Top) Shows the
breakthrough curve comparison. Time is in seconds. (Bottom) Shows
the particle statistics between fracture intersections. The four subplots
on the bottom left side are individual particle statistics with all the
particles traveling through the same connection shown with the same
color. The four subplots on the bottom right side are the average
statistics of all the particles traveling through the same connection.

DFN captures the path-line distances of the particles while
graph uses the straight-line distance between two fracture
intersection centers, and so in some cases the average of the
DFN path-line distances between intersections is larger than
the graph distance. In Case 4, the graph consistently shows
slower breakthrough due to several orders of slower particle

FIG. 8. Breakthrough curves for ten realizations of 500 fracture
networks with heterogeneous permeability. Blue curves are for graph
and red is for DFN. The graph breakthrough is consistently slower
than DFN.

speeds and their travel times, similar to Case 3, but at a larger
number of connections than Case 3. To check for consistency
in the breakthrough comparison, we ran ten realizations of
Case 4. Figure 8 shows the corresponding breakthroughs with
the graph being consistently slower than DFN. It is also seen
that as the number of fractures increase, the underprediction
of the pressure gradients across intersections increases with
the graph based method and thus the particles exhibit longer
travel times.

Using the bias correction procedure described previously,
the accuracy of the predictions for Case 4 can be substantially
improved. Figure 9 shows the breakthrough curves for four
realizations from the ensemble using the DFN, graph, and
graph with bias correction (Graph++) models. From this figure,
it can be visually seen that the bias correction procedure
significantly improves the accuracy of the graph model.
To quantify the improvement, we utilized the Kolmogorov-
Smirnov statistic, which is equal to the supremum of the
difference between two cumulative distribution functions. The
expected Kolmogorov-Smirnov statistic for the graph model
with the bias correction in comparison to the DFN model was
approximately 0.09. Without the bias correction procedure, the
expected Kolmogorov-Smirnov statistic was approximately
0.34. The bias correction procedure improves the Kolmogorov-
Smirnov statistic and visually improves the fit. From examining
the trajectories, the largest errors tend to occur at later times

TABLE I. Parameters used in both DFN and graph simulations.

Quantity Case 1 Case 2 Case 3 Case 4

Number of connections 15 15 216 575
Inlet pressure 2 MPa 2 MPa 2 MPa 2 MPa
Outlet pressure 1 MPa 1 MPa 1 MPa 1 MPa
Log10 permeability −12 [−12.40, −11.60] −12 [−9.04, −9.68]
No. of particles (graph) 25 000 25 000 25 000 25 000
No. of particles (DFN) 25 000 25 000 25 000 25 000
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FIG. 9. Breakthrough curves for four realizations of 500 fracture
networks with heterogeneous permeability. Blue curves are for the
DFN, orange is for the graph, and green is the graph utilizing the bias
correction procedure (called “Graph++” in the legend).

(e.g., as can be seen in the upper left and lower right panels in
Fig. 9), and is more accurate at earlier times.

B. Computational comparison

For comparing the computational performance of the graph-
based and DFN approaches, networks with fractures increases
from 18 to 7147, were used. The CPU times for both the
approaches with breakdown among the various steps—DFN
meshing, flow and transport solve, graph flow and transport
solve—are shown for these networks in Table II. Figure 10
shows these times as histograms for one-to-one comparison
along with the ratio between total DFN time and total graph
time shown as speedup. Networks for this comparison are
composed of square fractures. The density of the networks is
held constant and the size of the domain increased to increase
the number of fractures. All CPU times reported here were run
with one processor on a 32-core, two thread per core, AMD
Opteron(TM) Processor 6272 with 528 GB RAM. Since the
same DFN generation step is required for both approaches,
the CPU time for this step is not used in the comparison. The
overall CPU times for the graph approach is up to O(104)
times smaller than DFN. The significantly faster times with the
graph approach is due to two factors: (i) meshing is the biggest
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FIG. 10. Plot comparing the CPU times for various steps in the
graph and DFN methods. Note that the y axis is in logarithmic scale.
The star marker shows the ratio of graph method to DFN times.

bottleneck with the DFN approach and the graph approach
avoids this step; (ii) graph flow and transport solves are at least
three orders of magnitude faster than DFN due to significant
[O(103) − O(104)] DOF reduction.

IV. CONCLUSIONS

We successfully demonstrated that solving flow and trans-
port on a graph equivalent to a given DFN is O(104) times
faster for large networks. The graph approach takes advantage
of the fact that: (i) each intersection of a DFN is represented
by a node and so the DOFs are significantly smaller over
DFN; and (ii) meshing in fractures is a time-consuming step in
DFN and no meshing is needed in the graph approach. Using
breakthrough as the quantity of comparison, we compared the
two approaches for various fracture networks with increas-
ing number of fractures. We found that the graph approach
reasonably predicts the breakthrough curves compared to
DFN for smaller networks (eight fractures) and gives slower
breakthrough for larger and more realistic networks with 150
and 500 fractures, with the graph prediction being no more
than an order of magnitude slower than DFN. We found that
this discrepancy is generally due to graph underpredicting the
pressure gradients across intersections on a fracture, which
leads to slower particle speeds between the intersections and

TABLE II. CPU times on a single core for various steps in the DFN and graph approaches (shown in seconds).

DFN Graph

No. of fractures No. of cells No. of trajectories Generation Meshing Flow Transport Flow Transport

18 27415 498 0.03 92.52 1.01 5.02 0.002 0.002
104 193 308 1795 0.09 899.40 9.34 66.21 0.008 0.012
408 780 276 5891 0.43 4252.84 38.12 617.86 0.050 0.074
882 1 745 002 8697 1.00 8451.90 95.41 1699.99 0.080 0.151
1768 3 581 117 13724 1.57 22009.47 153.07 3210.52 0.142 0.439
3090 6 387 657 19598 3.00 29931.83 260.21 6813.58 0.260 0.606
4861 10 232 106 25988 5.85 55762.68 409.37 13269.95 0.410 1.080
7147 15 178 277 41975 8.83 81392.85 592.63 18614.50 0.580 2.075
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longer travel times. Furthermore, the systematic bias in the
graph method over DFN, allows for performing corrections
to the graph predictions. We also developed a correction
methodology to reduce the systematic bias, and showed that
this methodology significantly improves the graph algorithm
and gives results that are close to the high-fidelity DFN
predictions. Overall, the speed of the graph approach along
with the good accuracy using the proposed bias correc-
tion methodology, makes the graph approach a promising

model reduction technique for flow and transport in fractured
media.
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