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Multiple-point statistics (MPS) is a prominent algorithm to simulate categorical variables based on a sequential
simulation procedure. Assuming training images (TIs) as prior conceptual models, MPS extracts patterns from
TIs using a template and records their occurrences in a database. However, complex patterns increase the size
of the database and require considerable time to retrieve the desired elements. In order to speed up simulation
and improve simulation quality over state-of-the-art MPS methods, we propose an accelerating simulation for
MPS using vector quantization (VQ), called VQ-MPS. First, a variable representation is presented to make
categorical variables applicable for vector quantization. Second, we adopt a tree-structured VQ to compress the
database so that stationary simulations are realized. Finally, a transformed template and classified VQ are used
to address nonstationarity. A two-dimensional (2D) stationary channelized reservoir image is used to validate the
proposed VQ-MPS. In comparison with several existing MPS programs, our method exhibits significantly better
performance in terms of computational time, pattern reproductions, and spatial uncertainty. Further demonstrations
consist of a 2D four facies simulation, two 2D nonstationary channel simulations, and a three-dimensional (3D)
rock simulation. The results reveal that our proposed method is also capable of solving multifacies, nonstationarity,
and 3D simulations based on 2D TIs.
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I. INTRODUCTION

Geological modeling is fundamental to various research
topics. Prior to performing a spatial analysis, it is necessary
to obtain a set of accurate models that describe the geological
phenomenon of interest. Stochastic simulation algorithms
provide a feasible way to fulfill such modeling. In general,
simulation realizations not only comply with the basic physical
law but also honor the available data sampled from reality. In
addition, these simulation realizations should have a sufficient
variability in order to reflect the uncertainty.

Since its early years, stochastic simulation algorithms have
been composed of two basic methods: two-point geostatistics
[1,2] and object-based methods [3,4]. The former is based on
a sequential procedure that simulates a point at a time. This
has a positive effect on honoring local hard data. However,
two-point geostatistics uses a variogram or covariance to depict
geological structures. These descriptors fail to preserve geo-
metrically complex features. The object-based methods imitate
the formation of geological structures. Their realizations agree
well with reality. Nevertheless, intensive computations and a
limited ability to hard data conditioning are two main obstacles
for applications of object-based methods.

Owing to these limitations, the need for the multiple-
point statistics (MPS) algorithm arises. As an attractive and
versatile algorithm developed about two decades ago, MPS has
been widely used in applications including groundwater flow
[5–7], geophysics [8,9], petroleum engineering [10–12], min-
eral deposit modeling [13–15], and so on. The main idea of
MPS and the first program, extended normal equation simula-
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tion (ENESIM), was introduced by Guardiano and Srivastava
[16]. Viewing training images (TIs) as prior conceptual models,
this program extracts patterns from TIs and reproduces patterns
that are compatible with local data. This allows a computer to
model geologically realistic features. In 1993, it was difficult
to implement this program because of its high computational
burden. Nevertheless, ENESIM provided a new way to explore
geostatistical modeling. In particular, it introduced three inno-
vations: (1) the concept of MPS instead of two-point statistics
such as covariance or variogram, (2) the importance of TIs
to inspire MPS, and (3) the use of nonparametric statistics.
In 2002, Strebelle [17] proposed a landmark framework,
referred to as single normal equation simulation (SNESIM),
to considerably improve central processing unit (CPU) time
performance. Using a search tree as a database, patterns from
TIs and their occurrences are stored in computer memory. In
simulation, informed points compose conditioning data using
a template. SNESIM retrieves the database to find compatible
patterns. The value of an uninformed point is determined
by conditional probabilities computed based on occurrences
of compatible patterns. The simulation procedure is repeated
point by point until no uninformed point exists in the simulation
domain. Because this program simulates points separately, it
is called a point-based method.

Since SNESIM, there have been two main ways to develop
MPS. The first one explores pattern-based methods instead of
point-based methods. The first idea of pattern-based methods
was proposed by Arpat and Caers [18] in their program,
simulation patterns (SIMPAT). To overcome memory limita-
tions as well as enhance pattern reproduction quality, SIMPAT
concisely views stochastic modeling as a randomized puzzle.
Patterns are viewed as puzzle pieces that need to be pasted and
constrained to local data. In a similar manner, Zhang et al. [19]
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presented a filter-based selection of patterns (FILTERSIM)
to accelerate search in SIMPAT at the expense of pattern
reproduction. Honarkhah and Caers [20] suggested distance-
based pattern clustering (DISPAT) to rapidly find desired
patterns without the approximations in SIMPAT. Tahmasebi
et al. [21] proposed cross-correlation function simulation
(CCSIM). The efficiency and pattern reproduction quality
are significantly improved via a cross-correlation function.
Further research completed by Tan et al. [22] indicated that this
method outperforms DISPAT in many applications. Tahmasebi
et al. [23] improved CCSIM by a multiscale representation
(MS-CCSIM). Cross-correlation function computations are
implemented in the Fourier domain to alleviate computer
burden. Yang et al. [24] presented a framework called global
simulation. In this method, global optimization is applied to
eliminate cumulative errors. A modified PatchMatch algorithm
is used to accelerate the search procedure.

On the other hand, the second way to develop MPS relies on
point-based methods. Strebelle and Claude [25] analyzed the
issues of efficiency and memory in SNESIM. They proposed
a new multigrid approach, a data template that preferentially
includes previous simulated points, and template size optimiza-
tion. Straubhaar et al. [26] presented a list approach and real-
ized improved parallelization (IMPALA). In 2013, Straubhaar
et al. [27] further modified the structure of databases based on
lists and trees. With the aim of avoiding memory limitations
in MPS, Mariethoz et al. [28] suggested direct sampling (DS).
This method directly retrieves compatible patterns from TIs
and makes databases unnecessary. Meerschman et al. [29]
provided a practical guide to operate DS. Abdollahifard and
Faez [30] suggested fast direct sampling (FDS), where a fast
gradient descent pattern matching strategy is employed to
speed up the search. In 2016, Straubhaar et al. [31] extended
DS to deal with block data by using an additional criterion for
the acceptance of candidate points.

As discussed above, the generation and retrieval operations
to databases are key procedures in MPS frameworks. However,
databases grow with increasing numbers of patterns in the case
of geometrically complex, multifacies, multivariate, and high-
dimensional simulations. A large amount of redundant data
existing in databases consumes considerable CPU time in the
simulation procedure. Moreover, existing methods focus on
reproducing the majority of patterns in TIs. The difficulty in
reproducing lowly proportional patterns is not addressed.

In this paper, we explore a way to implement MPS. To the
best of our knowledge, vector quantization (VQ) techniques
have not been applied in MPS yet. With the objective to
speed up simulation and ensure high quality, we propose an
accelerating simulation for MPS using VQ, called VQ-MPS.
In our proposed method, a variable representation is presented
to make categorical variables applicable for computations
with VQ. In addition, tree-structured VQ (TSVQ) is used to
compress patterns and store their occurrences so that stationary
simulations are realized. Finally, we address nonstationary
simulations. A transformed template is adopted to complete
spatial transformations. Classified VQ (CVQ) is employed to
incorporate secondary variables in databases. An application
of a two-dimensional (2D) channelized reservoir simulation
was used to validate our method. Qualitative and quantitative
comparisons were made to evaluate the results of VQ-MPS and

FIG. 1. A TI of size 6 × 6 and a template of size 4.

several other MPS programs. The proposed method exhibited
significantly better performance in terms of computational
efficiency, pattern reproduction ability, and spatial uncertainty.
Lowly proportional patterns were reproduced in our method.
Further applications were composed of a 2D four facies
simulation, two 2D nonstationary simulations, and a three-
dimensional (3D) simulation from a rock slice. The results
indicated that VQ-MPS was also capable of addressing multi-
facies, solving nonstationarity, and producing a 3D simulation
from a 2D TI.

The rest of this paper is organized as follows. Section II
provides related work such as previous database structures in
MPS and VQ. The proposed algorithm is presented in Sec. III.
Section IV shows some applications. Finally, conclusions are
drawn in Sec. V.

II. RELATED WORK

A. Previous database structures in the MPS framework

Previous point-based MPS methods, such as SNESIM and
IMPALA, consist of two parts: (1) a training procedure and
(2) a simulation procedure. These two procedures proceed as
follows. In the training procedure, a template of size n, which
is denoted by τn and contains n points (u1, u2, . . . , un), is
predefined to find the neighbors surrounding its center u. A
training pattern (also referred to as a data event), which is
denoted by dn(u), is extracted by τn. In the example shown in
Fig. 1, a TI of size 6 × 6 and a template of size 4 are applied.
Therefore, the pattern centered at a is dn(a) = (2, 2, 1, 1).

To avoid a situation in which points in the template are
outside the range of the TI, τn is always entirely inside the
TI. After scanning all feasible points, the computer obtains a
set of patterns and their occurrences. A search tree-structured
database, generated by SNESIM in this case, is displayed in
Fig. 2. A list-structured database, generated by IMPALA, is
shown in Fig. 3.

Because three states are available in the TI, each element
in the search tree can be expressed as (o0, o1, o2). Here, oi

denotes an occurrence of a certain pattern with state i at its
center. Each arrow line corresponds to a state. For example,
the first element in layer 5 was visited along 0, 0, 0, 0 from
the root. This indicated that the pattern was (0, 0, 0, 0). The
element (1, 0, 0) showed that this pattern occurred in the
TI once and its center was state 0. By contrast, the list in
Fig. 3 is intuitive. Patterns and occurrences are separately
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FIG. 2. A search tree-structured database.

stored. To reduce complexity, elements are sorted in ascending
order according to the number of state 2 in patterns. Database
generation methods are elaborated in Refs. [17,26].

Prior to the simulation procedure, it is necessary to initialize
the simulation domain. In other words, a part of the simulation
domain is known in order to prompt the geostatistical modeling
program. These known points are viewed as hard data. An
unconditional simulation strategy was applied as the initial-
ization in this paper. The computer randomly samples a point
from the TI. Next, another point is randomly sampled from the
simulation domain. The value of the sampled point from the TI
is assigned to the sampled point from the simulation domain.
This assignment procedure is repeated until the percentage of
hard data exceeds a predefined threshold called the sampling
rate.

After the training procedure and the hard data assignment, a
simulation procedure starts. The objective of a point simulation
is to determine the value of an unknown point based on its

FIG. 3. A list-structured database.

surrounding informed data (also referred to as conditioning
data). For example, a simulation domain is displayed in Fig. 4.
Using the template shown in Fig. 1, the conditioning pattern
centered at point b was dn(b) = (2, 2, −1, 1). Afterwards, the
computer retrieved the database, as shown in Figs. 2 and 3. In
this case, (2, 2, 0, 1), (2, 2, 1, 1), and (2, 2, 2, 1) were found as
compatible patterns. Thus, occurrences (0, 1, 0), (0, 0, 1), and
(0, 0, 1) were obtained. The sum of occurrences was 3. The
total occurrences for o0, o1, and o2 were 0, 1, and 2, respec-
tively. The probability that point b was state 0 was 0/3 = 0.
In comparison, the probabilities that b was state 1 and state 2
were 1/3 = 0.33 and 2/3 = 0.67, respectively. Consequently,
the computer selected either state 1 with a probability of 0.33
or state 2 with a probability of 0.67. In this case, state 2 was
assigned to point b. The simulation procedure is repeated point
by point along either a random or unilateral path [32] until each
uninformed point is simulated.

One challenge in MPS is to capture patterns at different
scales. Accordingly, a multigrid strategy is presented [17]. An
example of the multigrid strategy with G = 3 nested grids is
illustrated in Fig. 5. The gth (1 � g � G) grid is composed
of every 2g−1th points of the simulation domain. Thus, g = 1

FIG. 4. A simulation domain of size 6 × 6.
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FIG. 5. Multigrid strategy for a simulation domain of size 8 × 8. (a) The coarsest grid. (b) The moderate grid. (c) The finest grid.

and G denote the finest and coarsest grids, respectively. The
simulation procedure proceeds in a coarse to fine fashion.
The unknown points in the coarsest grid are assigned at the
beginning. Based on this design, the long-range structures are
simulated prior to reproducing the detailed information.

Although many improvements over SNESIM and IMPALA
have been explored, there are still three basic limitations.

(1) The amount of memory used to establish databases ex-
ponentially increases with the size n of template τn. Supposing
that there are K possible states in a TI, the maximum number
of possible patterns is Kn. Fortunately, databases only store
patterns existing in TIs. Typically, the sizes of the databases
used in the following section were in the range of 103−105.

(2) The template also has a significant effect on com-
putational time. The database grows with the size of the
template. A considerable CPU time is required to find the
desired elements. This issue is further aggravated in the case
of geometrically complex, multifacies, multivariate, and high-
dimensional simulations.

(3) The CPU time for calculating a conditional probability
is also influenced by the number of uninformed points in
the conditioning pattern. Assuming that n′ informed points
exist in a conditioning pattern dn, the number of compatible
patterns of dn is Kn−n′

. The more uninformed points, the more
compatible patterns there are. Considerable CPU consumption
is necessary to solve a wider search scope. However, abundant
informed points lead to an absence of compatible patterns in
TIs. Previous MPS programs adopted a pruning strategy, where
some conditioning data are discarded. The computer has to
iteratively check the database until it finds enough compatible
patterns.

B. Vector quantization

Vector quantization is a classical quantization technique
from signal processing that models the probability density
function using prototype vectors. VQ works by partitioning
a set of vectors into a number of groups. Each group is repre-
sented by its centroid, as designed in the k-means algorithm
and other clustering algorithms. In this section, the concept of
VQ is theoretically explained. The combination of MPS and
VQ is proposed in Sec. III, where we also discuss an example.

In VQ, a codebook, which stores all centroids, is trained
in advance. There are various algorithms to train a codebook.

Among them, the most frequently used method is the Linde-
Buzo-Gray (LBG) algorithm [33]. In this paper, a random
selection strategy is applied as an initialization. In other words,
S codewords are randomly selected from training vectors.
Here, S denotes the size of the codebook and is predefined
by users. Then, an iterative procedure generated the final
codebook denoted herein as Book. The details of LBG are
summarized in the following steps.

(1) Generate an initial codebook Book0 of size S. Set the
iteration counter i = 0 and the maximum iteration counter
Imax.

(2) For each training vector, find its best-matched code-
word with the smallest distance in the current codebook Booki .

(3) Allocate training vectors into S groups. Update the
centroid of each group by calculating the mean of vectors in
it. Let i = i + 1 and a new codebook Booki is obtained.

(4) If i = Imax, output the codebook Book = Booki and
LBG is completed; otherwise, the program returns to step 2.

Codebook Book is composed of S M-dimensional code-
words Ws = (ws

0, w
s
1, . . . ,ws

M−1). Here, s denotes the index of
codeword Ws in the range [0, S−1]. w denotes an elementary
variable and M denotes the dimension of the vectors. In step 2
of the algorithm just described, the squared Euclidean distance
between an input vector W and codeword Ws is defined as

DE(W,Ws) =
M−1∑
m=0

(
wm − ws

m

)2
. (1)

Because LBG performs an exhaustive search in step 2, this
method is called a full search method. However, a full search
is time consuming. Modifying the structure of the codebook
is a feasible way to reduce the computational burden. In
the following paragraphs, we introduce two typical types of
constrained VQ: tree-structured VQ and classified VQ.

TSVQ uses a tree-structured codebook [34,35]. A binary
tree is frequently used due to its simplicity. The first step is to
calculate the centroid of the collection of training vectors and
view this centroid as the root. Next, to find two children nodes
of this node, the centroid and a perturbed centroid are chosen
as the initial codewords. Using the best-matched search and
centroid updating strategy, the local optimal codewords for the
two children nodes can be found. Thus, the training vectors are
divided into two groups. The procedure recurs on each subtree
until the height of the tree exceeds a predefined threshold. To
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find an appropriate codeword for a given input vector, the tree
is traversed from the root down by comparing the input vector
with the two children nodes. The computer iteratively follows
the node that has the smallest Euclidean distance until it reaches
a leaf node. Unlike the full search method, the search result
of TSVQ may not be a global optimum because only part of
the codebook is checked. However, the result is approximately
optimum and the cost of computations is significantly reduced.
If the binary tree is reasonably balanced, a single search
in a codebook of size S can be completed in 2 × log2S

calculations of the Euclidean distance. As a comparison, S

calculations of the Euclidean distance are necessary in a full
search method.

Ramamurthi and Gersho [36] proposed CVQ to reduce the
complexity as well as distortions. The key concept in CVQ
is to apply a classification prior to compiling an independent
codebook for each class. CVQ consists of two operations. First,
training vectors are classified according to their features such
as mean and variance. Second, a codebook with a smaller
size is designed independently for each class. In searching
procedure, a classifier is applied first for an input vector. The
best-matched codeword is then found from its corresponding
codebook.

III. PROPOSED METHODOLOGY

A. Categorical variables representation

As mentioned above, a key procedure in VQ is updating
centroids. However, it is the categorical variable that is sim-
ulated in this paper, in contrast with the continuous variable
typically used in VQ. It is necessary to develop a way to make
categorical variables applicable for VQ. Before presenting our
method, several features of categorical variables are listed.
An important feature is that categorical variables are nominal
attributions. In general, each state reflects a level or label, which
is a logically independent concept. Therefore, categorical
variables can only be manipulated by distinction and set-
related operations. Furthermore, the criterion that measures
the distance between two vectors of categorical variables is
the Hamming distance. Let uk = 0, 1, . . ., K−1 denote all
possible states. The Hamming distance between two states ui

and uj is defined as

DH (ui,uj ) =
{

0 if ui = uj

1 if ui �= uj
. (2)

Let dn(a) = (ua
0, ua

1, . . . ,ua
n−1) and dn(b) =

(ub
0, ub

1, . . . , ub
n−1) denote two patterns obtained in MPS. The

Hamming distance between dn(a) and dn(b) is defined as

DH [dn(a),dn(b)] =
n−1∑
i=0

DH

(
ua

i ,u
b
i

)
. (3)

In addition, ua
i may be unknown in a simulation procedure.

Uninformed items are ignored in Eq. (3). For example, the
distance between (0, 0, 0, 0) and (0, −1, 0, 1) is 1, where −1
denotes an unknown state.

Classifying patterns is not new in MPS literature. In the
previous methods proposed by Zhang et al. [19] and Honarkhah
and Caers [20], centroids are created by the pointwise averag-
ing of all training patterns in a class. This strategy is reasonable

FIG. 6. A 2D plane to represent three states.

to solve the continuous variable. However, it is not suitable
to adopt pointwise averaging to address categorical variables.
The reason is that the pointwise averaging strategy violates
the intrinsic property of categorical variables and generates
a biased centroid. We explain this by an intuitive example
in water resources research. Let state 0, state 1, and state 2
denote mudstone, channel, and levee, respectively. It is clear
that these three states are mutually independent concepts.
Assume that two training patterns, (0, 0, 0, 0) and (2, 2,
2, 2), and one conditioning pattern (1, 1, 1, 1) are found.
Using pointwise averaging, the centroid of these two training
patterns is (1, 1, 1, 1). On the one hand, this centroid is in
complete agreement with the conditioning pattern. On the
other hand, there is no channel state in those two training
patterns. The dissimilarity between each training pattern and
the conditioning pattern is high. This inconsistency indicates
that pointwise averaging is not an accurate method to generate
centroids.

To make categorical variables suitable for VQ and keep
their intrinsic properties, we propose a representation method.
Suppose that a categorical variable with K possible states
is used. Our method maps this variable into a K−1 dimen-
sional space, where each state is expressed as a fixed point.
The distance between any two points is always equal to 1.
Therefore, our representation method agrees with Eq. (2). For
instance, an example for K = 3 is illustrated in Fig. 1. Using
our representation method, this categorical variable is mapped
into a 2D plane. Three points that constitute an equilateral
triangle are assigned to three states, which is shown in Fig. 6.
State 0 is assigned to the origin of [0, 0]. State 1 is assigned
to the point of [1, 0]. State 2 is assigned to the point of
[1/2,

√
3/2] ≈ [0.50, 0.87]. In the following, all coordinates

are expressed as two decimal fractions. Indeed, coordinates
of three points can be arbitrarily assigned if only these points
constitute an equilateral triangle with one side length equal
to 1. Using this representation method, the patterns shown in
Fig. 3 can be transformed in codewords shown in Fig. 7. In
order to be coherent with the notation in VQ, the transformed
patterns are called codewords. Although this database looks
complex, it is easily implemented by a computer. In a similar
manner, a categorical variable for K = 4 possible states can be
mapped into a three-dimensional space with the four assigned
points constituting a triangular pyramid. With the increasing
number of possible states, the concepts of hyperplanes and
hyperpyramids play a central role.
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FIG. 7. A list represented by the proposed representation method.

In summary, our method generates (K−1)-dimensional
coordinates [x1(u), x2(u), . . . , xK−1(u)] to represent state u.
This coordinate vector is applied as an element w in a codeword
W . The addition operation and centroid between ua

i and ub
i can

be expressed, respectively, as

vadd
(
ua

i ,u
b
i

) = [
x1

(
ua

i

) + x1
(
ub

i

)
,x2

(
ua

i

)
+ x2

(
ub

i

)
,...,xK−1

(
ua

i

) + xK−1
(
ub

i

)]
, (4)

vcent
(
ua

i ,u
b
i

) = {
1
2

[
x1

(
ua

i

) + x1
(
ub

i

)]
, 1

2

[
x2

(
ua

i

)
+ x2

(
ub

i

)]
,..., 1

2

[
xK−1

(
ua

i

) + xK−1
(
ub

i

)]}
. (5)

Therefore, the centroid of patterns dn(a) and dn(b) can be
expressed as

W = (w0,w1,...,wn−1)

= [
vcent

(
ua

0,u
b
0

)
,vcent

(
ua

1,u
b
1

)
,...,vcent

(
ua

n−1,u
b
n−1

)]
. (6)

Moreover, the Euclidean distance can be applied as a
measure of distance between two codewords. The distances
between ua

i and ub
i , dn(a), and dn(b) can be expressed, respec-

tively, as

DE

(
ua

i ,u
b
i

) = DE

(
wa

i ,w
b
i

) =
K−1∑
j=1

[
xj

(
ua

i

) − xj

(
ub

i

)]2
, (7)

DE[dn(a),dn(b)] = DE[W (a),W (b)] =
n−1∑
i=0

[
DE

(
ua

i ,u
b
i

)]2
.

(8)

Equations (7) and (8) are used not only in the training
procedure but also in the simulation procedure. Like original
MPS, the uninformed items are ignored.

The preceding example was used to test the proposed rep-
resentation. Because three states appear, two training patterns,
(0, 0, 0, 0) and (2, 2, 2, 2), were, respectively, described as ([0,
0], [0, 0], [0, 0], [0, 0]) and ([0.50, 0.87], [0.50, 0.87], [0.50,
0.87], [0.50, 0.87]). Thus, the centroid is ([0.25, 0.43], [0.25,
0.43], [0.25, 0.43], [0.25, 0.43]). The conditioning pattern (1,
1, 1, 1) was depicted as ([1, 0], [1, 0], [1, 0], [1, 0]). Therefore,
the distance between the conditioning pattern and the centroid
was (

√
3/2) × 4 ≈ 3.46. In comparison, the distance between

FIG. 8. The codebook Book0.

the conditioning pattern and each training pattern is 4. These
distances imply that the training patterns are incompatible with
the conditioning pattern. The training patterns are properly
characterized by our centroid.

B. Principles of VQ-MPS

After representing each pattern occurring in TIs, VQ can
be applied to compress databases. The list shown in Fig. 7
is employed as an example. Regardless of the occurrences,
each codeword is viewed as an input vector. We set the size
of the codebook S = 4 and the maximum iteration counter
Imax = 10 in this case. With a random selection strategy, a
codebook Book0 is shown in Fig. 8. The pattern corresponding
to each codeword is also displayed. LBG is applied to train
the codebook. A codebook Book10 is obtained, as shown in
Fig. 9. The left column displays the codewords, while the right
column notes the subordinated patterns to each group. After
codebook generation, the computer allocates the occurrences
for each codeword. Consequently, the final codebook Book is
shown in Fig. 10. After the training procedure, only the Book
will be used. The TIs and previous databases can be removed
from computer memory.

The program described above uses a full search VQ which
degrades CPU time performance. TSVQ, which was intro-
duced in detail in Sec. II B, provides an effective way to reduce
the computational burden. In this case, the computer used a
binary tree, the height of which was assigned to 3. The root
node in layer 1 is the centroid of all patterns occurring in
the TI. In layer 2, LBG divides a set of patterns into two
groups. This procedure is repeated until the height of the
tree reaches a certain threshold. After codebook generation,
the occurrences are stored in leaf-level nodes. The codebook
Booktree in this case is shown in Fig. 11. It is worth noting
that this tree-structured codebook is significantly different
from the search tree. Our method produces a centroid as an
element in the tree-structured codebook, as opposed to each
element in the search tree being a set of occurrences. Moreover,
TSVQ generates two children using a clustering technique.
In comparison, the search tree extends children by means of
visiting the next point in a pattern. There is no grouping or
classification operation in the search tree.

After codebook training, the simulation procedure proceeds
along a random path. As shown in Fig. 4, an unconditional

FIG. 9. The codebook Book10.
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FIG. 10. The final codebook Book.

simulation strategy is applied. For each successive point b in
the path, the following steps apply.

(1) Find the neighbors and generate a pattern. A template,
which was already used in the training procedure, is employed
again to find informed points. In Fig. 4, dn(b) = (2, 2, −1, 1)
was obtained. If no informed point is found, the computer
randomly samples a point from the TI and assigns the value of
this sampled point to point b.

(2) Transform the pattern. Using the representation
method defined in Sec. III A, dn(b) was transformed into a
codewordW (b) = ([0.50, 0.87], [0.50, 0.87], [−1.00, −1.00],
[1.00, 0.00]).

(3) Find the best-matched codeword in the codebook. In
the full search VQ scheme, each codeword in codebook Book
shown in Fig. 10 was successively searched. The codeword
([0.50, 0.87], [0.67, 0.58], [0.83, 0.28], [1.00, 0.00]) was found.
In TSVQ, the program traversed the tree from the root. The
algorithm followed the child node with the smallest Euclidean
distance. Therefore, the codeword ([0.50, 0.87], [0.67, 0.58],
[0.83, 0.28], [1.00, 0.00]) was found again.

(4) Calculate the conditional probabilities. Conditional
probabilities are computed using the occurrences in the best-
matched codeword. In this case, the occurrences of three
states were 0, 1, and 2. Therefore, the conditional prob-
abilities of three states were 0/3 = 0.00, 1/3 = 0.33, and
2/3 = 0.67, respectively. In other words, the computer selected

either state 1 with a probability of 0.33 or state 2 with a
probability of 0.67. In this case, state 2 was assigned to
point b.

The point simulation mentioned above iterates over the
remaining uninformed points in the simulation domain. Pre-
vious simulated points are viewed as hard data and become
conditioning data for subsequent simulations. Because our
method focuses on improving the database structure, all of
the usual extensions of MPS (such as a multigrid strategy, a
unilateral simulation path, and post- and syn-processing) can
be applied straightforwardly.

C. Features and advantages of VQ-MPS

In summary, VQ technique is applied to refine databases in
SNESIM or IMPALA. Although the classification or cluster-
ing methods have already been introduced in previous MPS
programs (FILTERSIM and DISPAT), our proposed method
has the following features.

(1) VQ-MPS is a point-based program. In other words,
our method simulates a point at a time. This scheme has a
positive effect on honoring hard data. Similar to SNESIM and
IMPALA, the value of an unknown point is determined by the
occurrences of compatible patterns.

(2) In training procedure, the similarity between two pat-
terns is directly calculated in the spatial domain. The dimen-
sionality of patterns is not reduced. There is no feature extrac-
tion technique in our method. With the objective to reduce the
size of patterns, FILTERSIM and DISPAT describe a pattern as
several features. Thus, the distance measure is carried out in the
feature domain. FILTERSIM creates six scores to represent a
two-dimensional pattern. In DISPAT, a pattern is mapped into
a Cartesian space using multidimensional scaling. However,
dimension reduction is a lossy operation. A feature vector

FIG. 11. The final tree-structured codebook Booktree.
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only preserves a part of the geometry information about the
original pattern. Dissimilar patterns may be grouped into the
same cluster. This is certainly harmful for pattern clustering
and further simulation procedure.

(3) Training patterns are clustered. VQ compresses a huge
number of patterns into a codebook and uses centroids to
represent all training patterns. A database of small size helps
the program to improve efficiency in the simulation procedure.
In comparison, SNESIM and IMPALA do not use a pattern
classification analysis. Each training pattern is directly stored
in computer memory. FILTERSIM classifies patterns by means
of dividing each score into five equal frequency bins. However,
this scheme is a scalar quantization and ignores the correlation
between scores. For this reason, FILTERSIM exhibits limited
classification accuracy.

(4) A new pattern representation and centroid generation
method are presented in this paper. Our scheme attempts to
conserve the intrinsic properties of categorical variables. The
price of this advantage is an increase in the pattern dimen-
sionality. By contrast, FILTERSIM and DISPAT use pointwise
averaging. A biased centroid cannot properly represent a group
of patterns.

(5) Centroids are organized by a tree. The computer only
visits a part of a tree-structured codebook to find the best-
matched element. Therefore, our method significantly saves
CPU time in a retrieve operation. However, FILTERSIM and
DISPAT directly store centroids in computer memory. The
program has to test each centroid in order to find the desired
one.

(6) In simulation procedure, VQ-MPS only finds the best-
matched codeword. This means the codebook is checked
only once. However, SNESIM and IMPALA adopt a pruning
strategy. If compatible patterns do not exist in the database, the
last point in the conditioning pattern is dropped. The program
has to test the database again until it finds enough compatible
patterns.

(7) The appearance of lowly proportional patterns enriches
the diversity of patterns in VQ-MPS. Suppose that the radius
of the template is r and the TI is of size height × width.
Accordingly, the training procedure extracts (height−2r) ×
(width−2r) patterns from the TI and stores N patterns in the
database. Here, N denotes the size of database. In general,
N is much lower than (height−2r) × (width−2r) because
certain patterns repeatedly appear in the TI. The patterns that
frequently appear in a TI are referred to as highly proportional
patterns, as opposed to lowly proportional patterns, which
rarely occur.

VQ-MPS uses N patterns that are stored in the database to
train a codebook. Thus, the lowly proportional patterns have the
same influence as the highly proportional patterns in the cluster
operation. After codebook generation, occurrences are as-
signed to each codeword. Therefore, some codewords are cre-
ated by lowly proportional patterns. For example, the first
codeword in Fig. 9 contains two lowly proportional patterns.
In simulation, VQ-MPS determines the value of an unknown
point by the occurrences of the best-match codewords. If a
lowly proportional codeword is selected, the program com-
pletes a point simulation in accordance with the occurrences
of certain lowly proportional patterns. This design allows
VQ-MPS to reproduce the lowly proportional patterns and

enrich the diversity of patterns in simulation realizations. For
one thing, the appearance of lowly proportional patterns makes
the realization more similar to the TI. For another thing, the
increasing diversity enlarges the difference between simulation
realizations.

However, the value of an unknown point is principally deter-
mined by the highly proportional patterns in the original MPS.
In SNESIM and IMPALA, a point simulation is conducted
on the basis of the occurrences of compatible patterns. If a
highly proportional pattern is selected as a compatible pattern,
its high occurrences principally determine the result of a point
simulation. Therefore, the program always reproduces highly
proportional patterns. Some lowly proportional patterns do not
appear in the simulation realizations. FILTERSIM and DISPAT
both use (height−2r) × (width−2r) patterns in the classifica-
tion task, while VQ-MPS applies N patterns. The centroids
produced by FILTERSIM and DISPAT are biased to highly
proportional patterns. As a result, lowly proportional patterns
do not have enough influence on the simulation procedure. The
absence of lowly proportional patterns is harmful for pattern
reproduction as well as spatial uncertainty.

D. Addressing nonstationarity

Nonstationarity is not unusual in geological processing. A
competitive algorithm should have competence in addressing
nonstationarity. For existing MPS programs, many methods
have been reported to tackle this issue. A frequently used
strategy is to provide auxiliary information to describe non-
stationarity. The categorical variables in patterns are called
the first variables (also called the primary variables), and
the auxiliary characteristics of patterns are referred to as the
secondary variables (also referred to as the auxiliary variables).
In this paper, two types of nonstationarity are addressed:
(1) spatial transformations of patterns and (2) restricted lo-
cations of reproductive patterns.

For the first type of nonstationarity, traditional MPS trans-
forms the patterns appearing in the TI. The first step is to
scan a stationary TI and construct various databases using a
transformed template. As the second step, the nonstationary
simulation domain is exhaustively partitioned into several
stationary areas. The index of each area reflects auxiliary char-
acteristics of spatial transformations. The simulation procedure
proceeds using a nontransformed template. Two widely applied
transformations are rotation and affinity.

However, we do not adopt this strategy. The reason is
that the transformations are defined not only by indices but
also by several continuous variables. The former reveals that
transformations are identical within each area, whereas the
latter implies that transformations change continuously at each
point. Therefore, our method is inspired by a strategy in DS
[28]. As the first step, the training procedure scans a stationary
TI using a nontransformed template. TSVQ technique is
applied to create databases. Second, the simulation procedure
visits an unknown point b and finds its neighborhoods. The
form of template is distorted according to parameters of spatial
transformation. Let [x, y] denote the coordinates of any point
in a transformed template centered at point b in a nonstationary
simulation domain and let [x ′,y ′] denote the coordinates of
any point in a template used in stationary TIs. The spatial
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FIG. 12. CVQ in the proposed method. (a) The training procedure. (b) The simulation procedure.

transformation is processed as

[x ′ y ′ 1] = [x y 1] × T

= [x y 1] ×
⎡
⎣t11 t12 0

t21 t22 0
t31 t32 1

⎤
⎦. (9)

Scaling, rotation, translation, and sheering can be easily
realized, depending on the values chosen for the elements of
the matrix T. Note that the matrix T transforms patterns in
the nonstationary simulation domain into patterns in stationary
TIs. By adopting this transformation to each point, a nonsta-
tionary pattern is transformed into a stationary pattern. Similar
to the procedure in the stationary case, the program finds the
best-matched codeword for a given pattern and determines the
value of an unknown point. The program successively proceeds
until each uninformed point is determined in the simulation
domain. Consequently, the geometric spatial transformation
of the pattern is dealt with.

For the second type of nonstationarity, the TIs are divided
into several areas. The index of each area is used as a
secondary variable to record locations where patterns appear.
Prior to simulation, each point in the simulation domain is
exhaustively assigned a secondary variable. The significance of
this exhaustive assignment is to restrict locations of reproduced
patterns. For example, patterns occurring in the ith area in a TI
must be reproduced in the ith area in the simulation domain.
For this type of nonstationarity, a useful approach is to create an
independent database for each area. CVQ technique described
in Sec. II B provides a feasible framework. Figure 12 shows
a simplified flowchart of our method. A key step of CVQ
is to design a classifier that categorizes secondary variables
into J classes. The value of J is problem dependent. In the

training procedure, each pattern occurring in TIs is classified
into a certain class. J databases are then created. Afterwards,
an independent codebook for each class is generated by LBG
or TSVQ. In the simulation, the program obtains a value of
the secondary variable from each unknown point and allocates
this point to class j . Bookj is chosen and checked to find
the best-matched codeword. Finally, the state of each point
is determined based on the occurrences. Point simulation
progresses iteratively along a random path, as described above.
Note that CVQ can easily be expanded to applications with
multiple secondary variables by modifying the classifiers.

IV. APPLICATIONS OF THE METHODOLOGY

A. A 2D application with a binary stationary training image

As the first application, a 2D stationary channelized TI of
size 101 × 101, shown in Fig. 13, was provided to validate the
proposed method. This image has been widely used in many

FIG. 13. A 2D stationary channelized TI.
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FIG. 14. The first two simulated realizations generated by full
search VQ with codebooks of size 128.

MPS programs [22–25,28]. Our method was implemented in
Java and executed on a 3.2-GHz Windows computer. The
multigrid scheme with G = 2 was adopted for this application.
Therefore, two databases were required. A template of size
7 × 7 and simulation domain of size 101 × 101 were applied.
The sampling rate was set to 0.5% so that each simulated
domain initially contained 101 × 101 × 0.5% = 51 hard data.
A median filter was used as a postprocessing step in order
to eliminate isolated points. Three schemes in the proposed
method were considered: a full search VQ with codebooks of
size 128, a TSVQ with codebooks of size 128, and a TSVQ with
codebooks of size 256. Fifty unconditional simulations were
generated for each scheme. The first two for each scheme are
displayed in Figs. 14–16. For the first scheme, the computer
required about 5 s to create two databases, and 427 s to simulate
50 realizations. For the second scheme, the computer cost
10 s to create databases, and 41 s to simulate realizations. For
the third scheme, the training procedure and the simulation
procedure took 12 and 45 s, respectively. In this application,
an ideal simulated realization has similar connectivity and
smoothness as the TI. By comparison with the TI, channels
in simulated realizations were connected from left to right
sides of the images. The width of the channels matched the
TI. Qualitatively, this visual interpretation indicated that all
three schemes effectively completed the simulation.

In order to discuss computational complexity as well as
CPU time performance, IMPALA was adopted for this ap-
plication. With the intention of objectively evaluating per-
formance of our method, IMPALA was implemented by our
own version. The reason is that programming language and
computer configurations have an important effect on CPU time.
Because the parallelization strategy has not been applied, we

FIG. 15. The first two simulated realizations generated by TSVQ
with codebooks of size 128.

FIG. 16. The first two simulated realizations generated by TSVQ
with codebooks of size 256.

use sequential IMPALA (S-IMPALA) to denote IMPALA of
our version. Using the same template, multigrid, and other
configurations described in VQ-MPS, 50 realizations were
simulated by S-IMPALA. The first two were shown in Fig. 17.
It costs 1 s to create two databases and 512 s to generate
50 simulated realizations. This implies that VQ technique
significantly accelerates simulation in the MPS framework.
In the following, we theoretically analyze the computational
efficiency of VQ-MPS and S-IMPALA.

On the one hand, the efficiency of Hamming distance in
Eq. (3) and Euclidean distance in Eq. (8) is considered. Because
a template of size 7 × 7 was used, each pattern was a 48-
dimensional vector. As an instance, the computer calculated the
two distances between two arbitrary 48-dimensional vectors
1 × 108 times. The CPU time cost for both distance measures
was 6 s. This indicates that the computational efficiencies of the
two distances are similar. However, computations of Hamming
distance can be further reduced. The list in Fig. 3 is used as
an example. Suppose that a pattern dn(c) = (0, −1, −1, 0) is
obtained, which already has two informed states. Therefore,
the possible number of state 2 in compatible patterns is in
the range [0, 2]. The search scope is from (0, 0, 0, 0) to
(2, 2, 1, 1). In a search, patterns like (1, 2, 0, 0) can be
rapidly eliminated because its first state is not equal to the
first state in dn(c). It is unnecessary to test all elements.
During a VQ search, each informed state has to be checked.
In this 2D channels simulation, Hamming distance involved
vectors of dimension 20 on average, while calculations of
Euclidean distance involved vectors of dimension 48. On the
other hand, for a single point simulation, 128 calculations
of Euclidean distance were required for the full search VQ
in this application. However, two TSVQs only performed

FIG. 17. The first two simulated realizations generated by S-
IMPALA.
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FIG. 18. The first two simulated realizations generated by
SNESIM.

2 × log2128 = 14 and 2 × log2256 = 16 calculations of Eu-
clidean distance, respectively. In comparison, the two lists in
IMPALA were of size 4291 and 7008. On average, Hamming
distance was calculated 365.8 times for a single point sim-
ulation. Taking into account all previous factors, VQ-MPS
with three schemes requires fewer computations by a factor
of 1.2, 10.89, and 9.45 than S-IMPALA, respectively. This
was verified by experimental data.

An analysis of distance (ANODI) [22] is an important
method to quantitatively compare TI-based algorithms in
geostatistics. For unconditional simulations, simulated realiza-
tions should contain two types of variability: spatial uncertainty
and pattern reproduction. The former summarizes the differ-
ence between simulated realizations, while the latter represents
average similarity between a TI and each simulated realization.
The best algorithm should extend spatial uncertainty, as well
as maximize pattern reproduction. In this paper, a cluster-
based histogram of patterns in ANODI was adopted. Three
ratios of rbetween

k,m , rwithin
k,m , and roverall

k,m were defined to relatively
rank algorithm k and algorithm m. A small value for rbetween

k,m

indicates that algorithm k has less spatial uncertainty than
m. A large value for rwithin

k,m reveals algorithm k has worse
pattern reproducibility than m. The value roverall

k,m summarizes
the former two aspects and roverall

k,m < 1 tells us that algorithm m

outperforms k. The detailed procedure of ANODI is presented
in Ref. [22].

For testing the performance of our proposed method,
four more MPS programs were considered as benchmarks:
SNESIM [17], FDS [30], CCSIM [21], and MS-CCSIM [23].
The template, multigrid strategy, and other configurations in
SNESIM were identical to those of VQ-MPS. DS [28] is an
important point-based MPS method. FDS accelerates DS using
a gradient descent strategy. According to a practical guide in

FIG. 19. The first two simulated realizations generated by FDS.

FIG. 20. The first two simulated realizations generated by CCSIM.

Ref. [29], the neighbors n = 30 and threshold t = 0.2 were
chosen. The above programs were implemented in our version.
In addition, CCSIM and MS-CCSIM were used because they
are relatively new and competitive methods in pattern-based
MPS. Both the two programs are developed by their authors
via MATLAB and can be open accessed. We executed these
programs using default parameters in Ref. [23]. The first two
results obtained by the above four methods are displayed
in Figs. 18–21. By applying each scheme in VQ-MPS as
algorithm m, the results of comparisons made by ANODI are
shown in Tables I–III.

The data in Table II were analyzed first. The values rbetween
k,m

were all greater than 1. This implies that existing MPS pro-
grams have larger spatial uncertainty than the second scheme
in VQ-MPS. Except for an item in the last row, rwithin

k,m were
all greater than 1, which indicates that the second scheme
has a better pattern reproduction quality. The first four roverall

k,m

were approximately equal to 1. This shows that TSVQ with
codebooks of size 128 yields comparable simulation results to
S-IMPALA, SNESIM, FDS, and CCSIM. However, the last
roverall
k,m was greater than 1. This indicates that MS-CCSIM is

a better algorithm. Then, the data in Tables I and III were
analyzed. All rbetween

k,m were smaller than 1, which indicates
that the two schemes of VQ-MPS expand spatial uncertainty.
The values rwithin

k,m were greater than 1, except for the last item
in Table I, which reveals that our method improves pattern
reproduction ability. As a result, roverall

k,m were all greater than
1. This quantitative analysis validated the improvement made
by our proposed VQ-MPS in terms of spatial uncertainty
and pattern reproduction. The reason for this phenomenon is
that our method is capable of reproducing lowly proportional
patterns, as explained in detail in Sec. III C. On the one
hand, reproductions of lowly proportional patterns allow the
simulated realizations to be more similar to the TI. On the other

FIG. 21. The first two simulated realizations generated by MS-
CCSIM.

033302-11



CHEN ZUO, ZHIBIN PAN, AND HAO LIANG PHYSICAL REVIEW E 97, 033302 (2018)

TABLE I. Comparison between VQ-MPS with full search VQ
with codebooks of size 128 and existing MPS programs.

Algorithm k rbetween
k,m rwithin

k,m roverall
k,m

S-IMPALA 0.8480: 1.0000 1.2760: 1.0000 0.6646: 1.0000
SNESIM 0.8440: 1.0000 1.2298: 1.0000 0.6863: 1.0000
FDS 0.8418: 1.0000 1.0401: 1.0000 0.8094: 1.0000
CCSIM 0.8936: 1.0000 1.1019: 1.0000 0.8110: 1.0000
MS-CCSIM 0.9271: 1.0000 0.9808: 1.0000 0.9452: 1.0000

hand, the diversity of patterns results in a greater difference
between simulated realizations. As a result, our method yields
the best simulation quality. Moreover, the full search VQ has
a better performance than TSVQ under the same conditions.
The reason is that TSVQ improves computational efficiency at
the cost of codebook performance. However, a codebook of a
larger size is easy to implement to mitigate this degradation.
TSVQ with a codebook of size 256 yielded a competitive
result.

B. A 2D application with a four facies stationary training image

In this section, a multifacies simulation was carried out
to test VQ-MPS. As Fig. 22(a) shows, a training image of
size 101 × 101 with four facies was applied. This image
has already been used in Ref. [20] in order to compare
FILTERSIM and DISPAT. In this example, the simulation
domain was assumed to be of the same size as the TI. An
unconditional simulation strategy was applied and the sample
rate was 0.5%. The program adopted a template of size 9 × 9
and a multigrid strategy with G = 3. The height of the tree-
structured codebook was 12. Therefore, TSVQ was performed
with a codebook of size 2048. Using our proposed categorical
variable representation method, four states were mapped into
a three-dimensional space. The coordinates of these four fixed
points were [0, 0, 0], [1, 0, 0], [0.5, 0.87, 0], and [0.5, 0.29,
0.82], respectively. An extending dimensionality of patterns
and a large size of the template bring an increase in the
computational load. Consequently, the computer spent 92 s
refining three databases. Next, 140 s was consumed to achieve
50 realizations. The first two simulation realizations are shown
in Figs. 22(b) and 22(c). It is obvious that VQ-MPS properly
preserves the geometrical features of the TI. In the simulation
realizations, facies 1 occupied the largest percentage of the
simulation domain. Facies 2 exhibited a good connectivity and
was surrounded by facies 3. Facies 4 was modestly reproduced
near facies 2. Considering the efficiency and effectiveness, we

TABLE II. Comparison between VQ-MPS with TSVQ with
codebooks of size 128 and existing MPS programs.

Algorithm k rbetween
k,m rwithin

k,m roverall
k,m

S-IMPALA 1.0367: 1.0000 1.2570: 1.0000 0.8247: 1.0000
SNESIM 1.0320: 1.0000 1.2115: 1.0000 0.8518: 1.0000
FDS 1.0289: 1.0000 1.0251: 1.0000 1.0037: 1.0000
CCSIM 1.0928: 1.0000 1.0860: 1.0000 1.0062: 1.0000
MS-CCSIM 1.1336: 1.0000 0.9666: 1.0000 1.1728: 1.0000

TABLE III. Comparison between VQ-MPS with TSVQ with
codebooks of size 256 and existing MPS programs.

Algorithm k rbetween
k,m rwithin

k,m roverall
k,m

S-IMPALA 0.8165: 1.0000 1.3950: 1.0000 0.5853: 1.0000
SNESIM 0.8126: 1.0000 1.3443: 1.0000 0.6045: 1.0000
FDS 0.8107: 1.0000 1.1372: 1.0000 0.7129: 1.0000
CCSIM 0.8602: 1.0000 1.2023: 1.0000 0.7155: 1.0000
MS-CCSIM 0.8925: 1.0000 1.0742: 1.0000 0.8309: 1.0000

believe that the proposed VQ-MPS provides a feasible way to
conduct multifacies simulations.

C. A 2D application with spatial transformations of patterns

Affinity and rotation are two typical spatial transformations.
Figure 23 shows an illustration of using these transformations
to realize a nonstationary simulation. The intensity of each
point in Fig. 23(a) represents a rotation angle the value of which
is in the range [−180, 180◦]. The intensity of each point in
Fig. 23(b) represents an affinity ratio that ranges from 1 at the
center to 0.4 in the corners. Both Figs. 23(a) and 23(b) are of
size 1024 × 1024. Figure 23(c) shows a stationary channelized
TI of size 256 × 256.

Let θ denote a degree of angle and α denote an affinity ratio
at any point in the simulation domain. Equation (9) can be
specified as

[x ′ y ′ 1] = [x y 1] × T

= [x y 1] ×
⎡
⎣cosθ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦

×
⎡
⎣1/α 0 0

0 1/α 0
0 0 1

⎤
⎦. (10)

Our method simulated a nonstationary realization of size
1024 × 1024, as shown in Fig. 23(d). In this realization, the
channels originate from the center and flow in all directions.
Meanwhile, the channels gradually become thin at points
away from center. This shows our method realizes the spatial
transformations of patterns in the simulation domain.

D. A 2D application with one secondary variable

In this application, a secondary variable was incorporated
into a 2D simulation. Figure 24(a) shows a channelized
reservoir image of size 256 × 256. We suppose that the origin

FIG. 22. A 2D application with four facies simulation. (a) The TI.
(b), (c) Two realizations.
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FIG. 23. A 2D application with spatial transformation of patterns.
(a) Rotation. (b) Affinity. (c) The TI. (d) A simulated realization.

is at the upper left corner, with the positive x axis extending
to the right and the positive y axis extending downward. The
directions of channels change smoothly depending on their x

coordinates. Based on this interpretation, x coordinates were
applied as a secondary variable to describe nonstationarity
in the TI. However, this secondary variable was normalized
into the range [0, 1] prior to simulation, which is shown in
Fig. 24(b).

In the simulation, a realization of size 256 × 256 with
the following conditions was targeted: horizontal channels

FIG. 24. A 2D application with one secondary variable. (a) The
first variable for a nonstationary TI. (b) Secondary variable describing
the nonstationarity of the first variable in the TI. (c) A simulated
realization for the first variable. (d) Secondary variable describing
the nonstationarity of the first variable in the simulation domain.

FIG. 25. A rock slice.

that are reproduced at the top, vertical channels that are
reproduced on the left, and smooth transition occurring in
between. According to these conditions, y coordinates in
the simulation domain were used as a secondary variable.
Therefore, an image of size 256 × 256 was created and
displayed in Fig. 24(d). The intensity of any point in this
image was used to define a value of the secondary variable.
Setting the number of categories J = 10 and book size
S = 64, CVQ was applied. In other words, ten codebooks of
size 64 were generated. Our method yielded the realization
shown in Fig. 24(c). In this realization, horizontal channels
occurred at the top, vertical channels occurred on the left, and
smooth transitions occurred in between. According to visual
interpretation, this realization satisfies the targeted conditions.

E. A 3D simulation from a rock slice

In petroleum engineering, it is not uncommon to simulate
a high-dimensional rock model based on a low-dimensional
slice. Comunian et al. [37] reported several practical methods
to complete 3D MPS simulations using 2D TIs. We incorporate
VQ-MPS into a framework called probability aggregation
to perform 3D simulations. Because of the absence of a 3D
TI, the 3D conditional probability is obtained by aggregating
probabilities calculated from 2D planes. The linear pooling
formula was adopted in this paper to aggregate several
probabilities. The framework of probability aggregation is
elaborated in Ref. [37].

In this section, a porous medium of sandstone samples was
selected for simulations. Suppose that white areas represent
pores and black areas represent another material. A binary
2D rock slice of size 200 × 200, shown in Fig. 25, was used
as the TI. This image was created using a microcomputed
tomography (CT) technique with a resolution of 10 μm. The
dimensions of the simulated domain were set to 200 × 200 ×
200. A template of size 7 × 7 and a TSVQ with a codebook of
size 128 were applied. The sampling rate was set to 0.5%. The
porosity of initial hard data was limited to 20.2% because this
was the porosity of the TI. In addition, a multigrid scheme
G = 2 was used. A simulated realization is displayed in
Figs. 26(a)–26(c). These figures are compared with the 3D
image of original CT sample in Figs. 26(d)–26(f). In exterior
view and cross view, green areas represent pores and black
areas represent another material. In the perspective image, pore
structures are expressed by gray areas and another material is
transparent. According to human visual interpretation, pores
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FIG. 26. A simulated realization and a CT sample. (a) 3D exterior view of the simulated realization. (b) A cross section of the simulated
realization. (c) The perspective image of the simulated realization. (d) 3D exterior view of the CT sample. (e) A cross section of the CT sample.
(f) The perspective image of the CT sample.

in the simulated realization have similar contours and spatial
distributions to the CT sample.

Besides qualitative comparison, two quantitative compar-
isons are also conducted. The autocorrelation function (ACF)
and linear path function (LPF) are two frequently used mea-
sures of variability and continuity in 3D rock models. The ACF
is defined as

R(r) = 〈[I (u) − φ][I (r + u) − φ]〉
φ − φ2

, (11)

where u is any point in 3D models. I (u) is an indicator
function such that I (u) = 1 if u lies within a pore and I (u) = 0

FIG. 27. Comparison of ACFs for TI, CT sample, and simulated
realization.

otherwise. The angular bracket denotes a mean operation. φ

denotes the porosity of the image and is defined as φ = 〈I (u)〉.
ACFs of the TI and CT sample and simulated realization are
displayed in Fig. 27. It is clear that the ACF of simulated
realization agrees with the CT sample very well.

The LPF, which describes local connectivity of pores, is
defined as

L(r) = Prob[I (u) = 1,I (u + 1) = 1,...,I (u + r) = 1]

φ
,

(12)

FIG. 28. Comparison of LPFs for TI, CT sample, and simulated
realization.
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where u is the outset of a line segment lr of length r . The LPF
provides the probability that a line segment lr is entirely in pore
areas. LPFs of the TI and CT sample and simulated realization
are displayed in Fig. 28. It is obvious that the simulated
realization has matched connectivity with the CT sample.
According to previous analyses, the proposed VQ-MPS is
capable of reproducing spatial patterns and microstructure of
a porous medium from a single 2D image.

V. CONCLUSION

We proposed a VQ-MPS method with the goal of acceler-
ating simulation and improving simulation quality in the MPS
framework by using VQ technique to compress databases.
First, a variable representation for categorical variables is
presented. Each state of categorical variables is mapped into a
fixed point in a high-dimensional space. Addition operations
and Euclidean distance measurement can be performed with
this representation. Second, TSVQ is applied to improve
database structure in MPS in order to speed up simulation and
ensure high-level simulation quality. Stationary simulations are
dealt with. Furthermore, two types of nonstationarity are con-
sidered. A transformed template is adopted to address spatial
transformations of patterns. CVQ is adopted to incorporate
secondary variables into simulations.

We tested our method via a 2D channelized reservoir image.
Compared with several other state-of-the-art MPS programs,
our method exhibited significantly better performance in terms
of computational efficiency, pattern reproduction ability, and
spatial uncertainty. Further applications contained a 2D four

facies simulation, two nonstationary simulations, and a 3D
simulation from a rock slice. The properties of the simulated
realizations agreed well with the targeted properties and the
real sample. These applications demonstrate that VQ-MPS
is a powerful and versatile tool to address various types of
geological modelings. For instance, a variety of benchmark
experiments are achieved in order to objectively test the pro-
posed VQ-MPS. Furthermore, we do not restrict our attention
to a specific research field. However, the core of our paper aims
to explore a new way to develop MPS programs. An enhanced
technique has a positive influence on expanding applications
of MPS. Considering its efficiency and accuracy, we believe
that the proposed method of VQ-MPS may potentially have
a wide range of practical applications. Since the categorical
variable representation increases the pattern dimensionality,
reducing the memory usage will be further studied. More-
over, the database compression operation brings computations.
Improving the efficiency of the training procedure will also
require further research.
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