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Population annealing is an easily parallelizable sequential Monte Carlo algorithm that is well suited for
simulating the equilibrium properties of systems with rough free-energy landscapes. In this work we seek to
understand and improve the performance of population annealing. We derive several useful relations between
quantities that describe the performance of population annealing and use these relations to suggest methods to
optimize the algorithm. These optimization methods were tested by performing large-scale simulations of the
three-dimensional (3D) Edwards-Anderson (Ising) spin glass and measuring several observables. The optimization
methods were found to substantially decrease the amount of computational work necessary as compared to
previously used, unoptimized versions of population annealing. We also obtain more accurate values of several
important observables for the 3D Edwards-Anderson model.
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I. INTRODUCTION

Frustrated and disordered systems are ubiquitous in nature
and, consequently, appear in a wide range of current research
areas. Theoretical approaches to these systems are generally
difficult to implement and have limited applicability and, as a
result, computational methods are crucially important. Replica
exchange Monte Carlo, also known as parallel tempering
[1–4] and multicanonical algorithms such as the Wang-Landau
algorithm [5,6] have become the standard methods in the field
because they partially overcome the problem of rough free-
energy landscapes. Perhaps unsurprisingly, the development
of these algorithms is fundamentally intertwined with the frus-
trated systems they were invented to probe, and understanding
the behavior of the algorithms contributes to understanding the
system itself.

One algorithm that is under active development is the pop-
ulation annealing Monte Carlo method. Population annealing
(PA) is an example of a sequential Monte Carlo algorithm
[7] and was first introduced and applied to spin glasses by
Hukushima and Iba [8]. Population annealing shares features
with both parallel tempering and simulated annealing [9];
however, it has one major advantage: It is inherently parallel
and can be easily implemented on large computing clusters.
Population annealing is closely related to nested sampling
[10,11].

Recently there has been a resurgence of interest in PA [12].
There are several recent works that use PA to simulate not only
spin glasses [13–16] but also hard-sphere fluids [17] and the
ferromagnetic Potts and Ising models using GPUs [18,19]. In
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this work we continue the analysis of population annealing and
derive several analytic results relating to its implementation.
These results naturally lead to several optimization ideas that
we test in the context of the three-dimensional (3D) Edwards-
Anderson (EA) spin glass. Related optimization ideas are
explored in Ref. [20].

In Sec. II, we present the population annealing algorithm.
We then introduce the Edwards-Anderson spin-glass model
and the relevant observables of interest, which is our test bed
to study the optimization of PA. In Sec. III we introduce several
observables and measures of error specific to population
annealing. Furthermore, we derive an important inequality
between measures of systematic and statistical errors, and we
derive lower bounds for these errors in PA. We also introduce
a method to determine an optimized annealing schedule.
These relations suggest several improvements to PA, which
we describe in detail in Sec. IV. In Sec. V we show the results
of a large-scale simulation of the 3D Edwards-Anderson spin
glass, which demonstrate our analytic results and the efficacy of
the optimizations as well as providing new benchmark values
of several quantities.

II. BACKGROUND

Population annealing is a sequential Monte Carlo algorithm
designed to sample equilibrium states in systems with rough
free-energy landscapes. Population annealing is similar to a
parallel version of simulated annealing in many respects: A
population of R spin configurations, henceforth called “repli-
cas,” is initialized at high temperatures where equilibration is
easy, and the population is slowly cooled. In addition, there is a
resampling step at each temperature where individual replicas
may be copied or eliminated according to their Boltzmann
weights. Resampling ensures that the ensemble of replicas
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is kept near thermal equilibrium. However, the resampled
ensemble has degeneracies due to copied replicas and does not
fully sample the low-energy spectrum at the lower temperature.
In order to address these issues, a Markov Chain Monte Carlo
(MCMC) procedure such as the Metropolis algorithm is used
to decorrelate and additionally equilibrate the population.

A PA simulation traverses an annealing schedule with NT

inverse temperatures {βNT −1, . . . ,β0}, where βj+1 < βj , the
initial temperature is typically infinite, βNT −1 = 0, and the
final β0 is chosen as desired. Consider the resampling step
from inverse temperature β to β ′. Each replica, denoted by a
subscript i, is given a resampling factor τi that is proportional
to the ratio of the Boltzmann weights of that replica at the two
temperatures,

τi = R

R̃β

e−(β ′−β)Ei

Q(β,β ′)
, (1)

where Ei is the energy of replica i, Q is a normalization factor
used to control the population size,

Q(β,β ′) = 1

R̃β

R̃β∑
i=1

e−(β ′−β)Ei , (2)

and R̃β is the population size at step β. The actual population
size R̃β may fluctuate around the target population size R.
The resampling factor is the expected number of copies of
a replica, that is, τi = 〈ni〉, where ni is the stochastically
chosen integer number of copies of a replica i. There are
several ways to implement resampling in PA. In this work
we follow the method used in Ref. [13], which minimizes
the variance of ni by choosing ni(β,β ′) = �τi(β,β ′)� with
probability �τi(β,β ′)� − τi(β,β ′) and ni(β,β ′) = �τi(β,β ′)�
otherwise. This method results in an average population equal
to R, with fluctuations of order

√
R. The resampling step

ensures that, for large R, if the population is an equilibrium
ensemble at β, then it will also be an equilibrium ensemble at
β ′.

At the beginning of the simulation, each replica is statisti-
cally independent; however, after being copied, some replicas
become statistically correlated with each other. Correlations
are recorded via the “ancestry” of each replica. At the begin-
ning of the simulation, each replica is labeled. During each
resampling step, each replica passes its label to its offspring,
and replicas that have the same ancestry label are said to be
members of the same “family.” Although the total number of
families is always equal to the initial population size R, by the
end of a simulation, most families will have no members. We
shall see that the distribution of family sizes is closely related
to both statistical and systematic errors.

A. Model and observables

We study and apply PA in the context of the 3D Edwards-
Anderson (EA) spin glass, defined by the Hamiltonian

H = −
∑
〈n,m〉

Jnmsnsm, (3)

where the summation is over nearest neighbors on a cubic
lattice with periodic boundary conditions, sn = ±1 are Ising

spins, and Jnm are bonds drawn from a Gaussian distribution
with zero mean and unit standard deviation. In order to
understand the thermodynamic properties of the EA model,
it is necessary to do many simulations with different bond
configurations and to then take an average afterwards. PA gives
access to the ensemble average of observables for a fixed set
of bonds; therefore many PA simulations must be conducted
to take a bond average. An average of an observable O over
bond configurations will be denoted as [O]J, whereas a thermal
average will be denoted as 〈O〉.

There are several types of observables that are theoretically
interesting in spin glasses. Observables that can be measured
directly in a single spin configuration are the easiest to measure
since PA effectively simulates the canonical ensemble at each
temperature step. Thermodynamic quantities for a single bond
configuration such as the average energy E = 〈H 〉 or average
magnetization are all straightforward to measure as a simple
population average at each temperature step.

The order parameter for the EA model is obtained from the
overlap between two spin configurations chosen independently
from the canonical ensemble at a given temperature in the same
bond configuration. The spin overlap q is defined as

q = 1

N

N∑
n=1

s1
ns

2
n, (4)

where s1
n is the nth spin of replica 1 and N is the total number of

spins in the system. The thermal distribution of overlaps P (q)
for a given temperature and bond configuration has support
on [−1,1]. The Edwards-Anderson order parameter, qEA, is
the thermal average of the absolute value of q in (any) single
pure thermodynamic state. In order to measure P (q), it is
necessary to measure q many times from spin configurations
1 and 2 drawn independently from the equilibrium ensemble
of replicas. This process is straightforward in PA as long as
the family of each replica is recorded: PA gives access to
the equilibrium ensemble, and replicas are guaranteed to be
independent if they are from different families.

An important observable in spin-glass theory is the disorder-
averaged integrated overlap weight around the origin,

I (q0) =
[∫ q0

−q0

P (q)dq

]
J

, (5)

and following previous studies [13,21], we use q0 = 0.2.
The quantity I (q0) was introduced to distinguish between
competing theories of the low-temperature spin-glass phase.
Replica symmetry breaking theory [22–24] predicts that I (q0)
goes to a nonzero constant as N → ∞ for any q0 > 0 while
the droplet [25–28] and chaotic pairs pictures [29] predict that
I (q0) → 0 as N → ∞ for any q0 < qEA.

The link overlap ql is another quantity that is defined from
two independent spin configurations,

ql = 1

Nb

∑
〈n,m〉

s1
ns

1
ms2

ns
2
m, (6)

where Nb = 3N is the number of bonds. Like the spin overlap,
the link overlap is useful for distinguishing theories of the spin-
glass phase [21]. It is also useful as a measure of equilibration
using a relation found by Katzgraber and Young [21]. They
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define

�KY = [el − e]J, (7)

where e is the thermally averaged energy per spin and el is an
energylike quantity defined from the link overlap,

el = − 1

T

Nb

N
(1 − 〈ql〉). (8)

For an individual bond configuration, it is not the case that
el = e; however, for a disorder average over Gaussian bonds,
�KY = 0. The requirement that �KY ≈ 0 is a useful indicator
of equilibration.

A free-energy estimator, F̃ , can be obtained [12] at every
step in the annealing schedule from the normalization factors
[see Eq. (2)] of all previous annealing steps via

−βkF̃ (βk) =
NT −1∑
l=k+1

lnQ(βl,βl−1) + ln�, (9)

where � = 2N is the number of microstates, NT is the total
number of β steps in the annealing schedule, and βl is the
current step.

If PA is run to a sufficiently low temperature, then we can
obtain an estimator of the ground-state energy Ẽ0 from the
lowest energy encountered during the simulation. Population
annealing also gives direct access to the estimated probability
of being in the ground state at each temperature, g̃0, which
is simply the fraction of the population at the lowest energy
found during the entire simulation. Alternatively, with the aid
of the free-energy estimator, it is possible to obtain an indirect
estimate of the probability of being in the ground state, ḡ0, by
calculating the Boltzmann weight,

ḡ0 = 2 e−βE0+βF̃ . (10)

By comparing the measured g̃0 to the calculated ḡ0, we can
asses systematic errors.

III. POPULATION ANNEALING THEORY

A. Error estimation

As shown in Ref. [13], the systematic error of an observable
O is given by

�O = var(βF̃ )

[
cov(Õ,βF̃ )

var(βF̃ )

]
, (11)

where Õ is the PA estimator of O and the (co)variances are
taken with respect to independent runs of PA. The bracketed
quantity is expected to converge to a finite limit as R → ∞,
meaning that for large R, the systematic error for any ob-
servable is proportional var(βF̃ ). Furthermore, the quantity
var(βF̃ ) is expected to scale as 1/R, and so it is natural to
define an equilibration population size, ρf , as

ρf = lim
R→∞

R var(βF̃ ). (12)

The equilibration population size sets a population scale for
a given bond configuration, and by choosing the population
such that R 
 ρf , systematic errors behave as ρf /R. One
complication is that in order to measure ρf , many simulations
of the same bond configuration must be made.

An analogous quantity for statistical errors, ρt , can be
defined that corresponds to the population size required to
minimize statistical errors. In PA, if no decorrelating Markov
chain Monte Carlo were done, then the statistical errors
would directly scale with the second moment of the family
distribution, see Ref. [13]. Therefore we define ρt as

ρt = lim
R→∞

1

R

R∑
i=1

η2
i , (13)

where the summation is over families andηi is the size of family
i. Note that we can also express ρt in terms of the variance of
the family size distribution. Since the average family size is 1,

ρt − 1 = lim
R→∞

var(η). (14)

Because we do perform MCMC at each annealing step, the
actual statistical errors will be lower and ρt can be used as
a conservative estimate for the population size necessary to
minimize statistical errors. Specifically, the statistical error δO

in measuring an observable O in a PA run with population size
R is bounded by

δO �
√

var(O)ρt

R
, (15)

where var(O) here refers to the underlying variance of the
observable in the Gibbs distribution.

Unlike ρf , ρt can be easily estimated from a single run and,
as will be shown in the next section, there is a close relationship
between ρf and ρt that can be used to our advantage.

B. Relation between ρt and ρ f

In this section we provide an argument justifying the
inequality

ρt − 1 > ρf . (16)

The argument uses a modified version of PA where the exact
free energy is known and is used for normalizing the weight of
each spin configuration. This modified version of PA is similar
to the idea of using blocks of a much larger total population to
calculate ρf and ρt . In this version of PA, the weight of spin
configuration i is given by

τi = e−(β ′−β)Ei+β ′F ′−βF , (17)

where F and F ′ are the exact free energies at β and β ′,
respectively. The actual number of copies ni of configuration i

is a random non-negative integer, n(τi), whose mean is τi . Our
implementation of n(τ ) is given in Sec. II but the details are
not important to the argument. Here we divide ni into τi and a
random remainder z(τi), whose mean is zero,

ni = τi + z(τi). (18)

The total population R̃β ′ at temperature step β ′ is given by

R̃β ′ =
R̃β∑
i=1

ni, (19)
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which can also be expressed in terms of the family size
distribution,

R̃β ′ =
R∑

j=1

ηj , (20)

where ηj is the size of family j at temperature step β ′. In the
exact free-energy version of PA, families are independent of
each other, so the variance of the sum is the sum of variances
and var(R̃β ′) = R var(η). From the definition of ρt , Eq. (14),

ρt (β) − 1 = lim
R→∞

1

R
var(R̃β). (21)

Thus, in the exact free-energy version of PA, there are relatively
large fluctuations in the population size that scale as

√
ρtR

in contrast to the version we implement in the simulations,
where the population size is nudged toward R at every step
and population fluctuations scale as

√
aR with a � 1.

We can also derive an expression for ρf that is related
to population size fluctuations within the exact free-energy
version of PA. Starting from the factor Q(β,β ′) [see Eq. (2)]
we have

Q(β,β ′) = 1

R̃β

R̃β∑
i=1

e−(β ′−β)Ei

= 1

R̃β

⎛
⎝ R̃β∑

i=1

τi

⎞
⎠e−β ′F ′+βF . (22)

We also know that Q(β,β ′) is an estimator of the ratio of the
partition functions of two subsequent temperatures so that

Q(β,β ′) = e−β ′F̃ ′+βF̃ , (23)

where F̃ and F̃ ′ are the free-energy estimators at β and β ′,
respectively. Combining the above two relations gives

e−β ′�F̃ ′+β�F̃ = 1

R̃β

R̃β∑
i=1

τi

= 1

R̃β

R̃β∑
i=1

[ni − z(τi)], (24)

where �F̃ = F̃ − F is the deviation of the free-energy esti-
mator from the exact free energy. If the population is large,
then this deviation is small so we can expand the exponential
of the free energy, and using Eq. (19), we obtain

1 − (β ′�F̃ ′ − β�F̃ ) = R̃β ′

R̃β

−
∑R̃β

i=1 z(τi)

R̃β

. (25)

The population size at temperature β can be decomposed as
R̃β = R + δR̃β , where R is the mean population and δR̃β is
the deviation from the mean at temperature β. Expanding in
δR/R yields

1 − (β ′�F̃ ′ − β�F̃ ) =
(

1 + δR̃β ′

R

)(
1 − δR̃β

R

)

− 1

R

R̃β∑
i=1

z(τi)

(
1 − δR̃β

R

)
. (26)

From this point onwards, R̃j will denote the population at
annealing step j with inverse temperature βj , and τ

j

i will
denote the weight of configuration i during the resampling step
from βj+1 to βj . Disregarding all (δR/R)2 terms, summing
Eq. (26) over all steps in the annealing schedule, and taking
the variance of the result yields

var
(
βk�F̃k

) = var

⎡
⎣δR̃k

R
− 1

R

k+1∑
j=NT −1

R̃j+1∑
i=1

z
(
τ

j

i

)⎤⎦. (27)

From the definition of ρf , Eq. (12), we have

ρf (βk) = lim
R→∞

1

R
var

⎡
⎣δR̃k −

k+1∑
j=NT −1

R̃j+1∑
i=1

z
(
τ

j

i

)⎤⎦. (28)

Expanding the variance and using Eq. (21) yields a relation
between ρf and ρt ,

ρf (βk) = ρt (βk) − 1

− lim
R→∞

1

R

⎧⎨
⎩2 cov

⎡
⎣δR̃k,

k+1∑
j=NT −1

R̃j+1∑
i=1

z
(
τ

j

i

)⎤⎦

− var

⎡
⎣ k+1∑

j=NT −1

R̃j+1∑
i=1

z
(
τ

j

i

)⎤⎦
⎫⎬
⎭. (29)

In Appendix A we argue that the quantity in curly brackets is
greater than zero, yielding the desired inequality, ρt − 1 > ρf .

There are two caveats concerning this inequality. First, the
argument in Appendix A establishing the positivity of the term
in square brackets is not rigorous. More importantly, the result
applies to a version of PA that is normalized by the exact
free energy and has large fluctuations in population size. We
conjecture that an “equivalence of ensembles” result holds
for the implemented and exact free-energy version of PA so
that both ρf and ρt are the same for both algorithms but this
question deserves further study.

We will see in the next two sections and in Appendix B that
the inequality between ρf and ρt − 1 can be extended to an
approximate equality, provided that the culling fraction is small
at each step. This approximate equality and, by extension,
the inequality are supported by numerical results shown in
Sec. V A.

C. Temperature step size, culling fraction, and energy variance

As we shall see in Sec. IV B, a natural way to choose the
β schedule for population annealing is to cull a fixed fraction
of the population at each resampling step. In this section we
derive a relation between the culling fraction, the variance of
the energy distribution, and the size of the temperature step. To
derive this relation, note that the expected number of copies
of each configuration is τi and the actual number of copies
is �τi� with probability �τi� − τi or �τi� otherwise. Thus a
configuration can be eliminated only if τ < 1, and the expected
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number of eliminated configurations in a resampling step is

εR =
∑
τi<1

(1 − τi), (30)

where ε is the (expected) culling fraction. Let 〈E〉 and σ 2
E ,

respectively, be the thermal average energy and variance of
the energy. Consider a resampling step from β to β ′ with
�β = (β ′ − β). In the regime �βσE � 1 we can expand the
definition of τi , Eq. (1), to leading order in �β to obtain

τi = 1 − �β(Ei − 〈E〉), (31)

meaning that τ is approximately a Gaussian random variable
with mean 1 and standard deviation �βσE . Within this Gaus-
sian approximation and for large R, the sum defining ε in
Eq. (30) can be replaced by an integral,

ε ≈
∫ 1

−∞
(1 − τ )N(τ ; 1,�βσE) dτ

= �βσE√
2π

, (32)

where N(x; μ,σ ) is the pdf of the normal distribution with
mean μ and standard deviation σ . If we want to eliminate a
fixed fraction of the population ε, then the β schedule must be
chosen such that

�β ≈ ε
√

2π

σE

. (33)

D. Growth of ρ f in the MCMC-equilibrated regime

In the spin-glass phase where the MCMC procedure alone is
unable to equilibrate the system, the growth of ρf depends, in a
complicated way, on the structure and temperature dependence
of the free-energy landscape. However, at high temperatures
where the MCMC procedure is able to fully decorrelate
replicas, which we refer to as the MCMC-equilibrated regime,
we can show that ρf is simply proportional to the number of
annealing steps times the culling fraction. To understand the
behavior of ρf in the MCMC-equilibrated regime, note that
ρf is defined in terms of the variance of βF [see Eq. (12)] and
take the variance of both sides of Eq. (9),

var[βkF̃ (βk)] = var

[
NT −1∑
l=k+1

lnQ(βl,βl−1)

]

≈
NT −1∑
l=k+1

var[lnQ(βl,βl−1)]. (34)

The second approximate equality becomes exact when the
population is equilibrated by the MCMC procedure during
each annealing step. Using the definition of Q, Eq. (2),
and assuming the variation of R̃ is negligible, we expand
var[lnQ(βl,βl−1)] to leading order in (�βl)σE(βl),

var[lnQ(βl,βl−1)] ≈ 1

R
(�βl)

2σE(βl)
2, (35)

where σ 2
E is the variance of the energy distribution. Plugging

Eq. (35) into Eq. (34) yields

var[βkF̃ (βk)] =
NT −1∑
l=k+1

1

R
(�βl)

2σE(βl)
2. (36)

From the relation between the size of the temperature step and
the culling fraction, Eq. (32), we find

R var[βkF̃ (βk)] =
NT −1∑
l=k+1

2πε(l)2, (37)

where ε(l) is the culling fraction at the lth annealing step. Thus,
for fixed culling fraction, ε, we find that ρf grows linearly in
the number k of annealing steps,

ρf = 2πε2k. (38)

This relation is valid if the culling fraction is small and enough
MCMC sweeps are carried out in each annealing step that the
replicas remain independent.

More generally, ρf � 2πε2k and the inequality holds if
the MCMC procedure is not able to keep the replicas fully
decorrelated.

E. Growth of ρt in the MCMC-equilibrated regime

Similarly to the case of ρf , at high temperatures where
the MCMC procedure is able to fully decorrelate the energy
of the replicas at every annealing step, the growth of ρt − 1 is
proportional to the number of annealing steps times the culling
fraction. To derive this relation we note that ρt is equal to
the variance of the family size distribution. In the MCMC-
equilibrated regime, the size of a given family is described
by a birth and death process. In an approximation where the
annealing step k is taken to be a continuous “time” variable,
the family size distribution, Pη(k), is described by the master
equation,

Ṗη(k) = ε[(η − 1)Pη−1(k) + (η + 1)Pη+1(k) − 2ηPη(k)],

(39)

where η is the family size and ε is the culling fraction. This
is the classic birth–death process (see, for example, Ref. [30])
whose solution is

Pη(k) =
(

1

1 + εk

)(
εk

1 + εk

)η−1

for η � 1 (40)

and

P0(k) =
(

εk

1 + εk

)
. (41)

From this distribution it is easily seen that

ρt − 1 = var(η) = 2εk. (42)

This equation holds in the MCMC-equilibrated regime where
the number sweeps in each annealing step is greater than or
comparable to the integrated autocorrelation time of the energy,
so that the energy of every replica is independent of its family
designation.
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TABLE I. Parameters of the simulations for each of the three
system sizes.

L = 6 L = 8 L = 10

Culling fraction, ε 0.103 0.168 0.272
Sweeps per replica 1005 1005 1009
Temperature steps, NT 95 95 99
Initial population, R0 2 × 103 2 × 103 2 × 104

Maximum population 2.64 × 105 1.5 × 107 1.5 × 107

Disorder samples 2 × 104 2 × 104 5 × 103

Unequilibrated samples 0 4 145

Comparing Eqs. (42) and (38), we see that in the MCMC-
equilibrated regime and for small culling fraction,

ρf = ρt − 1 − (2ε − 2πε2)k. (43)

To a high level of accuracy, this relation also holds outside of
the MCMC-equilibrated regime. This is shown numerically in
Sec. V A and supported analytically in Appendix B.

IV. OPTIMIZATION OF POPULATION ANNEALING

In this work we focus on three general improvements
to the population annealing algorithm: a method to choose
the population size for each individual bond configuration,
a way to choose the β schedule to reduce statistical and
systematic errors, and an ad hoc sweep schedule that improves
equilibration.

A. Hardness-dependent population size

Previous authors have shown that the computational work
required to equilibrate a specific bond configuration is approxi-
mately log-normally distributed for both population annealing
and parallel tempering [13,31–33]. In population annealing,
the work required to equilibrate a bond configuration is pro-
portional to ρf , and so our first optimization takes advantage of
the relation between ρf and ρt in order to tailor the population
size necessary for each bond configuration, so we do not
use too large a population on an easy system and spend
resources inefficiently. In order to optimize the population
for each bond configuration, it is usually necessary to do
several simulations. An initial simulation is done with a small
population, R0. From this simulation, we obtain an estimate
of ρt , called ρt (R0). If R0 > 100ρt (R0), then we assume
that ρt (R0) ≈ ρt and the simulation was well equilibrated.
Otherwise, we do another simulation with population size,
R1 = 150ρt (R0), which yields ρt (R1). This procedure is con-
tinued until the bond configuration is equilibrated according
to the criterion of R > 100ρt . If R0 is chosen wisely, then
this method converges quickly and uses far fewer resources
than choosing a single R adequate for all bond configura-
tions. The values of R0 used in our simulations are given in
Table I.

B. Optimal annealing schedule

In the MCMC-equilibrated regime it is possible to de-
rive an optimal annealing schedule, which is composed
of both the β schedule and sweep schedule. This is

done by minimizing ρf while keeping the total amount
of computational work, W , fixed. We define the total
work as

W =
NT −1∑
l=k+1

S(βl), (44)

≈
∫ β

0

S(β)

�β
dβ, (45)

where S(β) is the sweep schedule, defined as the number
of MCMC sweeps carried out per annealing step at inverse
temperature β. In the MCMC-equilibrated regime we have an
analytic expression for ρf from Eq. (36), which can also be
approximated as an integral,

ρf =
NT −1∑
l=k+1

(�βl)
2σE(βl)

2, (46)

≈
∫ β

0
�βσE(β)dβ. (47)

We can use the method of Lagrange multipliers to minimize
ρf while holding W constant by solving,

0 = δ

δ�β
(ρf + λW ), (48)

which yields

σ 2
E − λ

S(β)

�β2
= 0. (49)

Equivalently,

�βσE(β) ∝
√

S(β), (50)

and using Eq. (33),

ε ∝
√

S(β), (51)

we see that in the MCMC-equilibrated regime, the optimal
number of sweeps depends on the culling fraction at each step.
In the case of a fixed culling fraction, a fixed sweep schedule
is optimal.

Based on these ideas, in our simulations we employed a β

schedule that holds the culling fraction roughly constant. We
observed that the resulting schedule does not depend strongly
on disorder realization so we chose a schedule based on a single
run and tested that the culling fraction was similar for several
disorder configurations of varying difficulty. This schedule
was then employed without modification for production runs.
Since, according to Eq. (33), �β = ε

√
2π/σE , the resulting

schedule has many annealing steps at high temperatures, where
the standard deviation of the energy is large, and few annealing
steps at low temperatures. A similar uniform ε scheme was
used in PA simulations of hard spheres [17]. Since the variance
of the energy scales linearly with the system size (except
near the critical point), the same β schedule can be used for
many system sizes, though for larger sizes the uniform culling
fraction will increase. If the range of sizes studied is too large,
then interpolating temperatures can be added to the schedule
to reduce the culling fraction. Although it is not theoretically
well justified in the critical or the low-temperature regimes, we
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continued to use a uniform culling fraction to determine the β

schedule over the entire temperature range of our simulations.
In accordance with Eq. (51), we chose a sweep schedule

that was fixed in the high-temperature regime. We found
that focusing most of the computational work in the glass
transition regime minimized ρt and that in the glassy phase
it was favorable to rely on PA resampling and do very little
MCMC work. Our ad hoc sweep schedule had three Monte
Carlo sweeps performed for β < 0.5, 22 for 0.5 � β � 2.5,
and a single sweep for β > 2.5. Our annealing schedule is
not directly comparable with the annealing schedules studied
in Ref. [20]. While our β schedules is the same as their
“std(E)” schedule, the computationally meaningful density of
sweeps per unit β is not the same as for any of their annealing
schedules because of our nonuniform sweep schedule. A
deeper understanding of the optimal annealing schedule over
the whole range of temperatures remains an open problem.

V. RESULTS

This section contains two types of numerical results. Sec-
tions VA–VD address the behavior of PA, validating theoretical
predictions and testing the optimization ideas described in
previous sections. Section V E reports measurements from
large-scale simulations of several observables for the 3D
Edwards-Anderson spin glass in order to compare with pre-
vious work and improve the state of the art. The parameters
used in this work are shown in Table I.

A. Relationship of ρ f and ρt

In Sec. III B we showed that ρt − 1 � ρf and, in Eq. (43),
gave an approximate relation between these two quantities.
Here we test these relationships. Our proposal to optimize
population size for each disorder realization relies on the easily
measured ρt as a proxy for the more difficult to measure ρf ,
so it is important to determine the relationship between these
two quantities.

In order to accurately measure ρf = R var(βF̃ ), we ran
population annealing 48 times for each configuration, with
population sizes chosen such that R � 100ρt . This ensured
that each simulation was well equilibrated and that we could
measure var(βF̃ ) with reasonable accuracy. We calculated
ρf for 2000 L = 6 samples and for 300 L = 8 samples.
Calculating the error of ρf is equivalent to calculating the error
of a sample variance. As shown in previous work [13], βF̃

taken from a well-equilibrated bond configuration is normally
distributed, which makes estimation of the error of var(βF̃ )
particularly easy [34],

var[var(βF̃ )] = 2

M − 1
var(βF̃ )2, (52)

where M is the number of trials. The corresponding error in
ρf is

δρf =
√

2

M − 1
ρf , (53)

which for 48 trials gives a relative error, δρf /ρf , of about 21%.
Since ρt is calculated from a single disorder realization, it is
expected that δρt � δρf . We find this to be true empirically,

101 102 103 104

101

102

103

104

ρt − 1 − (2ε − 2πε2) k

ρ
f

N = 63

N = 83

FIG. 1. Scatter plot of ρt − 1 − (2ε − 2πε2)k vs. ρf at β = 5
(k = 95) for L = 6 and L = 8; each data point corresponds to a single
bond configuration. The solid line corresponds to ρt − 1 + (2πε2 −
2ε)k = ρf , see Eq. (43).

with δρf ≈ 20δρt for L = 6 and δρf ≈ 16δρt for L = 8
simulations.

Figure 1 is a scatter plot of ρt − 1 − (2ε − 2πε2)k vs.
ρf at β = 5, where each point corresponds to one disorder
realization and the solid line corresponds to ρf = ρt − 1 −
(2ε − 2πε2)k. The results are consistent with ρf ≈ ρt − 1 −
(2ε − 2πε2)k holding for all disorder realizations.

In the MCMC-equilibrated regime, ρf = 2πε2k and ρt =
1 + 2εk, as shown in Secs. III D and III E, respectively. Figure 2
shows [ρf ]J and [ρt ]J for L = 6 with the dashed lines
representing the theoretical linear dependence on number of
annealing steps k. The solid line represents the estimated
value of ρf calculated using [ρt ]J − 1 − (2ε − 2πε2) k. The
estimated value was found to be within 5% of the true value

FIG. 2. [ρf ]J and [ρt ]J of L = 6 as a function of annealing
step k, with the nonlinear β scale on the upper x axis. Dashed
lines correspond to the theoretically predicted MCMC-equilibrated
estimates, Eqs. (38) and (42). The solid line corresponds to the
difference [ρt ]J − 1 − (2ε − 2πε2) k, see Eq. (43).
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FIG. 3. The disordered-averaged family size distribution [P (η)]J
as a function of family size η, at several temperatures all in the high-
temperature regime (the β of each distribution increases from left to
right). The distributions are exponential and have shape parameters
that match the predictions of Eq. (40). The value at η = 0 is not shown
in this plot.

of ρf for all annealing steps for both L = 6 and L = 8 (not
shown). Note that the sharp rise in both ρf and ρt occurs near
the critical temperature, βc = 1.05.

Figure 3 shows the disorder-averaged family size distri-
bution for several temperatures in the MCMC-equilibrated
regime for L = 8 and confirms the prediction of Sec. III E
of an exponential family size distribution. The straight lines
in the figure are obtained from Eq. (40) and show that
there is good quantitative agreement except for tail of the
distribution. The higher values of η are under-represented,
especially for low values of β, due to the finite size of the
population.

B. Distribution of ρt

It is known [13,31–33,35] that the computational hardness
of simulating Ising spin glasses has a broad distribution with
respect to disorder realizations. In the context of a MCMC
algorithm such as parallel tempering the computational hard-
ness is typically measured by the exponential or integrated
autocorrelation times. These quantities have been found to
be approximately lognormally distributed. For population
annealing, we may use ρf or ρt for the purpose of measuring
computational hardness. Figure 4 shows histograms of log10 ρt

for the three system sizes simulated. We found that a log-
inverse Gaussian distribution is an excellent fit to the ρt

distributions. The fits are shown as solid lines in the figure.
The three-parameter inverse Gaussian distribution is defined
by

P (x; μ,λ,l) =
√

λ

2π (x − l)3
exp

[−λ(x − μ − l)2

2μ2(x − l)

]
(54)

with x = ln ρt . The parameters of the fits are given in Table II.
The shift parameter l, which shifts the support of the distribu-
tion from (0,∞) to (l,∞), is necessary sinceρt is bounded away
from zero. A rough estimate of shift parameter can be obtained
by assuming that the easiest bond realizations are MCMC
equilibrated for all temperatures, resulting in l = log(ρmin

t ) ≈

1 2 3 4 5
log10(ρt)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
(l

og
10

(ρ
t)

)

FIG. 4. The distribution of log10 ρt for system sizes L = 6 (left),
8 (middle), and 10 (right). The solid lines are inverse Gaussian fits
with the parameters given in Table II.

log(1 + 2εkmax). The values for l obtained from this formula
are 2.97, 3.50, and 4.00 for sizes L = 6, 8, and 10, respectively.
These values are in reasonable agreement with the fitted values
shown in Table II. The log inverse Gaussian also works well
to fit the ρf distribution with a shift parameter predicted by
ρmin

f = 2πε2k.
We can also compare the disorder averaged value of ρt with

the predictions from the fit. The mean of ρt = ex is given by

[ρt ]J = exp

[
l + λ

μ
(1 −

√
1 − 2μ2/λ)

]
(55)

for λ/2μ2 > 1. The tail of the inverse Gaussian is exponential,
so if λ/2μ2 � 1, then the mean of ex is infinite. The fitted
values of [ρt ]J obtained from this equation are shown in
Table II. The values computed directly from the data are
[ρt ]J = 46, 385, and 12 700 for L = 6, 8, and 10, respectively.
The large discrepancy between the L = 10 fitted and measured
values may be due to several factors. First, the number of
samples for L = 10 is smaller than for L = 6 and 8, so the
tail of the ρt distribution may not be fully sampled. Second, a
significant fraction of L = 10 samples were not equilibrated
and, for these samples, we have most likely underestimated
ρt . If the tail of the distribution is properly described by the
log inverse Gaussian, then the value of [ρt ]J obtained from
the fit may be more accurate than the average of the ρt data
from a finite sample size. On the other hand, for L = 10,
the ratio λ/2μ2 = 1.04, which is quite near the divergence
at λ/2μ2 = 1 so results for [ρt ]J may be highly sensitive
to errors in the fit. The near divergence of [ρt ]J for L = 10

TABLE II. Fits of the ρt distribution to a log inverse Gaussian
distribution defined in Eq. (54).

L = 6 L = 8 L = 10

μ 0.83(1) 1.97(2) 4.53(13)
λ 3.25(16) 9.28(35) 42.7(40)
l 2.88(1) 3.39(2) 3.50(13)
[ρt ]J 46.4 491 66500
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also suggests that the annealing schedule for this size should
have either more temperature steps or more sweeps per
step.

As seen in Table II, the computational effort required
to reach equilibrium scales up rapidly with system size
and is broadly distributed. How does this effort translate
into wall clock time on a modern CPU? For L = 10 the
algorithm’s run time on a single CPU is approximately
0.03 s/replica. The typical value of ρt for L = 10, defined
by exp([log ρt ]J), is approximately 3000 and the equilibration
criterion is that R � 100ρt , thus the typical running time
is approximately 2.5 h. This relatively benign number is,
however, misleading because of the exponential tail of the
log ρt distribution. If one instead takes the average hardness,
[ρt ]J ≈ 66500, predicted from the inverse Gaussian fit (see
Table II), then the average running time to equilibrate every
disorder realization in a very large L = 10 sample would
be approximately 55 h per disorder realization. This number
exceeds the computing time expended on our L = 10 simula-
tions since we did not equilibrate all disorder realizations. Of
course, the algorithm can be efficiently parallelized so the wall
clock time per replica can be made much smaller than these
numbers.

C. Optimized vs. unoptimized annealing schedule

In this section we compare the performance of an optimized
and unoptimized annealing schedule used in PA. Our optimized
annealing schedule has a β schedule that keeps the culling
fraction ε nearly constant and an ad hoc sweep schedule that
concentrates sweeps over a range of temperatures around the
critical point, as described in Sec. IV B. The unoptimized
annealing schedule has constant β steps, �β = 0.05, with 10
sweeps per step, and is similar to the annealing schedule used
in Ref. [13].

The figure of merit that we wish to minimize is size of
the systematic errors, which scale as var(βF ), times the total
computational work, W = RS, where R is the population size
and S is the total number of Monte Carlo sweeps per replica.
Using the result ρf ≈ ρt we have that

W var(βF ) ≈ Sρt . (56)

We have used the same number of sweeps in both the opti-
mized and unoptimized algorithms so the comparison of the
performance of the algorithms reduces to the comparison of
ρt .

Figure 5 is a scatter plot of the values of ρt , the vertical
position of each point is the optimized ρ

opt
t , and the horizontal

position, ρ
unopt
t , the unoptimized value. Each point represents

one of 300 disorder realizations for system size N = 83 at
β = 5. The plot shows that the unoptimized algorithm is, on av-
erage, less efficient by a factor of 7.6. This means that, on aver-
age, the unoptimized algorithm requires a population 7.6 times
larger to achieve the same quality of results as the optimized
algorithm.

D. L = 6,8,10 results

To test the optimized algorithm and obtain state-of-the-art
results for observables described in Sec. II A, we ran large-scale

103 104
101

102

103

104

ρunopt
t

ρ
o
p
t

t

FIG. 5. Values of ρt at β = 5 for the optimized and unoptimized
annealing schedules. Each point corresponds to one of 300 L = 8
bond configurations. The horizontal coordinate of each point is the
unoptimized value and the vertical coordinate the optimized value
of ρt . The central (black) line corresponds to an improvement of the
optimized relative to the unoptimized annealing schedule by a factor
of 7.6, and the upper and lower (red) lines correspond to factors of
7.6/3 and 7.6 × 3, respectively.

simulations of the 3D EA spin glass for three system sizes,
with parameters provided in Table I. As seen in this table,
the equilibration standard, R � 100 ρt , was met by nearly
all configurations for L = 6 and L = 8, but approximately
3% of the configurations for L = 10 remained unequilibrated
when the maximum population was restricted to R = 1.5 ×
107. The equilibration standard used was higher than previous
papers employing PA to study spin glasses, and some systems
that we rejected as unequilibrated would have been accepted
previously.

It is worth emphasizing that the adaptive population scheme
allowed us to sample more bond configurations than most
previous studies, while ensuring that nearly all configurations

−0.02

−0.01

0.00

0.01

(a)

−0.01
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Δ
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FIG. 6. �KY as a function of inverse temperature β for L = 6 (a),
L = 8 (b), and L = 10 (c).
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TABLE III. The integrated overlap I (0.2), Katzgraber-Young
equilibration measure �KY, and the bond-averaged ground-state
energy per spin [E0/N ]J , all measured at β = 5.

L = 6 L = 8 L = 10

I (0.2) 0.0188(5) 0.0185(5) 0.0185(10)
�KY −0.0075(85) 0.010(7) −0.009(13)
[E0/N ]J −1.6891(4) −1.6951(2) −1.6976(3)

were well equilibrated. As a result, errors associated with a
finite number of bond configurations are especially low for L =
6 and 8, where we used 2 × 104 samples. The statistical errors
reported in Table III and IV are obtained from the standard
deviation of the observable with respect to disorder realization
and do not include errors associated with individual disorder
realizations. Despite the large number of disorder realizations,
the error due to the finite sample size is substantially larger
than the contribution from systematic and statistical errors of
each disorder realization, as shown in Ref. [13].

Overall, the results in Table III are consistent with those
found in previous works [13,14]. The average ground-state
energy, [E0]J, is within error bars of previous measurements,
and �KY is close to zero for all β, as shown in Fig. 6, which is
consistent with a well-equilibrated set of samples. Our values
of I (0.2) are all within two standard deviations of those found
in Ref. [13]; however, it is noteworthy that our values are
consistently lower. Despite the slight difference in value, the
trend that I (0.2) remains constant over several system sizes is
evident.

Table IV shows the disorder average of the logarithm of
the directly measured fraction in the ground state g̃0 and the
indirectly measured quantity ḡ0 calculated using the Gibbs
distribution, Eq. (10). Although the two methods yield values
that are within error bars, the computed ḡ0 appears to be
consistently larger than the measured g0. To leading order, the
free-energy estimator is systematically larger than the actual
free energy by F = F̃ + ρf /2βR [13], so it is expected that
ḡ0 would be systematically larger than g0. It should be noted
that by definition g0 cannot be zero because the ground-state
energy is here defined as the lowest energy replica found, even
if this is not the true ground state.

VI. CONCLUSIONS

This paper makes several contributions to understanding
and improving the population annealing algorithm, especially
as applied to spin glasses: We have studied the behavior
of two important measures of equilibration for population

TABLE IV. Comparison of the disorder average of the logarithm
of the fraction in the ground state, [log10(g̃0)]J at β = 5 to the indirect
measure, [log10(ḡ0)]J based on the Boltzmann factor, see Eq. (10).

L [log10 g̃0]J log10 2 − β[(Ẽ0 − F̃ )]J/ln(10)

6 −0.7577(23) −0.7549(23)
8 −1.6957(34) −1.6900(34)
10 −3.2251(93) −3.2104(92)

annealing, optimized the algorithm in several ways, and
obtained state-of-the-art results for several important spin-
glass observables. Our results help put population annealing
on a firmer footing as an effective tool for highly parallelized
simulations of disordered systems such as spin glasses that
have rough free-energy landscapes. While this paper focuses
on the three-dimensional Edwards-Anderson model, many of
the theoretical results and optimization methods are applicable
to population annealing simulations of a much broader class of
systems.

The two equilibration measures, ρt and ρf , set the popu-
lation size needed to control statistical and systematic errors,
respectively. The equilibrium population size ρf is based on
the variance of the free energy and is the more fundamental
measure of systematic errors but more difficult to accurately
measure in a single simulation. We have demonstrated that
ρf � ρt − 1 and confirmed that these two quantities are close
to being equal when both are large. We have also shown
that in the MCMC-equilibrated regime, ρf and ρt each grow
linearly in the number of annealing steps, a fact that can
be used to design optimal annealing schedules. Finally, we
have shown that for the 3D EA spin glass, the distribution of
log ρt values is accurately described by an inverse Gaussian
distribution.

We have shown that there are a number of simple modifica-
tions which improve the efficiency of population annealing. We
have also shown that a β schedule that is chosen by fixing the
culling fraction is optimal in the MCMC-equilibrated regime.
Last, we have shown that the sweep schedule can be improved
by increasing the number sweeps in the critical region. Anneal-
ing schedule optimizations alone have accounted for nearly
an order of magnitude improvement over previous versions
of the algorithm. In the context of spin glasses, where there
is a broad distribution of computational hardness, tailoring
the population size to the difficulty of the disorder realization
yields the single largest improvement in efficiency. In addition,
the sample-dependent population size results in simulations
with both less work and higher overall accuracy.

We still lack a theoretical understanding of the best sweep
schedule. Intuitively, we would like the Markov chain Monte
Carlo subroutine to fully equilibrate each replica in the high-
temperature regime. However, in the low-temperature regime,
this is not feasible and the goal is to equilibrate replicas
only within their free-energy minima, leaving resampling
to properly redistribute replicas between distinct free-energy
minima. We have not yet found a principled way to achieve
this goal.
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APPENDIX A: COVARIANCE INEQUALITY

In Sec. III B we showed that ρt − 1 > ρf , at least for the
exact free-energy version of PA, if the following inequality
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holds:

2 cov

⎡
⎣δR̃k,

k+1∑
j=NT −1

R̃j+1∑
i=1

z
(
τ

j

i

)⎤⎦

− var

⎡
⎣ k+1∑

j=NT −1

R̃j+1∑
i=1

z
(
τ

j

i

)⎤⎦ > 0. (A1)

To establish this inequality, we begin by noting that δR̃k is the
sum of deviations from the initial population size R that have
accumulated during each resampling step,

δR̃k =
k+1∑

j=NT −1

R̃j+1∑
i=1

[
n
(
τ

j

i

) − 1
]

=
k+1∑

j=NT −1

R̃j+1∑
i=1

[
τ

j

i + z
(
τ

j

i

) − 1
]
. (A2)

Using this result to expand the covariance term shows that the
desired inequality, Eq. (A1), can be rewritten as

2 cov

⎡
⎣ k+1∑

j=NT −1

R̃j+1∑
i=1

τ
j

i ,

k+1∑
j=NT −1

R̃j+1∑
i=1

z
(
τ

j

i

)⎤⎦

+ var

⎡
⎣ k+1∑

j=NT −1

R̃j+1∑
i=1

z
(
τ

j

i

)⎤⎦ > 0. (A3)

The variance is obviously non-negative but we do not have a
proof that the covariance term is also non-negative. However,
we can motivate this assertion by noting that if the population at
an earlier resampling step is stochastically increased (z > 0),
then later population sizes will tend to be increased, i.e.,
cov[R̃j ′ ,z(τ j

i )] � 0 for all i and all j ′ < j . Furthermore, if the
population is stochastically increased at an early resampling
step, since it is now larger, it will better explore the low-energy
tail of the Gibbs distribution so that cov[τ j ′

i ′ ,z(τ j

i )] � 0 for all
i and i ′, and all k < j . These two mechanisms both cause the

covariance term in Eq. (A3) to be positive. It is worth noting
that cov[τ j ′

i ′ ,z(τ j

i )] = 0 for all i and i ′, and all j ′ < j .

APPENDIX B: VARIANCE EXPANSION

The variance term from Eq. (A3) can be further expanded
to get to a form similar to that of Eq. (43). To do this, we make
the approximation

var

⎡
⎣ k+1∑

j=NT −1

R̃j+1∑
i=1

z
(
τ

j

i

)⎤⎦ ≈
k+1∑

j=NT −1

R̃j+1∑
i=1

var
[
z
(
τ

j

i

)]
. (B1)

It is possible to do this step exactly by noting that only zi from
the same family can be correlated and by including covariance
terms between intrafamily z(τi); however, these terms have
been found to be numerically insignificant.

The sum of the variances of z(τi) during an annealing step
can be calculated using a method similar to that in Sec. III C.
We begin by writing the values and probabilities of z(τ ),

z(τ ) =
{
τ − �τ� w/prob. �τ� − τ

τ − �τ� w/prob. τ − �τ�, (B2)

which means that we can write the variance explicitly,

var[z(τ )] = (τ − �τ�)2(�τ� − τ ) + (τ − �τ�)2(τ − �τ�).

(B3)

For culling fraction small, we can make the approximation that
within a single annealing step, τ is a Gaussian random variable.
This allows us to replace the sum of variances with an integral
that can be calculated explicitly. Using Eq. (B3),

R̃j+1∑
i=1

var
[
z
(
τ

j

i

)] ≈
∫ ∞

−∞
var[z(τ )]N(τ ; 1,�βσE) dτ, (B4)

= 2ε − 2πε2. (B5)

Summing over all annealing steps and simplifying the expres-
sion assuming a constant culling fraction gives the desired
result

k+1∑
j=NT −1

R̃j+1∑
i=1

var
[
z
(
τ

j

i

)] ≈
k+1∑

j=NT −1

[
2ε(l) − 2πε(l)2

]
, (B6)

= (2ε − 2πε2) k. (B7)
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