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Fully kinetic Biermann battery and associated generation of pressure anisotropy
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The dynamical evolution of a fully kinetic, collisionless system with imposed background density and
temperature gradients is investigated analytically. The temperature gradient leads to the generation of temperature
anisotropy, with the temperature along the gradient becoming larger than that in the direction perpendicular to
it. This causes the system to become unstable to pressure anisotropy driven instabilities, dominantly to the
electron Weibel instability. When both density and temperature gradients are present and nonparallel to each
other, we obtain a Biermann-like linear-in-time magnetic field growth. Accompanying particle-in-cell numerical
simulations are shown to confirm our analytical results.
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I. INTRODUCTION

Both the seed field required for the generation of astro-
physical magnetic fields [1,2] and intense magnetic fields
generated in laser-solid interaction laboratory experiments
[3–6] have been attributed to the Biermann battery [7]. The
Biermann battery mechanism generates magnetic fields due to
nonparallel temperature and density gradients. Until now, the
understanding of this mechanism has been restricted to fluid
models where an extra nonideal term is added to Ohm’s law. In
weakly or nonmagnetized plasmas, the validity of fluid models
rests on collisions being sufficiently frequent compared to the
dynamic time scales of the problem, such that the pressure
tensor remains in scalar form [8]. These conditions are often
not present in astrophysical environments and are questionable
in some laser-plasma environments, and thus a fully kinetic
model is necessary.

Recently, the Biermann battery has been investigated with
fully self-consistent kinetic three-dimensional (3D) simula-
tions [9,10], but a clear theoretical model for how the fully
kinetic Biermann battery actually works in collisionless plas-
mas has not been fully presented. Such a model is presented
here, explaining not only the kinetic Biermann battery, but
also, more generally, the dynamical evolution of collisionless
unmagnetized plasmas subject to background density and
temperature gradients. In addition to extending the validity of
the Biermann battery to many weakly collisional scenarios, we
reveal the purely kinetic result that a temperature gradient alone
leads to the generation of anisotropies in temperature (pressure
tensor). Reference [11] further generalizes this model, showing
both the generation of magnetic fields by the Biermann battery,
and the development of temperature anisotropies for arbitrary
temperature and density gradients. However, in this paper,
we fully frame and justify the assumptions that underlie the
model’s validity and show how the analytic expression for the
time evolution of the momentum distribution can be applied
to address pertinent physical questions. Particularly, unique
to this paper, we present a discussion of the onset of kinetic
instabilities, driven by the temperature anisotropy, such as the
Weibel instability [12], seen in Refs. [9,10], or instabilities

that inhibit the heat flux [13,14] on time scales short compared
to the collision time. This is relevant for a wide variety of
settings, including astrophysical shocks and laser experiments
with small collision rates, and addresses the low heat flux of
cooling flows in galaxy clusters, which cannot be explained by
collisional fluid models [15].

II. MODEL

We solve the time evolution of the velocity distribution
function and electromagnetic fields according to the coupled
Vlasov and Maxwell’s equations, assuming that only the
electrons play a role and the ions are static, only acting as
a neutralizing background. For our calculation, we normalize
the velocity v to vT 0 ≡ √

Te/me, time t to ω−1
pe , and x to

λD , where ωpe is the plasma frequency for density n = n0,
and λD ≡ vT 0/ωpe is the Debye length. In addition, E and
B are normalized to E0 ≡ mevT 0ωpe/e and B0 ≡ mecωpe/e,
respectively.

We will assume that a background Maxwellian distribution
function fM is instantaneously perturbed such that

n = n0(1 + εx), vT = vT 0

√
1 + δy, (1)

ε ≡ λD

Ln

≡ λD

1

n

∂n

∂x
(0), δ ≡ λD

LT

≡ λD

1

T

∂T

∂y
(0). (2)

This perturbation is not an equilibrium solution; it will be
taken as a given initial state. The Biermann battery is simply
the time evolution of the initial nonequilibrium state, not an
instability (note that in fluid models it grows linearly, not
exponentially, with time; we will find here that this remains
true in the kinetic case). The initial nonequilibrium state,
which can be generated by violent interactions with lasers
or shocks, is itself the source of free energy which generates
the magnetic field. The finite spot size of laser interactions,
or the finite extent of shock fronts, will rapidly give rise to
a temperature gradient perpendicular to the density gradient,
which is necessary for the Biermann battery. Furthermore, we
will explain in the conclusion how our solution can be applied
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to an anisotropic temperature distribution, which is expected in
such experimental setups. However, one should note that in this
simplified model of our initial state, we ignore, for example,
magnetic fields induced by the initial laser interaction, and heat
flux or temperatures that are initially evolving with time.

The parameters ε and δ are taken to be very small and
comparable to each other; they will be used as our asymptotic
expansion coefficients. Assuming x ∼ ε0, the initial distribu-
tion function to second order in ε and δ is

f0 = fM + εxfM − 1
2δy(3 − v2)fM

+ 1
8δ2y2(15 − 10v2 + v4)fM − 1

2εδxy(3 − v2)fM.

(3)

We evolve the Vlasov-Maxwell equations initialized with this
distribution function, and either no initial electric or magnetic
fields, or equilibrium fields that act to balance the force due to
the pressure gradient.

The evolution of the electron distribution function subject to
these density and temperature gradients is given by the Vlasov
equation, coupled with Faraday’s and Ampere’s laws,

∂f

∂t
+ v · ∇f − (E + v × B) · ∇vf = 0, (4)

∂B
∂t

= −∇ × E, (5)

∂E
∂t

=
∫

d3vvf + c2

v2
T 0

∇ × B. (6)

We will seek solutions to these equations in powers of ε

and δ. We will assume t ∼ x ∼ c2/v2
T 0 ∼ ε0 ∼ δ0. Although

the solution is only valid when x ∼ ε0, at an arbitrary position
x, the calculation remains valid in a new coordinate system x′,
where the assumptions are satisfied using ε′ calculated with
the local v′

T 0 and n′
0. There are three other small parameters

besides ε and δ, namely, cs/vT 0, v2
T 0/c

2, and ν/ωpe, where cs

is the sound speed, and ν is the collision frequency. Each of
these parameters is assumed to be much smaller than one, but
aside from ν/ωpe, can in principle (and must in the case of
v2

T 0/c
2 [16]) remain of order ε0. We implicitly assume small

values for these parameters by assuming static ions, using the
nonrelativistic Vlasov equation or Maxwellian distribution,
and ignoring collisions.

First, we highlight some important aspects of the form of
the solution. The first-order (∼ε1) solution including all terms
proportional to cs/vT 0 and v2

T 0/c
2, of E, and f is uniform in

space, and f is an odd function of v. A proof of this is provided
in the Supplemental Material [17]. Given a uniform E, from
Eq. (5) no magnetic field is generated, and an odd f with
respect to v only leads to uniform bulk flows and temperature
fluxes. It is thus necessary that we perform our calculation with
second-order terms (∼ε2) to see the Biermann battery, and
the formation of a temperature anisotropy. The second-order
solution is different in form, and except for terms of f which
are even in v, there are no terms that are uniform in space.
It should be emphasized that this means that modifications
coming from cs/vT 0 and v2

T 0/c
2 can be separately neglected for

both first- and second-order solutions. Note that second-order
modifications to the first-order solution are then neglected (the
entire solution is not accurate to ε2).

Solutions can be found from an initial condition by taking
an expansion for small t , restricted to second order in ε.
Fortunately, the sum over all orders of t converges to a solution
valid for arbitrary t ∼ ε0, and thus only small compared to the
electron transit time LT /vT 0 = δ−1.

III. DENSITY GRADIENT

We first consider the case with only a density gradient
(δ = 0). If we assume the initial condition of f = f0 and
no initial electric or magnetic fields, we obtain the following
analytic solution,

f = f0 + f̃n(t), (7)

E = −(ε − ε2x)[1 − cos(ωpe,x t)]x̂, (8)

where ωpe,x ≡ 1 + εx/2 is the normalized plasma frequency
based on the x-dependent density n and f̃n is an oscillatory
term described in the Supplemental Material [17]. It is evident
that the electric field of this solution oscillates about

E = −(ε − ε2x)x̂. (9)

The space-dependent frequency ωpe,x gives rise to increas-
ingly shorter scale x variations of the electric field. These
variations along x lead to phase mixing in space and then
Landau damping. Our model does not show this damping
because the damping is exponentially suppressed until kλD �
1 which occurs at t ∼ ε−1 where the assumptions break down.
Eventually, Landau damping eliminates the oscillations, and
thus the electric field should naturally settle to Eq. (9). If we
take Eq. (9) as the initial condition for the electric field, we
arrive at an equilibrium solution to Eqs. (4)–(6) where E and
f do not change with time.

IV. TEMPERATURE GRADIENT

We now consider a second case, with a temperature gradient
only (ε = 0, δ �= 0). If we again start with the initial conditions
f = f0, and no initial electric or magnetic fields, to second
order in δ, the solution to Eqs. (4)–(6) is the following,

f = f∇T + f̃T (t), (10)

E = −δ[1 − cos (t)] ŷ, (11)

where

f∇T ≡ f0 + 1
2δtvy(5 − v2)fM

− 1
4δ2tyvy(25 − 12v2 + v4)fM

+ δ2t2
[

1
8v2

y(39 − 14v2 + v4) − 1
4 (5 − v2)

]
fM, (12)

and f̃T is an oscillatory term described in the Supplemental
Material [17]. Once again the solution oscillates around a
particular value for the electric field,

E = −δ ŷ. (13)

It is natural to start from Eq. (13) as an initial condition. This
yields a simpler solution where the electric field is constant
with time, but the distribution function continues to evolve
with time as f = f∇T .
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FIG. 1. (a) Magnetic energy spectra of Bz (with respect to |k| =√

k2
x + k2

y) vs time from the simulation with system size LT /de = 400
(LT /λD = 2000) reported in Ref. [9]. The time when the Weibel
instability begins to grow exponentially is identified with a dashed
line. This estimate of the onset time τW is plotted vs system size
(b) along with the predicted curve where Eq. (16) is satisfied,
indicating where the Weibel growth rate exceeds that of the anisotropy
predicted in Eq. (15).

Two important terms in Eq. (12) grow with t and eventually
break the assumptions of the ordering. The second term on the
right-hand side (RHS) of Eq. (12) is associated with the heat
flux, and matches the collisional solution shown in Ref. [13]
once t reaches the collision time. However, the assumptions
will have already broken when t ∼ δ−1. The fourth term
on the RHS of Eq. (12) grows as t2 is associated with a
temperature anisotropy, where the collisionless temperatures
in each direction (corresponding to diagonal components of
the pressure tensor) differ. This term breaks the assumptions
earlier, when t ∼ δ−1/2. However, the simulations will show
that the predictions remain valid beyond this limit.

We define the pressure tensor (normalized to men0v
2
T 0) as

nTij ≡
∫

d3vvivjf, (14)

from which we find Tyy = v2
T + 3/2δ2t2 and Txx = Tzz =

v2
T + 1/2δ2t2, resulting in the following anisotropy,

A ≡ Tyy

Txx

− 1 = δ2t2. (15)

The temperature gradient thus naturally leads to a tempera-
ture anisotropy. Hot particles with more momentum directed
against the gradient arrive faster than other angles. This
anisotropy will give rise to kinetic instabilities such as the
Weibel instability [12] seen in Ref. [9] or instabilities that
inhibit the heat flux [13,14].

Equation (15) is consistent with the anisotropy and the
subsequent development of the Weibel instability obtained in
the particle-in-cell (PIC) simulations reported in Ref. [9]—see
Fig. 1. The onset time of the Weibel instability τW is roughly
estimated from the magnetic energy spectra when the Weibel
field begins to grow exponentially. Figure 1(a) shows the
spectra for the case where LT /de = 400 (δ−1 = 2000), with
the onset of Weibel indicated by a dashed line. Although the
Biermann field is energetically dominant for smaller system
sizes, the higher k Weibel instability is present (i.e., an onset
time can be measured) for all simulations. The onset time τW

should occur when the Weibel growth rate, which is a function
of anisotropy, and thus of time, exceeds the predicted rate of

anisotropy growth from Eq. (15),

γW (A(δt)) > 1/A∂A/∂t = 2/t. (16)

Figure 1(b) shows that this prediction matches the estimated
onset over a range of system sizes remarkably well, where
γW (A) is the growth rate of the Weibel instability, given by
Ref. [12], which we solve numerically. γW is calculated at
the location of fastest growth (x/LT = 0.9125, y/LT = 0),
which is independent of system size using the local values,
vT = 0.036c, n = 0.12n0, and the anisotropy calculated from
Eq. (15) using LT,local = 0.0625LT and vT . Note that this
anisotropy is slightly increased by a factor of 5/4 to take into
account second-order variations in temperature [18]; this is
addressed in Ref. [11].

It is surprising that the agreement is so good since these
simulations are in highly nonlinear regimes; the assumption
that τW � δ−1 is only satisfied for sufficiently large LT /de.
For the largest LT /de = 400 case (τWωpe,local ≈ 0.8δ−1

local),
nonlinear effects were clearly present. The thermal velocity,
which we assume to be constant with time except for the small
modification ∼δ2t2, grew as vT ∼ t . The measured anisotropy
grew at close to A ∼ t4, which is still consistent with A = δ2t2,
given that δ is now a function of time. We expect the onset time
to continue to follow this trend for even larger LT , where our
assumption τWωpe,local � δ−1

local is valid.

V. BIERMANN BATTERY

Both of these simplified cases oscillate about the equilib-
rium electric fields, Eqs. (9) and (13), and Landau damp-
ing eventually eliminates these oscillations. Note that these
equilibrium fields begin to balance the associated pressure
gradients at a time scale of the electron plasma frequency
∼ε0, much smaller than the time scale of the Biermann battery
(on the order of the electron transit time LT /vT 0 ∼ ε−1). To
simplify the solution and avoid the oscillations, we start with a
similar electric field for the initial conditions for the complete
case (ε �= 0,δ �= 0),

E = −(ε − ε2x + εδy)x̂ − δ ŷ. (17)

With this assumption, and starting with f0, the solution to
Eqs. (4)–(6) is

f = f∇T + 1
2εδtxvy(5 − v2)fM + 1

2εδt2vxvyfM, (18)

with the magnetic field

B = −εδt ẑ, (19)

where the electric field does not change with time.
We thus see a fully kinetic Biermann battery: The magnetic

field grows linearly in time, and is proportional to both the
density and temperature gradients, as in the fluid case.

VI. NUMERICAL COMPARISON

Our analytic model has been tested via particle-in-cell (PIC)
simulations using the OSIRIS framework [19,20]. The simula-
tions are done setting ε = δ = 0.001, and a normalized thermal
velocity vT 0/c = 0.05, which is small such that relativistic
effects do not play a role, but large compared to ε. A more
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FIG. 2. Evolution of the averaged Bz due to the perpendicular
density and temperature gradients (top, green), and anisotropic tem-
peratures Txx (bottom, blue) and Tyy (middle, red), vs time along with
the predicted curves at y = 0 from Eqs. (19) and (14) (black dashed
lines).

detailed explanation of the simulation parameters and setup is
outlined in the Supplemental Material [17].

To test these solutions we look at both simulations with
δ = 0 or ε = 0, and with both gradients. Good agreement
between the predicted and simulated electric fields for single
gradients is shown in the Supplemental Material [17]. In Fig. 2
the average magnetic field from the simulation with both
gradients grows linearly in time, confirming the prediction
in Eq. (19). The growth of the temperatures in the x and
y directions shown in Fig. 2 matches quite well with the
predictions from Eq. (14). Note that our solution is rigorously
only valid for t � δ−1/2 = 50, but this breaking would occur
at many more ω−1

pe for realistically small values of δ that
are not feasible to simulate. The plotted simulation fields are
calculated by averaging the results between −49 < x < 49,
and −49 < y < 49.

VII. CONCLUSIONS

In this paper, we have presented analytical solutions of
the Vlasov-Maxwell system of equations for collisionless
systems with background density and temperature gradients.
The kinetic equivalent of the Biermann battery—a linear-
in-time magnetic field growth—has been obtained. Another
noteworthy result is the generation of temperature anisotropy in
all cases where a background temperature gradient is present.
This implies that pressure anisotropy driven instabilities, such
as the electron Weibel, should be expected in such systems.
These may have a profound impact on their evolution, from
effectively determining the magnetic field growth, to constrain-
ing the heat flux.

Although this paper does not consider anisotropies gen-
erated by an initial velocity shear [21–23] (as opposed to a
temperature gradient), in certain cases this effect may compete
with our predicted anisotropy.

Formally, the initial nonequilibrium state is taken to be
generated such that the time scale for the change in temperature
and density is fast compared to the electron plasma frequency.
On the other hand, the time scale for the generation of these
gradients, which happens, for example, in laser or shock
interactions, is often similar or longer than the period of plasma
oscillations. However, the interaction with the more slowly
generated gradients would only lead to plasma oscillations
comparable to those which we have shown are excited by our

initial conditions. In effect, we model the time scale that is
slow compared to the gradient generation, but fast compared
to the electron transit time LT /vT 0. Although as seen above in
simulations, even when the gradients grow on the same order
as LT /vT 0 (δ ∝ t), the evolution of anisotropy continues to
follow Eq. (15), with A ∼ δ(t)2t2.

It should be noted that for simplicity, there are a few limi-
tations to the generality of this work. The pressure and density
gradients are assumed to be perpendicular, and the gradients
are entirely linear, not including second-order variation. The
more general case is found in Ref. [11].

However, this solution remains quite general. An
anisotropic Maxwellian distribution (vT i0 �= vTj0, where vT i0

is the thermal velocity in the i direction) can be modeled by the
same equations; this better approximates the initial conditions
generated by laser-plasma interactions. In the anisotropic
case, x, v, and E are normalized using the vT i0 in the
corresponding direction, and Eq. (19) has an additional factor
of vT x0/vTy0. This means that the Biermann field is caused
solely by the thermal spread directed along the density gradient
(vT x0). Furthermore, the anisotropy starting from an initially
anisotropic bi-Maxwellian system with A = A0 evolves as
A = A0 + δ2t2(1 + A0)(1 − A0/2). This expression implies
that the anisotropy is limited to grow larger for A0 < 2. The
anisotropy A, however, may surpass this limit because A0 is
assumed to be initially based on a bi-Maxwellian and constant
in space and time.

Moreover, the kinetic result of anisotropy generation is
relevant even for magnetized cases, as long as the temperature
gradient is parallel to the magnetic field. Our solution for the
case with ε = 0 is valid for a uniform parallel magnetic field of
arbitrary magnitude. For significantly large fields, instabilities
driven by the anisotropy in a magnetized plasma, such as
the firehose instability [24], would dominate over the Weibel
instability.

Anisotropy driven instabilities can help explain weak heat
fluxes in cooling flows. Another kinetic instability that can lead
to suppression in heat flux is driven solely by the heat flux [25]
with a growth rate γHF ≈ 0.1
ceεHF, where 
ce is the electron
cyclotron time and εHF is the coefficient proportional to the
heat flux taken from Ref. [25]. The second term on the RHS in
Eq. (12) corresponds to εHF = √

2δt . We can estimate the onset
time τHF ≈ 2.7(δ
ce)−1/2 of this instability by comparing the
predicted heat flux growth 1/εHF∂εHF/∂t = 1/t , to γHF.

Comparing the onset time of the heat flux instability to
the Weibel τW ≈ 1.6(δ3vT /c)−1/4 [in the limit A � 1, where
γW (A) = (8/27π )1/2A3/2vT /c [26]] reveals the Weibel insta-
bility will appear first as long as βe, the ratio of the electron
plasma pressure to the magnetic pressure, is sufficiently large,
βe � LT /de. The Biermann battery alone often grows slow
enough that βe remains larger before the Weibel onsets, as
long as δ � 4((vT /c)Ln/LT )4, using τW in Eq. (19) to find βe.
Either of these instabilities is likely to cause the heat flux to
saturate long before reaching the collision time.

The purely kinetic temperature anisotropy generation from
temperature gradients is thus relevant for a wide variety of
settings, from astrophysical shocks and laser experiments with
small collision rates where the Biermann battery can also exist,
to flux tubes [27,28] with temperature gradients found in the
solar corona or at the Earth’s magnetopause.
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