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Barriers to front propagation in laminar, three-dimensional fluid flows
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We present experiments on one-way barriers that block reaction fronts in a fully three-dimensional (3D) fluid
flow. Fluorescent Belousov-Zhabotinsky reaction fronts are imaged with laser-scanning in a laminar, overlapping
vortex flow. The barriers are analyzed with a 3D extension to burning invariant manifold (BIM) theory that
was previously applied to two-dimensional advection-reaction-diffusion processes. We discover tube and sheet
barriers that guide the front evolution. The experimentally determined barriers are explained by BIMs calculated
from a model of the flow.
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I. INTRODUCTION

Numerous chemical, biological, atmospheric, and oceanic
processes are characterized by the propagation of a front that
separates two different phases. In many of these processes,
the front propagation is strongly affected by fluid flows in the
system. This generalized advection-reaction-diffusion (ARD)
problem [1,2] has applications in a wide variety of systems,
including microfluidic reactors [3,4]; cellular- and embryonic-
scale biological processes [5]; oceanic-scale algal blooms
[6,7]; and the propagation of a disease in a mobile society
[8]. Previous experiments [9–12] have identified dynamically
defined, one-way barriers that block reaction fronts propagat-
ing in a wide range of two-dimensional (2D), laminar flows.
These barriers have been explained theoretically [9,13–16] as
burning invariant manifolds (BIMs) that are generalizations
of passive invariant manifolds [17–21] that impede passive
mixing in a flow. But most ARD processes involve flows that
are three-dimensional (3D). The question of whether BIMs can
be generalized to 3D flows is important toward developing a
comprehensive theory of front propagation in ARD systems.

In this article, we present the first experimental study of
front propagation in a laminar, 3D fluid flow, along with an
extension of the BIM theory to account for the additional
spatial dimension. The extension from 2D to 3D raises several
topological questions: (1) Are there generalized BIMs that also
act as barriers for moving reaction fronts in 3D flows? (2) What
is the topology of these barriers—if they exist—for a 3D flow?
(3) Are the barriers one-way, similar to their 2D counterparts?
(4) How does the structure of these barriers depend on the flow
and reaction-diffusion front speeds?
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II. EXPERIMENTAL SETUP

The flow is a superposition of horizontal and vertical
vortex chains, generated experimentally using a magnetohy-
drodynamic technique (Fig. 1). An electrical current passes
lengthwise through fluid in an optical-quality quartz cell. The
current interacts with a magnetic field produced by two chains
of five 3/4-inch Nd-Fe-Bo magnets, one below and the other
behind the cell. The magnets below the cell produce the
horizontal vortex chain and the magnets behind produce the
vertical vortices. The bottom and side magnets are aligned so
that the superposed vortex chains line up.

The fluid in the cell is composed of the chemicals
used for the excitable Ruthenium (Ru)-catalyzed Belousov-
Zhabotinsky (BZ) reaction [22–24]. The Ru indicator is ini-
tially in its orange, reduced state, but when triggered (either
naturally or by inserting a silver wire), the indicator is oxidized,
producing a green, pulselike, autocatalytic reaction front that
propagates with a speedV0 = 70 μm/s in the absence of a flow.
The electrical current and imposed electrical field (<0.1 V/cm)
are small enough to avoid significant effects on the front
propagation speed [25]. Measurements of front speeds without
an electrical current also indicate a negligible effect from the
permanent magnets [26]. We also neglect curvature effects on
front speeds [1].

Three-dimensional BZ patterns have been imaged previ-
ously [27], but only for stagnant systems. These are the first
experiments to obtain full 3D imaging of the time-evolution
of BZ reaction fronts in a fluid flow. We employ a scanning,
laser imaging technique that uses fluorescence of reduced
(but not oxidized) Ru indicator. A 400 mW, 405 nm laser
beam is reflected off a pair of voltage-controlled mirrors. One
mirror oscillates rapidly, causing the beam to scan horizontally
through the cell; the other mirror scans through 50 different
heights in the cell. For each height, the fluorescence of the
reduced Ru is imaged from above with an sCMOS video
camera. The result is a stack of 50 images that can be
reconstructed into a full 3D view of the evolving reaction
front.
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FIG. 1. Fluid cell, showing the magnetohydrodynamic forcing
and the resulting flow formed from the superposition of a horizontal
(red) and vertical (blue) chain of vortices. The fluid channel measures
0.80 × 8.0 cm horizontally with a height of 1.9 cm.

Particle image velocimetry (PIV) is used to characterize
the flow. We model the flow as the superposition of two vortex
chains described by stream functions

ψ1(x,y,z) = − 1

π
cos(πx)W (y)f (z),

ψ2(x,y,z) = − 1

π
cos(πx)W (z)g(y).

(1)

The velocity field is derived from these stream functions via
ux(x,y,z) = ∂ψ1/∂y + ∂ψ2/∂z, uy(x,y,z) = −∂ψ1/∂x, and
uz(x,y,z) = −∂ψ2/∂x. In Eq. (1), f (z) = 0.5{1 + 0.5[1 +
cos(2πz)]} and g(y) = a(y + 0.5) exp[−b(y + 0.5)] + c

(with a = 46, b = 7.8, and c = 0.9) are taper functions
(fitted to the PIV data) to account for variation of the vortex
strengths with distance from the magnets. The function W [28]
depends on the boundary conditions at the side and top and
bottom surfaces. In the simplest case with free-slip boundary
conditions,

W (y) = cos(πy). (2)

In this paper, we use more realistic no-slip boundary conditions
[28], with

W (y) = cos(q0y) − A1 cosh(q1y) cos(q2y)

+ A2 sinh(q1y) sin(q2y), (3)

with q0 = 3.973638032476331, q1 = 5.194998480822572,
q2 = 2.125929469473915, A1 = 0.061508353836287, and
A2 = 0.103869826106854. In Eq. (1), the xyz coordinates
are nondimensionalized by the vortex length, height, and
width, so that a single vortex occupies a unit cell. Similarly,
the resulting fluid velocities are nondimensionalized by the
maximum velocity of the second vortex chain.

We define a dimensionless front propagation speed v0 ≡
V0/U , where U is the maximum (dimensionful) fluid velocity
of the second vortex chain. Note that there is no advective
(passive) transport between adjacent vortices in this flow.

III. THREE-DIMENSIONAL IMAGING RESULTS

Examples of evolving reaction fronts are shown in Fig. 2.
Two of the most dominant barriers are shown in these se-
quences: a quarter-tube barrier that follows an edge of the unit

(a) (b)

(c) (d)

FIG. 2. Sequences showing the evolution of reaction fronts for
the middle two unit cells (4.0 cm) of the overlapping vortex flow. (a)
v0 = 0.064; the evolving front (viewed at an angle from above) is
blocked by a quarter-tube, arch-like barrier that spans two vortices.
The leading edge of this barrier is shown as a cyan curve in the 60 s
image. (b) v0 = 0.16; the evolving front (viewed at an angle from
below) is blocked by a scroll-shaped, sheet barrier, the edge of which
is shown in red in the 60 s image. Movies of these sequences can
be found online in the Supplemental Material [29]. (c)-(d) Simulated
burning invariant manifolds corresponding to the barriers seen in (a)
and (b). The dots show the burning fixed points to which the BIMs are
attached. The red (blue) arrows show the stable (unstable) directions
of the fluid flow near the advective fixed point. A rotating animation of
the theoretical BIM in (d) (in the Supplemental Material [29]) better
illustrates its 3D nature.

cell and forms an arch that spans two neighboring vortices
[Fig. 2(a)] and a large sheetlike barrier that forms near the
boundary between neighboring vortices [Fig. 2(b)]. Reactions
propagating in a particular direction do not penetrate through
these barriers but must circumnavigate them, similar to reaction
barriers observed in previous 2D experiments. Note that the
sheetlike barrier [Fig. 2(b)] wraps into the left vortex. A
reaction front going to the left passes the advective separatrix
between the vortices, hits the vertical part of this barrier, and
wraps around over the top of the vortex. The front penetrates
into the center of the left vortex only because the barrier itself
scrolls into the center.

Convergence of the experimental reaction fronts and the
one-way nature of these barriers can be seen in Figs. 3 and 4.
Column (b) of both of these figures shows fronts converging

033111-2



BARRIERS TO FRONT PROPAGATION IN LAMINAR, … PHYSICAL REVIEW E 97, 033111 (2018)

(a) (b) (c)

(d) (e)

FIG. 3. Part of the quarter-tube, archlike barrier. (a) v0 = 0.16;
(b)-(c) v0 = 0.064. The front left surface corresponds to the green
grid in Fig. 2(a). In (a) and (b), the front enters the quarter-tube
from the back and is blocked by the tube-barrier as it moves in the
−y direction near the top surface. In (c), a front moving in the +y

direction near the top penetrates into the quarter-tube. Panels (d) and
(e) show numerically computed BIMs corresponding to the same
viewing region and v0 as columns a and b/c. An animation of the
BIM in (d) is given in the Supplemental Materials [29].

on—but not passing through—part of a BIM, while column
(c) shows fronts penetrating through the BIMs in the opposite
direction.

The locations of these barriers also depend on the non-
dimensional front propagation speed v0, also shown in Figs. 3
and 4. The barriers are farther away from the vortex boundaries
(where passive invariant manifolds reside) and closer to the
vortex centers for larger v0.

The topology of the barriers can be qualitatively understood
by considering the Eulerian fixed points of the simple free-slip
flow given by Eq. (1) with W in Eq. (2). The eight corners
of each vortex cell are hyperbolic fixed points with either two
stable and one unstable directions (SSU) or one stable and two
unstable directions (SUU). If triggered near an SSU fixed point
[Fig. 5(a)], a reaction front will flow outward with the unstable
direction; it will also propagate outward against the two stable
directions, until balanced by the incoming flow, where |u| =
v0. The result is a tube-like, one-way barrier [Fig. 5(a)] that
confines reactions propagating outward, but allows reactions
propagating inward to penetrate the tube.

(a) (b) (c)

(d) (e)

FIG. 4. Part of the sheet (scroll) barrier. (a) v0 = 0.064; (b)-(c)
v0 = 0.16. The front right surface corresponds to the green grid in
Fig. 2(b). In (a) and (b), a front above the barrier (partially drawn
in cyan and red curves) is blocked from propagating downward by
the barrier. In (c), a front propagating upward passes through the
(one-way) barrier. Panels (d) and (e) show numerically computed
BIMs corresponding to the same viewing region and v0 as columns a
and b/c. Compared to Fig. 2(d), part of a second BIM has also been
plotted near y = −0.5.

If triggered near an SUU fixed point [Fig. 5(b)], the reaction
will flow outward along the two unstable directions and will
also propagate outward against the single stable direction until
balanced by the incoming flow, |u| = v0. The result is two one-
way sheet barriers [Fig. 5(b)], each of which blocks reactions
going away from the SUU fixed point.

(a) (b)

FIG. 5. (a) Illustration of a tubelike reaction barrier expected near
an advective fixed point with SSU stability and equal stable flow rates.
(b) Illustration of sheetlike reaction barriers expected near an SUU
fixed point.
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IV. BURNING INVARIANT MANIFOLD
THEORETICAL ANALYSIS

To quantitatively analyze the behavior of reaction fronts in
a 3D flow, we extend the previous 2D BIM theory [9–16], in
which we directly model the motion of an infinitesimal element
of the reaction front. In 2D, a front element is parameterized
by two spatial coordinates and a single orientation angle. In
3D, a minimal model requires three spatial dimensions and
two orientation angles. However, it is computationally easier
to characterize the orientation of a front element using the three
xyz components of its unit normal vector n. The result is a 6D
set of ODEs (with the 5D system embedded as the invariant
subspace |n| = 1 ):

dri

dt
= ui + v0ni, (4a)

dni

dt
= ni

∑
j,k

uj,knjnk −
∑

j

uj,inj , i,j,k = x,y,z, (4b)

where ui and ni are the components of the fluid velocity field
and unit normal, respectively, and uj,k is the partial derivative
of uj in the k direction. The first equation denotes motion of
the front element due to advection (first term) and burning,
i.e., propagation of the front relative to the fluid in the normal
direction (second term). The second equation denotes rotation
of the front element due to the flow. A formal derivation
of Eqs. (4) is given by Oberlack and Cheviakov [30]. We
provide an intuitive geometric derivation of Eq. (4b) in the
Appendix.

A burning fixed point is a position r and orientation n
where dr/dt = dn/dt = 0 in Eqs. (4). According to the prior
Fig. 5 discussion, these often occur near advective fixed points,
with two burning fixed points near an SUU point and a circle
of fixed points near an SSU point (with equal unstable flow
rates). See the black dots in Fig. 5. The BIMs are calculated by
integrating trajectories of Eqs. (4) away from the burning fixed
points.

For comparison to the experiments, we use no-slip boundary
conditions, Eq. (3). Though the number and positions of the
burning fixed points are different from what we would get
for the free-slip case given by W (z) in Eq. (2), the same
computational approach generates the BIMs; see Figs. 2(c)
and 2(d). Computational details are given in the Appendix.
The online Supplemental Material [29] contains rotating
animations of BIMs that better visualize their 3D nature.
The BIM in Fig. 2(c) is a quarter tube that flairs out away
from the burning fixed point (black dot), forming an arch that
mimics the experimental barrier in Fig. 2(a). It also matches
one quarter of the illustration in Fig. 5(a), since the BIM
in Fig. 2(c) surrounds an SSU advective fixed point on the
edge of the domain. The quarter-tube geometry is especially
clear in the cross-section Fig. 3(e), which corresponds to the
experiments in Figs. 3(b) and 3(c). Similarly, Fig. 3(d) shows
the BIM cross-section for the larger v0 value, corresponding
to Fig. 3(a). Note that the larger v0 produces a fatter tube, as
in the experiments.

Though the tube BIM only blocks reactions propagating
outward, it can still act as a tripwire for reactions initiated
outside the tube. A front that encounters a tube BIM penetrates

inside but then is trapped by the outward-blocking nature of
the BIM; see Fig. 3(b), in which a reaction triggered below the
back of the tube penetrates into the BIM but is stopped by the
outward-blocking BIM as the front moves in the −y direction
near the top. The one-way nature of the theoretical BIMs is
demonstrated in the Supplemental Material movies [29]; a
burst of trajectories moving outward from a single location
are blocked by or pass through the BIM depending on whether
the point is behind or in front of the BIM, respectively.

Comparing the numerical BIM in Fig. 2(d) to the experiment
in Fig. 2(b), they both exhibit the same scroll behavior. Near the
boundary between the two vortices, Fig. 2(d) also resembles
the cartoon in Fig. 5(b), having a flat sheet-like surface normal
to the fluid inflow direction x̂. Figures 4(d) and 4(e) show cross-
sections of the scroll BIM for the two v0 values, comparable
to the experiments in Figs. 4(a) and 4(b), 4(c). Each theory
figure actually shows two BIMs, so close together they appear
as one: the original BIM from Fig. 2 and a second BIM in
the gap between the original BIM and the front left surface.
As seen by the red and cyan intersection curves, these BIMs
show the same scroll structure as the experiments, including
the fact that the larger v0 value creates a BIM closer to the
vortex center. For both the tube and scroll, the experimental
and theoretical BIMs differ in their detailed structure. But this
is to be expected given the simple analytical form of the fluid
velocity field Eq. (1).

There are more BIMs in this system than observed in these
experiments. For example, symmetry dictates that the BIM in
Fig. 2(d) reflects about the midplane to a second BIM on the
right. However, this BIM is not seen in Fig. 2(b) because the
reaction fronts pass through it in the allowed direction.

V. CONCLUSIONS

In summary, we experimentally visualized one-way barriers
that block the motion of reaction fronts in a truly 3D laboratory-
scale fluid flow. We developed a 3D extension of the burning
invariant manifold theory, used previously only in 2D, which
provides a theoretical explanation and framework for studying
these reaction barriers. Using an explicit form of the flow field,
direct numerical computation shows that the shape of the BIMs
captures the essential geometry of the experimentally mea-
sured barriers. This theory applies to much more than chemical
reactions; given any flow and any process that produces a sharp
propagation front (with zero-flow propagation speed V0), the
BIMs predicted by Eqs. (4) will identify one-way barriers that
impede the motion of that front. Ultimately, the success of the
BIM approach for identifying reaction front barriers in both
2D and now 3D flows suggests that this approach could form
the basis for a more comprehensive theory of front propagation
in fluid flows.
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FIG. 6. A front element with normal vector n and tangent vectors
e1 and e2.

APPENDIX: THEORY DETAILS

1. Derivation of the front element dynamics

We provide a simple geometric derivation of Eq. (4b);
Eq. (4a) is obvious. See Ref. [30] for a formal derivation of
these equations using the G-equation. Figure 6 shows the front
element as a small rectangle tangent to the front, with normal
vector n. We introduce instantaneous unit vectors e1 and e2,
spanning the tangent rectangle, so that (e1,e2,e3) forms an
orthonormal frame, with e3 = n. The tangent rectangle evolves
with the fluid; i.e., e1 and e2 evolve as tangent vectors

ė1i =
∑

j

ui,j e1j , ė2i =
∑

j

ui,j e2j , i,j = x,y,z. (A1)

However, n = e1 × e2 does not evolve as a tangent vector.
Rather,

ṅ = ė1 × e2 + e1 × ė2 − n(ė1 · e1 + ė2 · e2), (A2)

where the first two terms follow from the product rule and the
final terms, which do not change the direction of n, simply
enforce the requirement that |n| = 1. Taking the components
of Eq. (A2) with respect to the (e1,e2,e3) basis, we find

ṅ1 = e1 · ṅ = e1 · (ė1 × e2) = −e3 · ė1 = −u3,1, (A3)

and similarly

ṅ2 = −u3,2. (A4)

Finally,

ṅ3 = e3 · ṅ

= e3 · (ė1 × e2) + e3 · (e1 × ė2) − (ė1 · e1 + ė2 · e2)

= 0. (A5)

When Eq. (4b) is evaluated in the same (e1,e2,e3) basis, one
obtains the exact same results as Eqs. (A3)–(A5), thereby
establishing its validity.

2. A stable form of the front element dynamics

The front element dynamics Eqs. (4) preserve the length of
the unit normal, i.e., n = |n| = 1 is conserved. This follows
immediately from

d(n2)

dt
= 2(n2 − 1)[(n · ∇)u n], (A6)

which follows from Eq. (4b). However, the condition n = 1 can
be either stable or unstable, depending on whether n · ∇u n is
positive or negative. A more robust formulation of the front
element dynamics is given by

dri

dt
= ui + v0

ni

n
, (A7a)

dni

dt
= ni

∑
j,k

uj,knjnk − n2
∑

j

uj,inj , i,j,k = x,y,z.

(A7b)

These equations are identical to Eqs. (4) when n = 1, but
differ crucially when n �= 1, since it now holds that

d(n2)

dt
= 0. (A8)

Thus, the condition n = 1 is now (neutrally) stable to small
perturbations. Furthermore, by explicitly dividing by n in
Eq. (A7a), dri/dt is insensitive to any small deviation from
n = 1. For these reasons, Eqs. (A7) are the preferred method
to actually compute front element trajectories.

3. Computing burning fixed points

A burning fixed point (r,n) is a point for which Eqs. (A7),
or equivalently Eqs. (4), equal zero and for which |n| =
1. Both conditions can be satisfied by instead solving the
equations

0 = ui + v0ni, (A9a)

0 = ni

∑
j,k

uj,knjnk − n2
∑

j

uj,inj + (n2 − 1)ni,

(A9b)

which we do using Newton’s method as follows. First, a
necessary condition for a burning fixed point to occur is
that the fluid velocity u must equal the burning velocity v0.
We thus identify the level set in xyz space for which the
constraint |u(x,y,z)| = v0 holds. See Fig. 7(a). Points are
then randomly selected on this constraint surface, and for
each point r0 the unit normal is set to n0 = −u(r0)/v0. The
phase space point (r0,n0) is then used as an initial seed in
Newton’s method to solve Eqs. (A9). The resulting fixed
points are shown as the (blue) dots and (green) triangles in
Fig. 7(a).

4. Computing burning invariant manifolds

The stability of each fixed point is found by computing
the Jacobian matrix of Eq. (A7) using finite difference. The
tangent vector (vr ,vn) = (0,n) is always an eigenvector of
the Jacobian matrix. But this eigenvector points perpendicular
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(b)  (c)

rs

ru

ru

(a)

FIG. 7. (a) The surface (red) at which v0 = |u| for v0 = 0.16 and u given by Eqs. (1) and (3). There are eight burning fixed points with two
unstable BIM directions (blue circles) and eight burning fixed points with other stability types (green triangles). (b) The quarter-tube BIM. (c)
The scroll BIM.

to the physically relevant constraint surface |n| = 1 and is
thus ignored. We thus restrict the space of tangent vectors
(vr ,vn) to

vn · n = 0. (A10)

Furthermore, it turns out that any vector (vr ,vn) at the fixed
point that is tangent to a BIM must also satisfy

vr · n = 0. (A11)

We thus focus on the four-dimensional subspace satisfying
both Eqs. (A10) and (A11). Since we are seeking two-
dimensional unstable BIMs, we find those fixed points that
have exactly two unstable directions in this 4D subspace. These
are distinguished as the (blue) dots in Fig. 7(a). The (green)
triangles are any other fixed points.

To compute the quarter-tube BIM (for v0 = 0.16), we
compute the two-dimensional unstable manifold connected
to the (blue dot) fixed point ru near (.5,.5,.5). To do this,
we first integrate the unstable manifold in the least unstable
eigendirection. This creates a heteroclinic (red) curve in the
plane x = 0.5, connecting the (blue) dot ru to the (green)
triangle rs in Fig. 7(b). We then perturb this curve slightly
in the positive x direction and use the perturbed points as a
set of initial conditions for integrating the unstable surface in
the remaining direction. This creates the middle (blue) swath
of the unstable manifold in Fig. 7(b). However, the two (green
and yellow) slivers of the unstable manifold on either side of
the blue swath must be computed separately. These two slivers
connect the blue swath to the walls of the fluid cell. To compute
these remaining slivers, we first compute their intersections
with the cell wall.

Consider the front element dynamics restricted to one of
the boundary planes of the experimental cell; let a denote the
normal vector to this boundary. Within the boundary, the fluid
velocity field u is everywhere tangent to the boundary. We may
thus apply the 2D theory of BIMs within this plane. It was

shown in Ref. [16] that the BIMs for a 2D, time-independent
fluid flow must be solutions to the differential equation below
(with one of the two choices of sign):

dr
dt

=
[

1 − v2
0

u2

]
u ± v0

u

√(
1 − v2

0

u2

)
u⊥, (A12)

where u⊥ is the vector u rotated by π/2, i.e., u⊥ = a × u.
Applying Eq. (A12) to the plane y = 0.5, with a = ŷ, we
integrate away from the fixed point rs , creating the black curve
on the back side of the cell y = 0.5 of Fig. 7(b). We then
perturb the black curve slightly into the interior of the cell, and
integrate these points away from the boundary using the full
6D Eqs. (A7). This sweeps out the green sliver in Fig. 7(b). A
similar approach is used to integrate the black curve emanating
from ru within the plane z = 0.5 and to sweep out the yellow
sliver in Fig. 7(b).

Each trajectory on the BIM is stopped once it reaches a
sufficient length or it reaches a cusp in the surface. (As in 2D
flows, Ref. [13], the most physically relevant part of a BIM in
3D terminates at such a cusp, because the orientation of the
BIM’s blocking direction flips relative to nearby trajectories.)
Finally, after points along the BIM are computed, they are
triangulated to create a surface for display purposes.

The scroll BIM is computed in a similar fashion. See
Fig. 7(c). The fixed point ru in Fig. 7(c) is the same as
the (blue) dot near (0.5, −0.5, −0.5) in Fig. 7(a). The red
curve emanating upward from ru is the unstable manifold in
the plane x = 0.5. Part of this curve is shifted slightly to the
left and integrated to construct the blue wedge in Fig. 7(c). The
remaining (green) wedge of the unstable manifold is computed
by first computing the black curve in the plane z = −0.5 using
Eq. (A12), perturbing this curve upward, and then sweeping
out the (green) manifold.

The quarter-tube and scroll BIMs for v0 = 0.064 were
computed in a similar manner to the above.
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