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Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped,
and random perturbations
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Implicit large eddy simulations of two-dimensional Rayleigh-Taylor instability at different density ratios (i.e.,
Atwood number A = 0.05, 0.5, and 0.9) are conducted to investigate the late-time dynamics of bubbles. To produce
a flow field full of bounded, semibounded, and chaotic bubbles, three problems with distinct perturbations are
simulated: (I) periodic sinusoidal perturbation, (II) isolated W-shaped perturbation, and (III) random short-wave
perturbations. The evolution of height h, velocity v, and diameter D of the (dominant) bubble with time t

are formulated and analyzed. In problem I, during the quasisteady stage, the simulations confirm Goncharov’s
prediction of the terminal speed v∞ = Fr

√
Agλ/(1 + A), where Fr = 1/

√
3π . Moreover, the diameter D at this

stage is found to be proportional to the initial perturbation wavelength λ as D ≈ λ. This differed from Daly’s
simulation result of D = λ(1 + A)/2. In problem II, a W-shaped perturbation is designed to produce a bubble
environment similar to that of chaotic bubbles in problem III. We obtain a similar terminal speed relationship as
above, but Fr is replaced by Frw ≈ 0.63. In problem III, the simulations show that h grows quadratically with
the bubble acceleration constant α ≡ h/(Agt2) ≈ 0.05, and D expands self-similarly with a steady aspect ratio
β ≡ D/h ≈ (1 + A)/2, which differs from existing theories. Therefore, following the mechanism of self-similar
growth, we derive a relationship of β = 4α(1 + A)/Fr2

w to relate the evolution of chaotic bubbles in problem III to
that of semibounded bubbles in problem II. The validity of this relationship highlights the fact that the dynamics
of chaotic bubbles in problem III are similar to the semibounded isolated bubbles in problem II, but not to that of
bounded periodic bubbles in problem I.

DOI: 10.1103/PhysRevE.97.033108

I. INTRODUCTION

When a light fluid accelerates a heavy fluid, perturbations
at the interface evolve into bubbles (spikes) when the light
(heavy) fluid penetrates into the heavy (light) fluid [1]. This
process is called Rayleigh-Taylor (RT) instability [2,3] and
occurs in systems ranging in scale from microscale [4] (e.g.,
inertial confinement fusion [5]) to astrophysical [6] (e.g.,
supernova explosions [7]). The evolution of the process is
dependent on the shape of the perturbation [8]. For a periodic
single-mode perturbation, isolated bubbles and spikes can be
observed [9]. In random multimode perturbations, the insta-
bility would rapidly develop into a turbulent mixing regime,
comprising spike and bubble mixing zones [1]. Because of
mass conservation principles, the evolution of a spike mixing
zone can be determined by that of the bubble mixing zone
[10–12]. Therefore, it is of fundamental importance to obtain
quantitative data on the height and structure of the bubble
mixing zone [8,12,13], based on which the bulk of the mixing
process can be described. Specifically, the location of bubble
fronts, h, and the diameter of the (dominant) bubble, D, are
typically used [13–16].

For problems with single-mode perturbations, excluding the
possible appearance of the final reacceleration and chaotic
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stages [9,17], the development of RT instability, beginning
from a linear stage with exponential growth, h(t), and then
transitioning into a potential stage with quasisteady terminal
speed, v∞ ≈ const, has been widely accepted and well formu-
lated [17–24]. Among these theories, Goncharov’s potential
theory [18] was proved [25] to agree well with the observation
[26]. For periodic bubbles forming in either two-dimensional
(2D) or three-dimensional (3D) problems, this theory predicts

v∞ = Fr
√

Agλ/(1 + A), (1)

where Fr is the Froude number and equals (3π )−1/2 in the
2D problem, A ≡ (ρh − ρl)/(ρh + ρl) ∈ [0,1] is the Atwood
number, g is acceleration, λ is the wavelength of initial
perturbation, and ρh ρl are the densities of the heavy and
light fluids, respectively. This theory further predicts that, at
the quasisteady stage, the diameter of bubble is approximately
equal to the wavelength of the initial perturbation:

D/λ ≈ 1. (2)

In the current 2D problem, this A-independent scaling is
qualitatively consistent with the relationship derived by Sohn
[19] but conflicts with the earlier numerical implication
[27,28] of

D/λ ≈ (1 + A)/2. (3)

In experiments [14] and simulations [13,16], D can be mea-
sured directly. However, because of Eq. (1), scientists prefer to
use λ in their theories [8,15,28]. Therefore, to compare theories
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with observations [13,14,16], a relationship between λ and D

becomes critical. In 3D problems, a relationship supporting
Eq. (2) has been obtained [25]. However, no definite conclusion
has been drawn for 2D problems, even though Eq. (3) has
been frequently used [13,16,28]. In this paper, single-mode
simulations, for different values of A, are first conducted to
resolve the discrepancy between Eqs. (2) and (3). As discussed
later, our simulations also support Eq. (2) and not the frequently
used Eq. (3).

For problems with random multimode perturbations, the
associated issue is of greater concern as it is similar to the
situations in practical applications. However, the problem is
more complex. For the height of the bubble mixing zone, h,
based on dimensional analysis [29] and observations [30,31],
Youngs et al. suggest the growth law

h(t) = αAgt2, (4)

where α is the bubble acceleration constant. This law was
subsequently confirmed [26,32] by numerous experiments
[14,33] and simulations [4,13,34–37]. As for the diameter of
the dominant bubble, D, it is found to expand self-similarly
with the height of bubble-mixing zone as

D(t) = βh(t), (5)

where β is the self-similar parameter.
Equations (4) and (5) quantitatively describe the self-similar

[37–40] evolution of turbulent RT mixing. To date, it is clear
that the self-similar evolution can be achieved through two
distinct mechanisms: bubble competition and bubble merger
[13,16,26,28,38,41,42]. If the multimode perturbations involve
long wavelengths λ that are comparable to the system width L,
the late-time mixing would be dominated by the competition
between individual long-wavelength bubbles [16,28,43]. In
this situation, as the growth of individual waves is closely re-
lated to the initial perturbation amplitude and the linear growth
rate, the resulting α and β may depend on the initial perturba-
tion amplitude and the material properties [43]. By contrast,
if the interface is perturbed entirely by randomly combined
waves with individual wavelengths λ � L, the bubbles will
expand self-similarly by merging with their smaller neighbors
[8,15,29,44–54]. In this situation, the nonlinear coupling of
different modes dominates the late-time evolution [42] when
the amplitudes of individual waves become comparable to
their wavelengths [41], resulting in a universal α and β (i.e.,
independent of initial perturbation and material properties).
As the mechanism of bubble competition is elaborated on
in another study [43], in this study, we focus only on the
2D evolution of bubble mergers with random short-wave
perturbations.

The description of the bubble merger of a mixing front was
pioneered by Sharp and Wheeler (SW) [44], who proposed a
3D model for bubble rising and merging [8]. In their model,
given the initial distribution of the radius and height of bubbles,
the evolution of the merger process can be simulated by
considering the terminal speed of single bubbles, the merger
criteria, and the conservation of cross section and volume of
the involved bubbles. Following the SW model, Glimm and
his coauthors [8,45–49,55] studied a simplified model that
considered only the height distribution of the initial bubbles. In
this model, based on a delicate choice of the renormalization

scale, a nondimensional differential equation describing the
merger process is established [45]. A number of renormal-
ization analyses show that this equation would converge to a
fixed point [45], resulting in a universal α and β, in either
2D [45] or 3D [8] problems. However, the model has certain
limitations. First, as the correct [18,22,25,26] terminal speed
relationship of Eq. (1) had not been established at that time, the
A-independent α was obtained using the wrong relationship,
v∞ = c

√
Agλ. Unfortunately, repeating their renormalization

process [8,33,45,55] with the correct relationship leads to an
A-dependent relation of α(1 + A) = const, in conflict with the
observations [14,30,33]. Secondly, this model predicts that β

is independent of A, which is inconsistent with the empirical
scaling of β = (1 + A)/4 observed in 3D experiments [14],
and β = (1 + A)/2 observed in our 2D simulations presented
in this study.

In contrast to the work of Glimm et al., Alon and his coau-
thors [15,51–54] proposed a different simplified SW model,
in which only the radius distribution of the initial bubbles was
considered. In this model, a differential equation describing
the merger process is also established [51]. Given the different
initial distributions, the analysis shows that the mixing would
evolve rapidly into a scale-invariant regime, resulting in a
universal α ≈ 0.05 and β(A) ≈ 2(1 + A) [15,54]. Although
this model successfully captures the variation tendency of
α and β with A, the predicted value of β is significantly
greater [28] than the observed value in experiments [14] and
simulations [13,16]. For example, Dimonte found [14] that
the predicted β(A) = 2(1 + A) is eight times greater than the
experimental value, β(A) = (1 + A)/4. Oron et al. attributed
this difference to dimensionality, and an improved 3D merger
model was proposed [54]. However, Dimonte claimed [28] the
β predicted by the improved 3D model remained 2–3 times
greater than the observed value. In fact, as we will see, even
for the 2D problem, the predicted β(A) = 2(1 + A) is four
times greater than our current simulations.

In summary, neither the Glimm et al. model nor the Alon
et al. model can accurately predict both α and β simultane-
ously, and an improved understanding of the merger process
is required. After a thorough investigation of the above two
models, we find that, in essence, both models depend on
two common factors: (1) the nondimensional coefficient of
the terminal speed Fr and (2) the two-bubble merger rate,
ω. ω is defined as the inverse of the time interval between
the time at which the two bubbles have the same speed and
the time at which the movement of the smaller bubble stops
[29,45,52,53,55,56]. Consequently, for chaotic RT mixing, an
accurate prediction of α and β can be achieved, provided that
the actual values of Fr and ω are used. As we know, however,
the values of Fr and ω are highly dependent on the shape and
environment of the bubble [28,50,57–59]. In the Alon et al.
model, both Fr and ω are determined by the periodic arising
bubbles. However, this bounded environment obviously differs
from the real environment of chaotic RT bubbles, and we
propose that this is the reason for the failure of their model. In
fact, the bubbles of chaotic RT mixing lie in a semibounded
environment [28], with a larger Fr. By merely observing this
difference [29], Glimm et al. proposed the assumption of
superposition to increase the single bubble velocity by adding
the velocity of modulated envelope [8]. However, as discussed
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by Dimonte [28], this may not be required, as any bubble
that is perturbed forward will behave more like an isolated or
semibounded bubble. Therefore, we need to produce only an
environment similar to that of chaotic RT bubbles and measure
the corresponding Fr. In accordance with this theory, in this
study, a W-shaped perturbation is imposed to simulate the
chaotic environment and to connect the evolution of chaotic
RT mixing with that of semibounded bubbles.

This study investigates the dynamic characteristics of 2D
RT bubbles evolving from different types of perturbations with
different density ratios. In Sec. II, we describe the numerical
framework and problem setup. In Sec. III periodic sinusoidal
perturbations, isolated W-shaped perturbations, and random
short-wave perturbations are designed to investigate the late-
time evolution of 2D RT bubbles in bounded, semibounded,
and chaotic environments. The corresponding results and
discussions, as well as a theoretical relationship to explain
the difference between previous theories and simulations, are
discussed in this section. The conclusions are presented In
Sec. IV.

II. COMPUTATIONAL FRAMEWORK

A. Numeric

Direct numerical simulation (DNS) is the most widely
accepted method to accurately simulate a flow [60]. In DNS, the
grid number is proportional to Re9/4, where Re is the Reynolds
number. For current RT problems of interest (e.g., inertial
confinement fusion and supernova explosions), the Re involved
is typically extremely large. Consequently, the corresponding
computing requirements cannot be met. Fortunately, for RT
mixing with high Re, Youngs [32] has shown that implicit
large eddy simulations (ILESs) can yield results comparable
to that of DNS, at least for large-scale dynamic quantities such
as α and β, that are currently of interest [32]. Therefore, an
ILES is used in this study. The following compressible Eulerian
equation (6) and mass fraction equation (7) are solved:

⎧⎪⎨
⎪⎩

∂
∂t

(ρ) + ∂
∂xj

(ρuj ) = 0
∂
∂t

(ρuj ) + ∂
∂xj

(ρuiuj + pδi,j ) = −ρg
∂
∂t

(ρe) + ∂
∂xj

[(ρe + p)uj ] = −ρuig

, (6)

∂

∂t
(ρY ) + ∂

∂xj

(ρujY ) = 0, (7)

where xi=1,2(x ≡ x1,y ≡ x2) is the space direction, and
ρ, u, p, e, Y , and g are density, velocity, pressure, total energy
per unit mass, mass fraction, and acceleration, respectively.
The acceleration g is in the y direction. Equations (6) and (7)
are solved with the equation of state for an ideal gas

ρe = p/(γ − 1), (8)

where γ is the specific heat ratio. The thermodynamic quan-
tities of mixed materials are modeled with the following
isothermal and partial pressure assumptions [61]:⎧⎪⎨

⎪⎩
f = f1 + f2; f = ρ,p

f = f1 = f2; f = T ,V

f = Yf1 + (1 − Y )f2; f = Cp,Cv

. (9)

Specifically, the density and pressure of the mixture are ob-
tained by the addition of the corresponding physical variables
of each fluid. The volume and temperature of the mixture
are equal to that of each fluid, while the physical property
parameters, such as specific heat at constant volume, are
obtained by a linear combination with the mass fractions.

To simplify the simulation, we use an ideal gas for both the
heavy and light fluids. Considering this configuration, Eq. (7)
is introduced primarily for visualizing and tracing the interface
between two fluids. Moreover, we emphasize that the volume
fraction of the heavy fluid, ϕ ≡ ρY/ρh, is introduced for
visualization as it is more accurate in tracing the interface under
large density ratio situations [13]. The entire simulation is
implemented in our developed compressible Eulerian program,
known as the Code of Finite Difference for Compressible
Fluid Dynamics (CFD2). The movement over time adopts a
third-order accurate total variation diminishing Runge-Kutta
scheme, with CFL = 0.5. The convection term is solved with
an HLL Riemann solver and a seventh-order WENO scheme
[62].

B. Initialization

Similar to the initialization adopted by the Alpha Groups
[13], in this simulation, we use the compressible configuration
to approach a quasi-incompressible regime. Specifically, for
an initial resting flow field (i.e., ui = 0), the profiles of density
and pressure are derived by first satisfying the hydrostatic
equilibrium

∂p/∂y = −ρg. (10)

Furthermore, to maintain the effective Atwood number (At-
wood number in mixing region) approximately constant,
Eq. (10) is solved with the adiabatic relationship

p/ργ = const (11)

to give [13]

ρ(y) = ρ0

(
1 − γ − 1

γ

ρ0gy

p0

) 1
γ−1

. (12)

The corresponding pressure profile, p(y), can be obtained
by combining Eq. (11) with Eq. (12). In Eq. (12) ρ0 = ρh

for y � 0, and ρ0 = ρl for y < 0, γ is set as 5/3 for both
fluids, and g = 2 cm/s2 is in the y direction. Here p0 is an
important quantity, as a larger p0 makes the simulation more
incompressible. However, it also shortens the time step so that
more computing resources are required. From previous studies,
p0 needs to be sufficiently large to limit the vertical density
variation to below 6%. It is typically acceptable to set p0 =
2π (ρh + ρl)gL; however, in large density ratio simulations, a
larger p0 is needed.

As for perturbations, with the aid of linear theory, the
imposed perturbations at the interface are converted to a
velocity field (see more details in Ref. [13]). We impose
the velocity perturbations only on the interface (y = 0). To
produce a flow field full of bounded, semibounded, and chaotic
bubbles, three distinct perturbations are imposed, as shown
in Fig. 1. These are the periodic sinusoidal perturbation,
the isolated W-shaped perturbation, and random short-wave
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FIG. 1. Velocity on interface (y = 0) of (a) periodic sinusoidal perturbation, (b) W-shaped perturbation, and (c) random short-wave
perturbations.

perturbations. The amplitudes in Fig. 1 indicate the values of
the initial velocity on the interface.

The shape of periodic sinusoidal perturbation is given by
the relationship

ḣ(x,0) = 0.01 cos

(
2π

λ
x

)
, (13)

with the perturbation wavelength λ = 2.5 cm. The W-shaped
perturbation has a similar relationship:

ḣ(x,0) =

⎧⎪⎨
⎪⎩

0.01 cos
(

2π
λ

x
)

0.625 � x � 4.375

and 5.625 � x � 9.375

0 else.

(14)

Bubbles rising from the W-shaped perturbation evolve in a
semibounded environment, and their degree of freedom can be
estimated by the length of the gap between them. In this way,
we can simulate and study an environment that is similar to that
in multimode flows. In addition, two troughs on either side of
the crest are specifically designed to ensure that the bubbles
grow symmetrically. The random short-wave perturbations are
set as

ḣ(x,0) =
∑

k

�(k)c(k) cos(kx), (15)

where we choose 1000 high-k modes waves randomly between
modes 16 and 32, �(k) ≡ √

Agk is the exponential growth
rate, and c(k) is randomly chosen with a root mean square
amplitude c̄ ∼ 10−3. In random short-wave simulations, the
horizontal length is enlarged four times to introduce more
bubbles into the computation field. This enhances the accuracy
when calculating the average bubble diameters.

Finally, in single-mode simulations, we use 32 grids for
one wavelength (λ/
 = 32), despite the Alpha Group [13])
suggesting that 8 grids (λ/
 = 8) are sufficient. In multimode

flows, we apply a grid resolution (512 grids for 40 cm) similar
to the Alpha Group’s [13]) settings (128 grids for 10 cm).

C. Cases and definitions

To cover the RT evolution from different perturbations, nine
cases (at three representative values of A) were designed and
are presented in Table I. In all nine simulations, h is defined
as the distance between the interface and the cross section
where the x direction averaged-volume fraction of the heavy
fluid is 0.99. As for D, since the bubbles in simulations 1–6
have regular shapes, we can readily obtain D(t) by determining
the width of the broadest bubble cross section. In simulations
7–9, we use an autocorrelation-based technique [13,16]) to
determine the averaged bubble diameters. As no long-wave
perturbations are introduced in the initial perturbations, a
pure bubble merger mechanism dominates the evolution. The
simulation results are presented and discussed in Sec. III.

III. SIMULATION RESULTS

A. Periodic sinusoidal perturbation

In this subsection, we use single-mode simulations (sim-
ulations 1–3) to study the evolution of bubble velocity, v(t),
and bubble diameter, D(t). The velocity evolution is used to
infer the nondimensional velocity coefficient Fr, defined as
Fr(t) ≡ v(t)/

√
Agλ/(1 + A). At the terminal speed stage, the

good agreement in Fr between the current simulations and
Goncharov’s theory [18] validates our code, and D is measured
to establish a quantitative relationship with initial perturbation
wavelength, λ, and A. Based on this, the established theoretical
relationship can be transferred between λ and D (see details
in Sec. III C).

TABLE I. List of simulations.

Simulation no. Perturbation type Atwood number Domain size (cm) Mesh size

1 0.05
2 Periodic sinusoidal 0.5
3 0.95

[0,10] × [−10,10] 128 × 256
4 0.05
5 W-shape 0.5
6 0.95
7 0.05
8 Random short-wave 0.5 [0,40] × [−10,10] 512 × 256
9 0.95
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FIG. 2. Evolution of Fr at three representative density ratios in
bounded environment.

1. Evolution of Fr

As discussed in the introduction, before the possible ap-
pearance of the final reacceleration and chaotic stages [9], the
development of single-mode RT bubbles starting from a linear
stage, and then transitioning into a potential stage, has been
widely recognized. Researchers have conducted numerous
investigations to find analytical laws valid from the linear
stage to the potential stage. In the potential stage, various
numerical simulations and theories [18,22] have indicated that
bubbles will attain a quasisteady terminal velocity, satisfying
Eq. (1), with the widely accepted constant Fr ≈ (3π )−1/2

in the 2D problem. Figure 2 shows the evolution of Fr(t)
for simulations 1–3. First, Fr increases rapidly, and then
stabilizes at approximately Agt2 = 10 cm. Finally, Fr reaches
a quasisteady value (corresponding to terminal velocity). From
this figure, we can see that, for all three typical density ratios,

the final quasisteady values correlates well with the theoretical
values, (3π )−1/2. The agreement validates our simulations.

2. Relationship between D and λ

As shown in Eq. (1), in theoretical studies [8,15,28], re-
searchers prefer to express the quasisteady terminal speed, v∞,
with the perturbation wavelength λ, as λ is closely coupled to
the initial conditions and remains constant during single-mode
RT evolutions. However, in experiments [14] and simulations
[16,28], researchers favor the use of D, as it can be directly
measured. Therefore, before the establishment of a unified
formula between the terminal speed (v∞) and the characteristic
length (λ and D), it is meaningful to obtain a relationship
between D and λ. However, for the 2D problem, a definite
relationship has not yet been established.

In 3D problems, the relationship of Eq. (2) is accepted
by researchers. By contrast, there are still ambiguities in 2D
situations. Earlier 2D simulations by Daly [27] first implied the
relationship of Eq. (3) [28]. The rationality of Eq. (3) has been
discussed by Dimonte [28], who considered, at A = 1, that
D = λ is reasonable as the spikes are extremely narrow. By
contrast, at A = 0, the relationship should be 2D = λ, as the
spikes are identical to the bubbles. After rechecking the original
data, however, we find that Daly ended his simulations before
the bubbles approached the steady potential stage, especially
for the simulations with lower A. This conclusion can be ob-
tained from the following considerations. The widely validated
relationship of Eq. (1) implies that Fr is an A-independent
constant. However, recalculating Fr with the data given in
the literature [27] shows that Fr is less than the theoretical
value of (3π )−1/2, especially for the simulations with lower
values of A. Consequently, the correctness of Eq. (3) becomes
questionable. In fact, in contrast to Daly’s relationship, Alon
et al. [15] asserted an A-independent relationship of Eq. (2),
based on a buoyancy-drag model. In their later works [54,63],
this relationship was also adopted when analyzing data. Finally,

0 1

λ

0 1

FIG. 3. Volume fraction distributions for late-time single-mode evolution at (a) A = 0.05, (b) A = 0.5, and (c) A = 0.95.
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FIG. 4. Evolution of Fr at three typical density ratios in semi-
bounded environment.

from Goncharov’s and Sohn’s theory [18,19], a relationship
similar to Eq. (2) can also be derived, to give D/λ ≈ const.

In this study, single-mode simulations at different values
of A are conducted to clarify this relationship. In Fig. 3 we
plot the contours of volume fractions from simulations 1–3
when the bubbles reach their terminal velocities. As can be
seen, there is no gap between bubbles in all three simulations.
From these, we findD = 2.5 cm, which is approximately equal
to the perturbation wavelength λ, supporting the relationship
of Eq. (2).

As opposed to Dimonte’s explanation for Eq. (3), we explain
the rationality of Eq. (2) with the drag-buoyancy model [64],
as follows. A given isolated RT bubble is subjected to three
forces: buoyancy force, drag force, and inertial force. As larger
bubbles have less drag but equal buoyancy per unit mass, RT
bubbles tend to grow larger. Consequently, lower drag leads
to higher speeds, and this reinforces this cycle. Therefore, the
bubbles will not stop expanding until the gaps between them
are covered. In other words, the bubbles will not attain a steady
terminal speed until they have fully expanded. In the following
sections, the relationship of Eq. (2) is adopted, and only D is
used as the characteristic bubble width, to avoid ambiguity.

B. W-shaped perturbation

In this subsection, a W-shaped perturbation is designed to
study the evolution of the Fr number when RT bubbles develop
in a semibounded environment. Semibounded environments
fall between the periodic bounded environment shown above
and the unbounded environment where bubbles develop totally
free from their neighbors. As discussed in the introduction, in
this study we propose that multimode RT bubbles develop in
an environment similar to the semibounded environment. As
shown in Fig. 5(b), for the late-time evolution of chaotic RT
bubbles, there are obvious gaps between adjacent multimode
RT (dominant) bubbles, and the average length of the gaps is
typically comparable to the average bubble diameter. As the
value of Fr is closely coupled to the environment and the shape
of bubbles [28], we investigate the evolution of Fr in problems
with W-shaped perturbations, aiming to indirectly determine
Fr in multimode flows.

In earlier work, Collins [65] designed a plane experiment
to simulate 2D bubble evolution in infinite space and deter-
mined Fr ≈ 0.5. However, the bubble in Collins’s experiment
comprised only the bubble cap, while a regular RT bubble
[as shown in Fig. 5(a)] comprises a bubble cap and a bubble
stalk. As discussed above, the value of Fr for a bubble depends
on its environment and shape. Physically, the bubble cap is
subjected to significantly more drag per mass than the bubble
stalk. Therefore, the Fr number of a bubble cap may be less
than that of a complete bubble.

Similarly, in a semibounded environment, the evolution of
Fr(t) ≡ v(t)/

√
AgD(t)/(1 + A) can be obtained with simula-

tions. Figure 4 shows the results from simulations 4–6. The
figure shows that, regardless of the initial period, the value of
Fr stabilizes at approximately Frw ≈ 0.63. The dependence of
Fr on the density ratio is weak. Figure 5 shows the environment
of W-shaped flow and multimode flow at a typical time. The
average length of the gaps between the dominant bubbles in
Fig. 5(b) is comparable to the average diameter of the dominant
bubbles and is similar to that shown in Fig. 5(a). Based on
this similarity, as described in the next section, we use the
obtained Frw = 0.63 to establish a theoretical relationship
between multimode flows and semibounded flows.

Following the logic in Sec. III A and Sec. III B, we discuss
two cases. Case I: If one waits long enough, two neighboring

0 1 0

FIG. 5. Late-time environment (A = 0.5, time = 8 s) for (a) semibounded flow and (b) multimode flow.

033108-6



DYNAMIC EVOLUTION OF RAYLEIGH-TAYLOR BUBBLES … PHYSICAL REVIEW E 97, 033108 (2018)

FIG. 6. Evolution of Fr in case I (green solid line) and case II
(black dashed line).

semibounded bubbles will get close and become bounded
bubbles, so the value of Fr may go down and reach (3π )−1/2.
Case II: If there exists an unbounded bubble, the bubble will
continue expanding and the Fr will get even larger than 0.63.
We implement simulation 5 to study case I. In order to avoid
the influence of the y-direction boundary, the computational
length in the y direction is enlarged twice. As for case II, we
modify the simulation in case I by only putting one W-shaped
perturbation in the middle of the domain.

The green solid line in Fig. 6 shows the evolution of Fr
in case I. After the semibounded stage, the value of Fr goes
down and finally stabilizes near (3π )−1/2. Figures 7(Ia)–7(Ie)
shows the evolution of the two bubbles. At late time, they
gradually get close and almost become bounded bubbles. The
black dashed line in Fig. 6 shows the Fr evolution of an
unbounded bubble. In the beginning, since the bubbles grow
in a similar environment, the Fr evolution is almost the same
as that in case I. Because there is no bound, the value of Fr
continues growing even after reaching 0.63. Later, the bubble
keeps expanding both vertically and horizontally at a high
speed, and, meanwhile, the spikes keep pressing the root of
the bubble. These two factors result in the thinning of bubble
stalk, which finally leads to the complete escape of bubble
[see in Figs. 7(IIa)–7(IIe)]. During this period, the value of
Fr goes down, due to the same reason as Collins’s isolated
bubble. However, since this simulation does not involve surface
tension, the late-time bubble cannot maintain its shape and
will continue expanding horizontally. In this case, the value of
Fr keeps going down rather than stabilizing at 0.5 as Collins
claimed. As this paper mainly studies bubbles which have
similar shapes as late-time multimode bubbles [such as the
bubbles in Fig. 5(b)], we focus on only the early evolution of
the unbounded bubble and do not further discuss its late-time
expansion. From the results above, the logic in Sec. III A and
Sec. III B is validated.

C. Random short-wave perturbations

Multimode flows are currently of interest, as RT perturba-
tions, with numerous short wavelengths are considered to be
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FIG. 7. Volume fraction distributions for bubble evolution at
(a) 4 s, (b) 6 s, (c) 8 s, (d) 12 s, and (e) 15 s.

more relevant for practical applications. The greatest problem
in practical applications is the growth and structure of the
mixing zone. The bubble acceleration constant, α, can predict
the growth of the mixing zone, while the self-similar parameter,
β, is useful in describing the structure of bubbles. Simulations
7–9 are designed to study the evolution of α and β. In this
subsection, we explain theoretically the numerical results and
discuss the inconsistencies between current simulations and
the prediction of Alon’s merger model.

Figure 8(a) shows the variation of bubble height, h, from
simulations 7–9. According to Eq. (4), the gradient indicates
the value of α. In all three simulations, the gradients vary
marginally around 0.05. Figure 8(b) shows the variation of
A-renormalized self-similar geometry parameter β/(1 + A). It
can be seen from this figure that, at late time, β remains steady
at (1 + A)/2, and the average shape of dominant bubbles
remains constant. The calculated α is consistent with the Alon
et al. merger model prediction, but β is four times smaller than
the prediction. Based on the results obtained in Sec. III B, this
inconsistency is explained below.

As discussed in the introduction, Alon’s merger model is
a simplified SW model. This model suggests that multimode
RT bubbles evolve through merging smaller bubbles. Under
this hypothesis, the flow eventually evolves into a scale-
invariant regime, where the initial conditions will be forgotten.
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FIG. 8. Evolution of (a) bubble height and (b) self-similar rate (scaled with (1 + A)) in multimode flows.

Based on the scale-invariant regime, Alon derived a constant
acceleration, α = 0.051 [52]. By working with the concept
of bubble merger [28], we can derive a relationship of β by
combining Eqs. (1), (2), (4), and (5) as [16]

β = 4α(1 + A)

Fr2 . (16)

As can be seen, we can obtain β ≈ 2(1 + A) by introducing
α = 0.05 and Fr = 1/

√
3π into Eq. (16). Although α = 0.051

is an accepted value, β ≈ 2(1 + A) is not valid. Oron’s 2D
simulation results also disagreed with this conclusion. Specif-
ically, Oron’s simulation obtained β = 2 at A = 0.5, when
β = 3 should have been the result according to their merger
model.

In fact, in the Alon et al. model, they assumed that the
bubble-merging environment at late time is similar to that
of periodically arising bubbles in a bounded environment.
Therefore, their conclusion is established based on the Fr of pe-
riodically arising bubbles. However, as can be seen in Figs. 9(b)
and 9(c), late-time bubbles are not always bounded together,
and, typically, the bubbles grow freely without competing with
their neighbors. When a generation of bubble merger ends,
gaps are generated between new merged bubbles. The new
bubbles then continue to expand freely until they touch their
neighbors, and the next merger generation begins. At late time
in multimode RT evolution, as the bubbles are usually large,
the interval between generations can be long. In this case, we
argue that the bubbles grow in an environment similar to the
semibounded environment. Thus, introducing Fr = 0.63 into

Eq. (16), we obtain β = (1 + A)/2, which correlates well with
our numerical results.

IV. CONCLUSIONS

The primary aim of this study was to quantitatively investi-
gate the late-time merger evolution of 2D chaotic RT bubbles,
with the aid of the two most important physical quantities
(α and β) to characterize the bulk of the dynamic process.
To this end, simulations with periodic sinusoidal perturbations
and W-shaped perturbations were carried out, first, to establish
some basic relationships and determine some critical param-
eters, followed by simulations with random short-wavelength
perturbations. The simulations were conducted at three typical
values of A (0.05, 0.5, and 0.95) to consider the possible effects
of density ratio.

Our single-mode perturbation simulations not only con-
firmed Goncharov’s predictions of Eqs. (1) and (2), but also in-
validated the frequently used relationship of Eq. (3) for the first
time. The W-shaped perturbation was designed specifically to
test our hypothesis: the dynamics of chaotic bubbles are similar
to the semibounded isolated bubbles with W-shaped pertur-
bations, but not to bounded bubbles with periodic sinusoidal
perturbations. The simulations produced a similar terminal
speed relationship as for single-mode sinusoidal perturbations,
but the nondimensional velocity coefficient, Fr, approximately
doubled to Frw ≈ 0.63. Our multimode evolution simulations
suggested α ≈ 0.05 and β = (1 + A)/2. Although a similar
bubble acceleration constant α was obtained, the self-similar

FIG. 9. Multimode evolution with A = 0.5 at (a) time = 5 s, (b) time = 8 s, and (c) time = 11 s.
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rate in our results was four times smaller than the Alon et al.
prediction. To explain this difference, a theoretical relationship
[Eq. (16)] was established by following the concept of a
bubble merger model. From this relationship, we verified
that this difference is essentially attributed to the doubling
of Fr. The success of relating α to β with Frw indirectly
validates our hypothesis. This success further implies that
(1) qualitatively, the mechanism of bubble merger is correct,
and (2) quantitatively, the merger process can be accurately
predicted only if reasonable physical parameters are used.

Therefore, the entire merger model depends on two crit-
ical parameters: Fr and ω. As discussed in the introduction,
however, the values of both parameters are closely coupled
to the environment and shape of RT bubbles. The success of
Frw, while not the classical Fr = (3π )−1/2, in relating α to β

implies that the actual evolution of chaotic RT bubbles cannot
be characterized with parameters determined from periodic

bounded bubbles, as adopted in previous studies. Based on
this, an improved bubble merger theory that can correctly
predict both α and β simultaneously with physical Fr and ω is
expected. However, this is beyond the scope of this study and
will be published elsewhere.
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