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Enhancement of the water flow velocity through carbon nanotubes resulting from the
radius dependence of the friction due to electron excitations
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Secchi et al. [Nature (London) 537, 210 (2016)] observed a large enhancement of the permeability and slip
length in carbon nanotubes when the tube radius is of the order of 15 nm, but not in boron nitride nanotubes. It
will be pointed out that none of the parameters that appear in the usual molecular dynamics treatments of water
flow in carbon nanotubes have a length scale comparable to 15 nm, which could account for the observed flow
velocity enhancement. It will be demonstrated here, however, that if the friction force between the water and the
tube walls in carbon nanotubes is dominated by friction due to electron excitations in the tube walls, the enhanced
flow can be accounted for by a reduction in the contribution to the friction due to electron excitations in the wall,
resulting from the dependence of the electron energy band gap on the tube radius.
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I. INTRODUCTION

It has been observed that water is able to flow through carbon
nanotubes with radii of the order of nanometers with very large
slip length, signifying low friction between the water and the
tube walls [1–3]. Recently Secchi et al. [4,5] have presented
measurements of water flow through individual carbon and
boron nitride nanotubes, which show that the resistance to
water flow in carbon nanotubes decreases rapidly as the tube
radius is reduced, as has been found in molecular dynamics
simulations by Thomas et al. [6]. Water flow through carbon
nanotubes is of great interest because it has been demonstrated
by both computer simulations and measurements that water
can flow more rapidly through these tubes than salt ions can
[7], opening the possibility of using them in water filtration
using reverse osmosis. The strong dependence of the slip length
on tube radius found for carbon nanotubes, however, is not
found for boron nitride nanotubes, even though boron nitride
nanotubes have the same crystal structure as carbon nanotubes.
The slip length Ls is defined by

λvs = η(∇v)s ≈ ηvs/Ls, (1)

where λ is the friction coefficient, η is the water viscosity, vs is
the tangential component of the water velocity at the wall, and
(∇v)s is the normal component of the gradient of the water
velocity at the wall. It is essentially the distance outside the
tube at which the water velocity extrapolates to zero. Although
Tocci et al. [8], have demonstrated via computer simulations
that, despite the fact that boron nitride and carbon have nearly
equal contact angles, the rate of water flow above a flat sheet
of graphene is three times the rate of flow above a sheet of
boron nitride, this does not explain the fact that the flow rate
dependence on nanotube radius observed for carbon nanotubes
appears to be completely absent for boron nitride nanotubes.
Falk et al. [9], have shown that the lattice wall periodicity when
projected onto the layer of water nearest to the wall becomes
smaller as the tube radius decreases. They show that since the
calculated friction experienced by the flowing water decreases

as the wall periodicity seen by the water decreases, this effect is
able to explain the observed dependence of the water flow rate
in carbon nanotubes on the tube radius. They did not, however,
provide an explanation for the absence of a radius dependence
of the water flow rate in boron nitride nanotubes. It should
be pointed out, however, that although this mechanism gives
a slip length, which increases as the radius decreases, it only
works for carbon nanotubes with radii of a few nanometers,
whereas the large radius dependence of the slip length and
permeability of carbon nanotubes and its absence in boron
nitride nanotubes observed by Secchi et al. [4], occurs at a
radius comparable to 15 nm, which is much larger than the
distance of the center of a first hydration shell oxygen from the
tube wall of about 0.32 nm. Therefore, the radius dependence
that they observe must involve a length scale R0 much larger
than atomic length scales. This means that the slip length has
the functional form Ls = f (R/R0), where R0 is much larger
than atomic dimensions. The possibility that there could be
one mechanism for the water flow enhancement in nanotubes
at the nanometer scale and a different mechanism operating
at the scale of tens of nanometers is consistent with previous
experimental results, which show large enhancement at a radius
of tens of nanometers and still larger enhancement at a radius
of the order of a nanometer [2,3,9,10]. Molecular dynamics
calculations on shorter [11] and narrower nanotubes [12] show
much different behavior than that observed in the longer and
wider nanotubes studied experimentally in Ref. [4].

II. WHY THE USUAL THEORETICAL TREATMENT
OF WATER FLOW IS NOT EXPECTED TO

EXPLAIN EXPERIMENT

The solution of the Navier-Stokes equation with a slip
velocity vs at the walls of a tube of radius R is

v = − (R2 − r2)

4η

dP

dz
+ vs, (2)
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where r is the distance from the center of the tube and dP/dz

is the pressure gradient. From Eq. (2) and the definition of Ls

in Eq. (1), we obtain Lsdv/dr|s = (dP/dz)LsR/(2η) = vs .
The slip velocity can also be written as

vs = qF = q

nL

dP

dz
, (3)

where q is the mobility of water molecules at the surface and
nL is the number density of water molecules at the wall, using
the expression in Ruckstein and Rajora’s [13–15] for the force
F acting on a water molecule at the wall. Combining Eq. (3)
with the expression for vs above Eq. (3), we obtain

Ls = 2ηq

RnL

= 2ηqε0δ

RWA

, (4)

where η is the viscosity for the water, nL is the number of water
molecules per unit volume at the surface, WA is the work of
adhesion between the water and the wall per unit area, δ is the
thickness of the first hydration shell, and ε0 is the energy scale
for the van der Waal’s interaction between a first hydration
shell water molecule and the wall. Here, we have used the fact
that WA ∼ ε0nLδ [16]. Neither WA nor q is expected to vary
by a significant amount over distances of the order of 15 nm,
since R is much larger than interatomic spacings in the walls
and interwater molecule spacings. Basically, the water at the
walls will see the walls as nearly flat. Large flow enhancement
might be expected to first occur when R becomes comparable
to Ls , which takes place when

Ls

R
= R2

0

R2
∼ 1, (5)

where

R0 =
(

2ηqε0δ

WA

)1/2

. (6)

Thus, R0 plays the role of a radius length scale for the
onset of flow enhancement in nanotubes. From Eq. (5), using
the fact that Ls = 300 nm when R = 15 nm, we find that
R0 = 67.1 nm. The value of WA for boron nitride is only a
little smaller than that for carbon [17]. Therefore, in order
to explain the large difference in radius dependence of the
flow rates observed for boron nitride and carbon nanotubes
on the basis of the arguments of Refs. [13–15], we must
postulate that q is much larger for carbon than for boron
nitride, which is likely to be true because of the larger spatial
variation in the wall potential in boron nitride than in carbon
nanotubes [8]. Solving Eq. (5) for q using the values of the
above parameters in Ref. [13], namely ηw = 10−3 Ns/m2, ε0 ≈
25kBT = 10−19 J, δ = 0.3 × 10−9 m and WA = 0.150 J/m2,
we obtain q = 1.13 × 1016 m/Ns, if R0 = 67.1 nm. This is
much larger than the value of q used in Refs. [13–15], which
assumes thermally activated hopping with a diffusion constant
Ds = 2 × 10−9 m2 /s, obtained from molecular dynamics
simulations of water flowing along a graphene sheet [13–15],
namely

q = Ds

kBT
= 5 × 1011 m/Ns. (7)

Since the circumference of the nanotubes 2πR = 94.2 nm,
which is much larger than both the water molecule size and a

lattice constant of the nanotube walls (which are both less than
a nanometer), one would expect that q would be nearly equal
to the value it would have for a flat surface, and be independent
of R to a good approximation. Therefore, in order to explain
the large radius dependence of the slip length observed for a
carbon nanotube when its radius drops below 15 nm, we must
find a length scale of this magnitude.

III. EXAMINATION OF THE CONTRIBUTION
OF ELECTRONIC FRICTION

Consider the possibility that the dominant contribution to
the friction between the water and the carbon nanotube walls
is due to the contribution to the friction from the creation of
excitations of the electrons in the conduction band of the carbon
nanotube. If the nanotubes in the work of Secchi et al. [4],
were semiconducting, the energy gap in the band structure
becomes comparable to the product of Boltzmann’s constant
and the temperature, kBT , when R is close to 15 nm, and
becomes larger than kBT for smaller values of R [18,19].
Thus the number of conduction electrons decreases rapidly
as R decreases, resulting in a rapid reduction in the number
of conduction electrons available to be excited. In contrast,
the band gap in boron nitride nanotubes is larger and does not
become comparable to kBT for R in the vicinity of 15 nm, and
hence, there are no conduction electrons to contribute to the
friction. The interaction of the water with the tube wall should
be sufficiently weak to treat it by time-dependent perturbation
theory (e.g., the Kubo formula [20]). The contribution to the
force of friction due to excitation of the electronic states of the
nanotube resulting from a single water molecule can be found
using Fermi golden rule perturbation theory [21–24],

f v = dE

dt
= (2π/h̄)

∑
�ki ,�kf ,α

∣∣M�ki ,�kf ,α

∣∣2
(εα(�kf ) − εα(�ki))

×
[

exp

(
μ − εα(�ki)

kBT

)
− exp

(
μ − εα(�kf )

kBT

)]

× δ(εα(�kf ) − εα(�ki) − h̄�v · (�kf − �ki)), (8)

where M�kf ,�ki ,α
is the matrix element of the interaction potential

between the water molecule and the electrons in the conduction
band of the tube wall, f is the force of friction acting on a water
molecule, �v is the mean flow velocity of the water, μ is the
electron chemical potential, εα(�k) is the energy of an electron
in the αth conduction band, and �ki and �kf are the electron wave
vectors before and after scattering, respectively. There is also
a similar expression for the friction due to excitation of holes
in the valence band. If the innermost tube of the multiwalled
tubes studied in Ref. [4] is semiconducting (most nanotubes
are semiconducting), the gap energy in eV is given by g1/R

[18], where g1 is a constant. When R = 15 nm, the gap is com-
parable to kBT , where kB is Boltzmann’s constant, for T equal
to room temperature. As R decreases, the band gap increases
to values above kBT , and hence, the number of electrons in
the conduction band drops off rapidly. Consequently, the force
of friction due to excitation of conduction electrons drops off
rapidly, resulting in a rapid increase in the slip length given by
Ls = η/λ, where λ = (πR2L)(2πRL)−1ρf/v = (R/2)ρf/v,
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FIG. 1. A plot of Ls versus R based on Eq. (9) with Ls0 chosen
so that Ls = 300 nm when R = 15 nm.

where ρ is the number of water molecules per unit volume.
A similar argument holds for holes in the valence band. An
approximate model calculation of the slip length is given in
the Appendix. It gives a slip length of the form [19]

Ls = η/λ = (Ls0/x)

[
(1/3) exp(−x/3) + (2/3) exp(x/3)

[1 − exp(−x)]2

+ exp(−x/3) + exp(x/3)

1 − exp(−x)

]−1

, (9)

where x = g0/(2kBT ), where g0 is the main gap in the energy
bands of the electrons in the wall. [See Eq. (A17) in the
Appendix for details.] Equation (9) is plotted with Ls0 chosen
so that Ls = 300 nm for R = 15 nm in Fig. 1, which exhibits
an increase of Ls from about 120 nm at R = 50 nm to 300 nm
at R = 15 nm. Although in Secchi et al.’s paper [4] Ls drops to
about 17 nm at R = 50 nm, if one takes into account impurity
scattering of the electrons, it is easy to account for this apparent
discrepancy by the fact that at R = 50 nm, even for a mean free
path 	 as large of 50 nm, the width of the electron states 
E =
h̄/τ = h̄vF /	 = 10−2 eV resulting from impurity scattering
is larger than the band gap. Thus, at R = 50 nm there is no
longer a band gap, and hence, λ is expected to be much larger
than it would be if there were a nonzero gap. This will lead to a
much smaller slip length than would occur with a nonzero gap.
It is easy to show that in the experiments reported in Ref. [4],
h̄vG, where G is the magnitude of a primitive reciprocal lattice
vector of the wall or 2π divided by a graphene lattice constant,
is much smaller than the gap energy for the smaller values of
R, and hence, there will be little contribution to the friction
from excitations of electrons across the band gap.

IV. CONCLUSION

In summary, the large radius dependence of the slip length
and permeability of water flowing in a carbon nanotube found
by Secchi et al., at values of R between 15 nm and 20 nm
is difficult to understand without postulating that the friction
between the water and the tube wall becomes much smaller
than the values obtained from molecular dynamics performed
on a flat graphene surface [8] at a radius of 15 nm, which
is much larger than the molecular spacing in the water and
the tube wall. If the inner walls of tubes are semiconductors
(i.e., zig-zag nanotubes), however, it is possible to explain the
rapid drop in the friction for such large radii, if the friction in

carbon nanotubes is dominated by friction due to electronic
excitations. The reason for this is that as the tube radius drops
below 15 nm, the electronic energy band gap becomes larger
than kBT , resulting in a rapid reduction in the number of
electrons in the conduction band, whose excitation produces
the electronic contribution to the friction. In contrast, since
boron nitride nanotubes are insulating, and hence they do not
have a contribution to the friction due to the excitation of
conduction electrons, this does not occur.
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APPENDIX

The perturbing potential due to one water molecule is the
potential energy of a conduction (or valence) band electron
in the potential due to the water molecule dipole, which is in
MKS units

v(�r) = ke

e �p · (�r − �r0)

|�r − �r0|3
, (A1)

where ke is the proportionality constant in Coulomb’s law,
(4πε0)−1, e is the electron charge, �p is the water dipole moment,
and �r0 is the location of the water molecule under consideration.
It can be written in terms of its Fourier transform,

v̄(�k) = V −1ke

∫
e �p · (�r − �r0)

|�r − �r0|3
ei�k·�rd3r

= ke

4πe �p · �k
V k2

exp(−i�k · �r0), (A2)

where V is the volume of space, as

v(�r) = 4πe

(2π )3 ke

∫
d3k exp[i�k · (�r − �r0)]

�p · �k
k2

. (A3)

Since the radius of curvature of the tube is much larger
than the interatomic spacing of the wall and the mean spacing
between water molecules and the electrons in the wall can to a
first approximation can be treated as a two-dimensional elec-
tron gas, the matrix element of the above perturbing potential
between the electron wave functions inside the wall is given by

M�kf ,�ki ,α
= 4πe

(2π )3 ke

∫
d3k exp(−i�k · �r0)

�p · �k
k2

∫
exp(i�k · �r)

× exp(−i �K · r)u�kf ,α ∗ (�r)u�kiα
(�r)d2r, (A4)

(where z is the distance of the water molecule from the
tube wall), where �K = �kf − �ki , where �ki is the wave vector
before the electron is scattered, and �kf is the wave vector
of the electron after it is scattered by the water molecule.
The electron states [19] are Bloch functions, with a wave
vector along the tube axis (taken to be the x axis), of the
form exp(kx)u(�r), where u(�r) is a periodic function of repeat
distance in the x direction and the circumference in the y

direction, and hence can be written in the following Fourier
series: u(x,y) = (LC)−1/2 ∑

AG,Ḡ exp[i(Gx + Ḡy), where L

and C are the tube length and circumference, G is a reciprocal
lattice vector along the tube axis, and Ḡ is an integer multiple
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of 2π/C. Since the Bloch functions in graphene sheets and nanotubes are often treated in the tight binding approximation, the
Fourier coefficients AG,Ḡ,α are proportional to Fourier transforms of the carbon atomic functions. Then, Eq. (A4) becomes,

M�kf ,�ki ,α
= 4πe

(2π )3 ke

∫
d3k exp(−i�k · �r0)

�p · �k
k2

∫
exp(i�k · �r) exp(−i �K · r)

∑
�Gf , �Gi

A∗ �Gf
A �Gi

exp[−i( �Gf − �Gi) · �r]d2r, (A5)

where �Gf,i = Gf,i x̂ + Ḡf,i ŷ, where x̂ and ŷ are unit vectors in the x and y directions, respectively, �Gi is the reciprocal lattice
vector for the electron wave function before scattering, and �Gf is the reciprocal lattice vector of the electron wave function after
scattering by the water molecule. Since �r0 = r0ẑ, where the z direction is along the radius of the tube, this integral becomes

M�kf ,�ki ,α
= e

2π2
ke

∫
dkz

LC
exp(−ikzr0)

∑
AGf ,Ḡf ,α

∗AGi,Ḡi ,α

(
(Qxpx + Qypy + kzpz

Q2
x + Q2

x + k2
z

)

= e

2π2LC
ke

∑
AGf ,Ḡf ,α

∗AGi,Ḡi ,α(pxQx + pyQy − iQpz)
exp(−Qr0)

Q
, (A6)

where �Q = (K + G)x̂ + Ḡŷ, where G = Gf − Gi and Ḡ = Ḡf − Ḡi after doing the integral over kz. There is also a small form
factor to account for the finite thickness of the walls, which is not included here, since it does not have a significant effect on the
results. Then, averaging the square of the absolute value of M�kf ,�ki

over all directions of �p, we obtain

∣∣M�kf ,�ki ,α

∣∣2
av

= e2p2

12π4L2C2
ke

2
∑

�Q

∣∣A �Gf ,α|2∣∣A �Gi,α
|2

(
Qx

2 + Qy
2 + Q2

Q2

)
exp[−2Qr0]

= e2p2

6π4L2C2
ke

2
∑

�Q

∣∣A �Gf ,α

∣∣2∣∣A �Gi,α

∣∣2
exp[−2Qr0], (A7)

since Q2 = Q2
x + Q2

y . The band structure at the bottom of the conduction band in a carbon nanotube wall can be approximated

by an effective mass approximation εα(�k) ≈ gα + h̄2k2/(2mα), where mα is the effective mass and gα is the band gap between
the αth and the (α + 1)st band.

Then, Eq. (7) in the text becomes

f v = 2π

h̄
(4π )2ke

2
∑
�kf ,�ki

e2p2

6π4L2C2

∑
�Gi, �Gf ,α

∣∣A �Gf ,α

∣∣2∣∣A �Gi,α

∣∣2
exp[−(2Q)r0]

∫
dkidkf h̄2/(2mα)

(
k2
f − k2

i

)

× δ
[
(h̄2/2mα)

(
k2
f − k2

i

) ∓ h̄vQx

][
exp

(
μ − gα − h̄2ki

2/2mα

kBT

)
− exp

(
μ − gα − h̄2|�ki + �K|2/2mα

kBT

)]
, (A8)

where f is the force exerted on the tube by the water molecule and v is the water molecule’s velocity. The index α labels the
various sub-bands that arise from the rolling of a graphene sheet into the nanotube and gα is the energy difference between the
center of the α = 0 gap and the bottom of the αth sub-band. The summation over is over all �ki and �kf within the each band and
μ is the chemical potential. Then, converting the summations to integrals in the standard way, this expression becomes

f v = 2π

h̄

(4π )2

(2π )2 ke
2
∫∫

dkidkf

e2p2

6π4C2

∑
�Gi, �Gf ,α

∣∣A �Gi,α

∣∣2∣∣A �Gf ,α

∣∣2
exp[−(2Q)r0]

× (h̄2/(2mα))
(
k2
f − k2

i

)
δ
[
(h̄2/2mα)

(
k2
f − k2

i

) ∓ h̄vQx

] (h̄2/2mα)
(
k2
f − k2

i

)
kBT

exp

(
μ − gα − h̄2ki

2/2mα

kBT

)
. (A9)

We may change integration variables in the integral over �kf to an integral over K giving

f v = 2π

h̄

(4π )2

(2π )2 ke
2
∫∫

dkidK
e2p2

6π4C2

∑
�Gi, �Gf ,α

∣∣A �Gi,α

∣∣2∣∣A �Gf ,α

∣∣2
exp[−2Qr0]

× δ
[
(h̄2/2mα)

(
(ki + K)2 − k2

i

) ∓ h̄V Qx

] h̄2V 2Qx
2

kBT
exp

(
μ − gα − h̄2ki

2/2mα

kBT

)
. (A10)

Integrating over K , we obtain

f v = h̄−1
∫

dki

2e2p2

3π3C2
ke

2
∑

�Gi, �Gf ,α

∣∣AGi,α

∣∣2∣∣A �Gf ,α

∣∣2
exp[−2Qr0]

× 2mα

h̄2[(ki − mαv/h̄)2 + 2mαvG/h̄]
1/2

h̄2v2Qx
2

kBT
exp

(
μ − gα − h̄2ki

2/2mα

kBT

)
. (A11)
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FIG. 2. An illustration of the calculation in Eq. (A12).

For a semiconducting nanotube, μ = (1/2)g. We can re-
place exp[−2Qr0] ≈ exp[−Gr0], where G is a reciprocal
lattice vector (which is of the order of 1010 m−1), by its average
over the cross-sectional area of the tube, illustrated in Fig. 2
given by

〈exp[−Gr0]〉 = (πR2)−12
∫ 2R

0
dz[R2 − (R − z)2]

1/2

× exp(−Gz) = 4

πGR
. (A12)

In the summations in Eq. (A11), we may neglect the depen-
dence on K of all of the quantities in Eq. (A11), which depend
on the components of the Q vectors in Eq. (A11) since |K| is
much smaller than the smallest reciprocal lattice vector, and
hence the integral over ki is to a good approximation given by

I = 2
∫ ∞

0
dki

exp
(−h̄2k2

i /2mαkBT
)

[(ki − mαv/h̄)2 + 2mαvG/h̄]
1/2

=
∫ ∞

0

exp[−mαv2x2/2kBT ]dx

[(x − 1)2 + 2h̄G/mαv]
1/2

=
∫ ∞

−∞
dy

exp(−y2)

[(y − b)2 + a]
1/2 , (A13)

where x = h̄ki/mαv, y = (mv2/2kBT )1/2x, a = (h̄vG/

kBT ) ≈ 10−1, and (mv2/2kBT )1/2 ≈ 10−11. When I is
evaluated with these parameters, it is about equal to 24. All of
the functions of the components of the Q vectors in Eq. (A11)
can to a good approximation be considered constants.

In Ref. [19], it is shown that mα = (α ± 1/3)m0 and gα =
(α ± 1/3)g0, where α is an integer that runs from 0 to ∞, g0 =
(2/3)h̄vF /R and m0 = h̄/(vF R), where vF is the graphene
Fermi velocity. Then, the friction coefficient for a single water
molecule,

λ=f/v≈ 4

3π3h̄

e2p2G2

C2
ke

2
∑

α

mα

kBT
I

∑
�Gi, �Gf ,α

∣∣AGi,α

∣∣2∣∣A �Gf ,α

∣∣2

×〈exp[−2Qr0]〉 exp(−gα/2kBT )

= 8

3π3h̄

e2p2

C2
ke

2 4G

πR

I

kBT

∑
α

mα exp(−gα/2kBT ). (A14)

In order to get the friction coefficient per unit area for the
total force of friction acting on the tube, we must multiply this
by

(1/2)ρπR2L/(2πRL) = (1/2)ρR, (A15)

where ρ is the number of water molecules per unit volume and
L is the length of the nanotube. Performing the summation
over α, neglecting the dependence of the sums over the A �Gf,i ,α

coefficients, we find that the friction coefficient has the form

λtot = λ0x
∑
α,±

(α ± 1/3) exp[−(α ± 1/3)x]

= λ0x

[
(1/3) exp(−x/3) + (2/3) exp(x/3)

[1 − exp(−x)]2

+ exp(−x/3) + exp(x/3)

1 − exp(−x)

]
, (A16)

where

λ0 = 16

3π4
ke

2e2p2m0ρIC−2
∑
�Gi, �Gf

∣∣A �Gi,α

∣∣2∣∣A �Gf ,α

∣∣2 G

kBT
,

where G = Gf x − Gix , is treated as a constant (i.e., the
α dependence is neglected) and x = g0/(2kBT ). With
G ∼ 1010 m−1 and m0 = 1.25 × 10−32 kg and C = 94.2 ×
10−9 m, their values for R = 15 nm, and ρ = 0.334 ×
1029 m−3, and we assume that

∑
�Gi, �Gf

|A �Gi,α
|2|A �Gf ,α|2 ∼ 1,

we obtain a value for λ0 of the order of 1.34 × 1012 Ns/m3.
While for this value of λ0, Ls0 = η/λ0 = 0.746 × 10−15 m,
meaning that λ0 is too large to give a slip length of 300 nm,
the above calculation does not include dielectric screening of
the interaction of the water with the electrons in the tube walls
and we do not know the electron wave functions well enough
to calculate

∑
�Gi, �Gf

|A �Gi,α
|2|A �Gf ,α|2 correctly. The product of

C−2 and the summation over �Gi and �Gf is nearly independent
of C, if the tight binding approximation accurately describes
the wave functions because, as was stated earlier, the Fourier
coefficients of the wave functions, A �Gf,i ,α

are proportional to
Fourier transforms of carbon atomic wave functions evaluated
at wave vector �Gf,i . Therefore, the summation over the y com-
ponents of �Gf,i is restricted to a limited range of magnitudes
by this function (because it falls off with increasing values of
�Gf,i) and the spacing of successive values of �Gf,i is equal to
2π/C. Then the slip length

Ls = η/λ = (Ls0/x)

[
(1/3) exp(−x/3) + (2/3) exp(x/3)

[1 − exp(−x)]2

+ exp(−x/3) + exp(x/3)

1 − exp(−x)

]−1

, (A17)

where Ls0 is treated as a constant to be chosen so as to best
reproduce the data (since we do not know the precise values
of the Fourier coefficients of the wave functions, A �G,α) and
η is the water viscosity. It is easy to show from the results
of Ref. [19] that both m0 and g0 are inversely proportional to
R and g0R/(kBT ) = 8.26 nm. If we choose the value of Ls0,
which gives Ls = 300 nm for R = 15 nm, we get Fig. 1 in
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the text, which exhibits an increase of Ls from about 120 nm
at R = 50 nm to 300 nm. In Secchi et al.’s paper (Ref. [4]),
however, Ls drops to about 17 nm at R = 50 nm. If one takes
into account impurity scattering of the electrons, it is easy
to account for this apparent discrepancy by the fact that at
R = 50 nm, even for a mean free path as large of 50 nm, the
width of the electron states resulting from impurity scattering
is larger than the bandwidth. Thus, there is no longer a band
gap, and hence λ is expected to be much larger than it would be
if there were a nonzero gap. This will lead to a much smaller

slip length than would occur with a nonzero gap. Although
the numerical value of Ls0 determined from the parameters in
Eqs. (A14) and (A15) is too small (it should be of the order of a
nanometer), this is not unexpected, since we do not have precise
information about the expansion of the conduction electron
wave functions in a Fourier series. The use of Eq. (1) in the
text, despite the fact that we are using the average value of the
water velocity, rather than its value at the wall, is valid when
Ls is large compared to R because for large Ls the average
value of v is nearly equal to its value at the tube wall.
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