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Liquid phase stabilization versus bubble formation at a nanoscale curved interface
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We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface
using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van
der Waals–diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown
to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions
are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited
influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface
from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.
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I. INTRODUCTION

A number of potentially transformative technologies rely on
energy and momentum transfer between a hot, nanostructured
solid and a surrounding fluid [1,2]. These span applications
as diverse as plasmonic photothermal cancer therapy [3–6],
photocatalysis [7,8], solar-powered water desalination [9–12],
and physicochemical separations [13]. Metallic [14,15], metal-
dielectric structured [16], and/or molecularly functionalized
nanoparticles (NPs) [17,18] have been studied as candidates for
many of these applications. Nanoscale cavitation-oscillation
[19–23] and phase-change phenomena [24] have been re-
ported, but a simple thermodynamic criterion for vapor bubble
formation, analogous to nanocrystal nucleation in a melt [25]
(or cavitation from a bulk fluid), is conspicuously lacking.
While it is known that interfacial forces and molecular structure
affects heat transport [26,27], the roles of interfacial energies,
viscous dissipation, and phase change near nanoscale inter-
faces [24,28–30] remain somewhat unclear.

Nanoscale-confined phase stabilization due to surface-fluid
interaction has been predicted under a variety of circumstances
(see [28,29] for example). However, the phase stability of a
liquid layer surrounding small gold nanoparticles observed in
molecular dynamics simulations [24,30] is quite curious; it is
not a priori clear how the curvature of a convex solid-fluid
interface would stabilize the heated fluid against vaporization.
One hypothesis is that the Laplace pressure required to sustain
a stable bubble of small radius is too high and this suppresses
vapor formation at the interface [24]. Here we examine the
issue by considering both equilibrium vapor formation criteria
and nonequilibrium hydrodynamic calculations. However, we
frame the discussion in terms of interfacial energies, rather
than Laplace pressure [25].

*jschiffb@nd.edu
†Corresponding author: tluo@nd.edu

II. EQUILIBRIUM THERMODYNAMICS

To gain some intuition into the roles of geometry via
surface forces, we first consider the equilibrium nucleation
of a vapor layer of thickness δ̃r [31] from a liquid at uniform
temperature T̃ surrounding a particle of radius r̃ (see Fig. 1).
We follow a similar line of thinking employed to understand
the thermodynamics of nanoparticle nucleation in a melt [25].
The change in Gibbs free energy is the (reversible) free energy
change associated with an input heat of T̃ �S̃LV turning liquid
near an existing solid-liquid interface into a vapor layer with
a solid-vapor and a liquid-vapor interface. By considering the
difference in Gibbs energy per mole between the final state of
thin vapor layer + bulk liquid + solid-vapor + liquid-vapor
interfaces and the initial state of bulk liquid + solid-liquid
interface, then multiplying by the number of moles of vapor
contained in a thin spherical shell of thickness δ̃r , one obtains

�G̃total = 4π

3

(�H̃LV − T̃ �S̃LV)(R̃3 − r̃3)

ṼV

+ 4π

[
γSV(R̃3 − r̃3)

r̃
+ γLV(R̃3 − r̃3)

R̃

ṼL

ṼV

− γSL(R̃3 − r̃3)

r̃

ṼL

ṼV

]
. (1)

Here, R̃ = r̃ + δ̃r , and the phase (solid, liquid, vapor) for the
molar volumes Ṽ changes in enthalpy H̃ and entropy S̃, as well
as interfacial tensionsγ , are denoted by respective subscriptsS,
L, and V . Minimizing Eq. (1) with respect to radius r̃ , keeping
terms to leading order in δ̃r , and using Young’s equation, γSV =
γLV cos θ + γSL, yields a critical particle radius for formation
of a thin vapor layer (δ̃r � r̃),

r̃cr = γLV(5ṼV cos θ + 3ṼL) + 5γSL�ṼLV

−2(T̃ �S̃LV − �H̃LV)
. (2)

Consider Eq. (1) with γLV = 3.4 mN/m (argon) for a range of
contact angles (with respect to the flat equilibrium interface)
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FIG. 1. Schematic of coordinates for system showing inner sur-
face at r , vapor bubble between r and R, and the bulklike liquid. Note
that d is chosen to be large enough that any pressure waves reflected
from the outer boundary, where the pressure is held constant, do not
have sufficient time to return to the bubble region during the course
of simulation.

and ratios of γSL/γLV (see Fig. 2). Increasing the solid-
fluid surface energy corresponds to a higher barrier-to-vapor
formation for radii below �G̃total = 0 and greater release of
energy above. Similarly, hydrophilic surfaces, θ < π/2, have
a higher barrier to vapor-layer formation than hydrophobic
surfaces, θ > π/2, and result in a smaller release of energy
for spontaneous transition.

Comparing the mercury-liquid interfaces for several liquids
with various liquid-vapor interfaces [32], the solid-vapor and
solid-liquid interfacial energies for fluid-metal interfaces can
be estimated to be about an order of magnitude larger than
typical liquid-vapor interfacial energies. Below the critical
temperature Tc, the ratio of molar volumes will be < 1;
for example, argon has ratios ranging from 10−3–10−1 up
to about T = 0.85Tc (128 K) [33]. So the solid-liquid and
liquid-vapor contributions to Eq. (1) are generally smaller
than the solid-vapor contribution. The critical radius (inset,

FIG. 2. The Gibbs free energy change, Eq. (1), at T = 0.85Tc

for argon on a goldlike nanosphere for δ̃r = 1 nm, for hydrophilic
(θ = 1.26 rad) and hydrophobic (θ = 1.57 rad) surfaces with different
strengths of solid-fluid interaction, as determined by γSL/γLV. (Inset)
The critical radius estimates for the same angles as a function of
γSL/γLV.

Fig. 2) increases with increasing solid-vapor interfacial energy.
Even in the limit of vanishing liquid-vapor interfacial tension,
a nonzero solid-vapor interfacial energy can inhibit vapor
formation. Thus the dominant factor in vapor formation is not
the liquid-vapor interfacial energy, in agreement with [34], but
rather the energetic cost of creating the solid-vapor interface.

The energetic criterion for reversible formation of a va-
por layer in a uniformly heated liquid is given by Eq. (1).
However, an initially cold liquid in contact with a hot particle
will undergo heating, expansion, and phase change. Viscous
dissipation has been shown to play an important role in
nonequilibrium bubble dynamics [35], so the Gibbs approach
can provide a lower bounds for the energy required to nucleate a
bubble. But a nonequilibrium theory is required to shed light on
the dynamics of vaporization in an initially cool liquid placed
in contact with a hot solid.

III. NONEQUILIBRIUM THERMODYNAMICS

Because the diffuse-interface–dynamic van der Waals the-
ory [36–43] has been used previously to study bubble dynamics
[23,35], in good agreement with the classical Rayleigh-Plesset
equation, molecular dynamic (MD) simulations [21], and
experiments [19] of bubble growth and collapse, we adopt a
variation on this model. We wish to isolate the roles of viscous
dissipation, capillary forces, and interfacial curvature on the
phase change and heat transfer properties of the fluid from
considerations of energy transport and capacity of the solid.
Therefore we consider the evolution of an initially uniform
fluid held between rigid, impenetrable surfaces of infinite
interfacial conductance (see Fig. 1) in thermal equilibrium with
infinite capacity baths at fixed temperatures T (r) = 0.85Tc and
T (r + d) = 0.56Tc.

The model is formulated using hydrodynamic conserva-
tion equations for mass, momentum, and energy [40–42]
supplemented by appropriate boundary conditions. The (di-
mensional) governing equations are as follows, with the ‘ ˜ ’
denoting dimensional variables: Continuity,

∂t ñ + ∇ · (ñṽ) = 0, (3)

where ñ is the number density. The fluid velocity ṽ is given by

Mñ(∂t ṽ + ṽ · ∇ṽ) = −∇ · (P̃ − D̃), (4)

with molecular mass M , pressure, and viscous dissipation
tensors P̃ and D̃, respectively. The temperature is governed
by

c̃v(∂t T̃ + ṽ · ∇T̃ ) = −�̃∇ · ṽ + ∇(λ∇T̃ ) + D̃ : ∇ṽ, (5)

with thermal conductivity λ and the Clapeyron coefficient de-
fined �̃ = T̃ (∂P̃bulk/∂T̃ )n. Elementwise, the dissipation tensor
is

D̃i,j = η
(
∂i ṽj + ∂j ṽi − 2

3∇ · ṽδ̂i,j

) + μ∇ · ṽδ̂i,j , (6)

where η and μ are the shear and bulk viscosities, and δ̂i,j is the
Kronecker δ.

The one-density van der Waals theory includes a
density gradient contribution to the free energy density
[38,42,43]. Thus pressure tensor elements are defined
with a gradient contribution as P̃i,j = [ñkBT̃ /(1 − �oñ) −
ε�oñ

2 − CT̃ ñ∇2ñ + CT̃ (∇ñ)2]δ̂i,j + CT̃ ∂iñ∂j ñ, where �o
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and ε are the Lennard-Jones (L-J) volume and well depth,
respectively, kB is the Boltzmann constant, and C is the density
gradient coupling parameter, which we discuss subsequently.

Rather than using the full three-dimensional formulation,
we neglect angular nonuniformity in surface temperature and
restrict ourselves to cases with radial symmetry. The diver-
gence operator is then written Dm[ϕ(x)] = x−m∂x[xmϕ(x)],
with m = 0 representing planar and m = 2 spherical sym-
metry. The specific heat is written c̃V = 3kBñ/2, and the
Clapeyron coefficient is obtained from the bulk (dimension-
less) pressure P = nT/(1 − αn) − 27

8 αn2. We further assume
η ≈ μ = νMñ with a constant kinematic viscosity ν for
simplicity. This also permits control of viscous dissipation
in a convenient way. The thermal conductivity is taken to be
λ = kBνñ, following [43].

This permits the reduction of the full model, Eqs. (3)–(5),
to a set of dimensionless, one-dimensional (1D) governing
equations:

∂tn + Dm[nv] = 0 (7)

and

n∂tv + nv∂xv = Dm[Dxx − Pxx], (8)

where

Dxx − Pxx = 9

8
αn2 − 1

3

nT

1 − αn
+ δnT

(
m∂xn

x
+ ∂2

xxn

)

− 3

2
δT (∂xn)2 + 7

3
βn∂xv + 1

3

mβnv

x
(9)

and the temperature profile is given by

3

2
n∂tT = Dm[βn∂xT ] − nT

1 − αn
Dm[v] − 3

2
nv∂xT

+ 7

9
βn(∂xv)2 + 1

9

mβnv∂xv

x
. (10)

The L-J parameters for argon, ε = 7.033 × 10−21 J and
�

1/3
o = 0.345 nm, set the energy and length scales. The number

density is scaled by the liquid bulk number density nLB

at pressure 100 kPa and temperature T = 0.56Tc, where Tc

normalizes the temperature. Velocity and time scales may then
be defined vo = √

3kBTc/M = 97 m/s and τo = �
1/3
o /vo =

3.5 ps. Assuming a constant kinematic viscosity ν, three
dimensionless parameters describe the dynamics: the excluded
volume fraction α = �onLB, an inverse Reynolds number
β = ν/�

1/3
o vo controlling viscous dissipation and thermal

conductivity, and a capillarity parameter δ = CnLB/3kB�
2/3
o .

The gradient coupling parameter C is related to the equilib-
rium liquid-vapor surface tension through the action integral
over the density [38,44], assuming C is a constant [23,35,43].
Note, however, for typical substances [33], the values of
C thus obtained vary by over an order of magnitude with
temperature. While n, P , and T are held constant at the
exterior (cold) boundary, the interior boundary condition,
∂xn|x=r = −χ/T (r), accounts for adsorption at the solid
surface where χ = φo�

1/3
o /CTcnLB with wetting potential

φo [35,43]. φo can be related to the contact angle for the
appropriate liquid-vapor-solid equilibrium for a flat interface
[35], again assuming independence of state. For simplicity, we

FIG. 3. Heat flux into hot boundary for varying inner radius rnp .
The calculation uses a fixed kinematic viscosity 1.67 × 10−6 m2/s,
with α = 0.208, β = 47.192, δ = 10−3, and χ = −10−3.

treat β, δ, and χ as free parameters with a range informed
by data for argon [33]. A more physically realistic model
would include a state-dependent viscosity (see for instance
[23]). But for a constant capillary coupling across the range
of physically reasonable values for viscosity [33], bulklike
energy and momentum transport will dominate the leading-
order dynamics over capillary forces.

To simulate evolution of an initially uniform fluid of
temperature T = 0.56 and density n = 1.005 in contact with
a nanocurved surface of infinite heat capacity and infinite
interfacial conductance (see Fig. 1 main text), the governing
equations are solved numerically on a 1D grid for several values
of boundary radius r with m = 0,2. The boundary conditions
are T (r,t) = 0.85 and T (d + r,t) = 0.56, P (x,0) = P (d +
r,t) = 0.0059 (about 0.7 MPa), n(d + r,t) = 1.005, v = 0 at
both interfaces.

For preliminary runs, we choose parameters from the lower
end of the range, δ = 10−9 and δ = 10−3, and χ = −10−3

(weakly hydrophilic surface with low capillary contribution).
The input heat flux, −βn∂xT (x = r), is evaluated as an average
over the first few grid points and plotted in Fig. 3. However,
numerical solutions were obtained for a range of parame-
ters, δ ≈ 10−9–10−1, ‖χ‖ ≈ −10−3–10, and β ≈ 10–102. We
present results illustrating the general conclusions, as well as
a few interesting cases. Overall, the heat flux into interfaces
with smaller radii is higher, as might be expected from purely
geometric effects, and the heat flux response with increasing
radius is seen to approach the planar m = 0 case in the limit
r → ∞.

Here we summarize and discuss the main results and
compare them to the Gibbs model. Density profiles n(x,t)
are shown in Fig. 4 for several different inner radii r at
t = 3500 for δ = 10−3 and weakly hydrophilic surface, χ =
10−3. The density for r = 50 (about r̃ = 18 nm) does not
exhibit vapor formation. Instead, a layer of high-density liquid
forms adjacent to the heated surface. For larger radii (between
150 � r � 200), a liquid-vapor interface begins to develop.
As r increases, the spherical m = 2 model approaches planar
m = 0 behavior. The model predictions are within a reasonable
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FIG. 4. Density profile at t = 3500 vs x, the radial distance
from the particle surface see also (1) for several different inner
radii r showing liquid phase stabilization at small radius and bubble
formation and expansion at large radius, converging to the planar
case as r → ∞. The viscosity is ν = 1.67 × 10−6 m2/s and α =
0.208, β = 47.192, δ = 10−3, and χ = −10−3, a weakly hydrophilic
surface.

range of Gibbs radius for argon with weak surface-liquid forces
(see Fig. 2 inset.)

Since δ ≈ O(γ 2
LV), the range δ = 10−9–10−1 corresponds to

a range of 4 orders of magnitude in equilibrium liquid-vapor
energy. Physically reasonable values for argon are at the
upper end of this range. Changing δ alone has no appreciable
effect on vapor layer formation. However, modest change in
β has a pronounced effect (Fig. 5). This is unsurprising. The
capillary terms in Eq. (9) give higher-order contributions to
the dynamics. In the present model, nonequilibrium phase
stabilization originates in the x−1 radial contribution to the
viscous dissipation and thermal conductivity, represented by
the last terms in each of Eqs. (9) and (10), respectively. In the
limit r → ∞, the radial component of the dissipation vanishes
and a vapor layer forms regardless of β.

FIG. 5. Several snapshots of the temperature profiles for βo =
47.192 and 0.25βo, and χ = −10−3. Inset shows a comparison of the
density profiles near the interface for t = 1000. Calculations for a
range of δ = 10−9–10−1 show essentially the same behavior.

IV. DISCUSSION AND CONCLUSIONS

Though we cannot directly compare the equilibrium Gibbs
formulation and the nonequilibrium formulation, we may use
the former to gain some deeper insight into the latter. For
larger β and/or smaller r , heat conduction near the interface
is rapid, resulting in a broader temperature distribution, and
dissipative losses are high (Fig. 5). According to the Gibbs
formulation in Eq. (1), the magnitude of the free energy
change required for layer formation at a subequilibrium radius
increases with increasing thickness δ̃r of the hot layer. This
suggests, despite the local temperature, the fluid close to
the interface cannot accumulate enough internal energy to
undergo phase change. The liquid-vapor interfacial tension, via
realistic values of the capillary parameter, however, appears
to have little effect on the dynamics of the model, whereas
the viscosity and thermal conductivity, which give rise to
dissipative dynamics, obviously do not appear in the Gibbs
formulation. Nonetheless, the picture which emerges from the
nonequilibrium calculations is consistent with the equilibrium
criterion inasmuch as the dissipative terms compete with the
creation of the solid-vapor interface.

Following Lombard et al. [35], the solid-fluid forces are
parameterized by the contact angle, yielding a wetting potential
φo [43]. The model does not predict a phase stabilization
effect based on the variation of χ alone, and vapor-layer
formation was affected primarily by β and r . The wettability,
parameterized by χ , influences interfacial heat transfer via the
establishment of short-range density gradients (see Fig. 6),
increasing or decreasing local conductivity. Hydrophilic sur-
face interactions show enhancement over neutral interfaces,
while hydrophobic interfaces result in reduced heat transport,
in qualitative agreement with analytic [45] and molecular-
dynamics [27,46] results.

There is some question regarding the ability of a continuum
model to capture the physics of a fully-developed liquid-vapor
interface of thickness approaching molecular dimensions [47].
But this is not critical for initial vapor formation and early
dynamics. The gradients ∂xn are initially small and the
dissipation terms are dominant over capillary forces, since
physically realistic δ < β by roughly 2 orders of magnitude
across the temperature range [33]. Regarding surface forces,
despite qualitative agreement with other results, the present
treatment seems inadequate. Estimating the range of surface
forces by the extent of hydrophobic and hydrophilic boundary
layers, there is no influence beyond about the L-J minimum,
21/6�

1/3
o . This is consistent with the repulsive component

of a typical surface force, but the range of attractive forces
is larger. Moreover, a continuous gradient cannot exist on a
molecular length scale, except as an average over fluctuations.
Lastly, the relationship between θ and φo [35] is based on the
three-phase equilibrium [38,44] but includes only two of the
four equilibrium parameters appearing in Young’s equation.

The liquid density near the interface in the r = 50 case (see
Fig. 4) is high compared to atomistic simulations [24,30] and
the apparent minimum radius about an order of magnitude
larger than determined by MD [30]. But the two pictures
agree qualitatively; there is a particle radius below which
a superheated liquid layer remains at the interface and the
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FIG. 6. Heat flux (top) and interfacial density profiles (bottom) for
strongly hydrophilic, χ = 10, strongly hydrophobic, χ = −10, and
neutral, χ = 0, interfaces. Inset shows a comparison of the density
profiles near the interface for t = 1000. Calculations are shown for
δ = 10−2. The surface interaction enters in the capillary terms and is
much weaker for small δ.

liquid-vapor interface does not form. The discrepancies are
attributed to surface-fluid interactions, as well as variation
in viscosity with temperature. Interestingly, a number of ex-
perimental [48] and first-principles simulations [49,50] show

modulation of the effective solvent viscosity and mass transport
near nanoscale solid-fluid interfaces. While the correspon-
dence between the solid-fluid and the liquid-vapor interfacial
contribution to the Gibbs energy is clear, the nonequilibrium
model makes no distinction, except through viscosity, thermal
conductivity, and density. Two important aims of ongoing
work motivated by these results are to clarify the relationship
between viscosity and thermal conductivity and to better un-
derstand the influence of surface-fluid forces via the inclusion
of a body-force term in comparison to molecular simulations.

In conclusion, both equilibrium and nonequilibrium argu-
ments demonstrate the critical factor in bubble formation is
the cost of creating the solid-vapor interface, rather than the
energetic cost of liquid-vapor interfacial formation. Further-
more, it was demonstrated that rapid heat conduction and vis-
cous dissipation near the curved interface can prevent bubble
formation. The relationship between viscous dissipation and
interfacial forces is of fundamental and practical interest for
nanoscale systems, where fluctuations and molecular struc-
ture play important roles near interfaces, yet a continuum
theory still captures the essential dynamics of the overall
system.

The results suggest that one can optimize nanoscale solid-
fluid heat transfer and control nanoscale boiling by tailor-
ing both geometry and surface properties, which affect the
structure, and hence viscosity, of adjacent fluid layers [27].
The Gibbs criterion predictions regarding heat and momentum
transfer at hydrophobic vs hydrophilic nanocurved surfaces
can be tested. This would not only be of fundamental interest,
but regarding applications such as cancer plasmonic photother-
mal therapy (PPT), solar desalination, or separations, con-
trolling particle interfacial thermal and momentum transport
through a combination of particle size and surface properties
is of great practical value.
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