
PHYSICAL REVIEW E 97, 033103 (2018)

Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder
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In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid
cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional
model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which
fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal
to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to
drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the
cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium
positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper,
with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure
nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.
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I. INTRODUCTION

When an object is immersed in a sound field, it is subject to
the radiation force caused by the transference of momentum
flux from the wave to the body. The transference occurs only
under the condition of different acoustic impedances between
fluids and the object. Additionally, the body also experiences
the Stokes drag force from the suspending medium, which is
set in motion by the generation of acoustic streaming. The two
forces are the basic mechanism of acoustophoresis [1–5] and
have received great attention with the development of micro-
fabrication technologies allowing for integration of ultrasound
resonators in microfluidic systems in recent years. In ideal
fluids, no mean momentum flux is spent in generating acoustic
streaming and, only the radiation force is left acting on the
object. Thus, the theoretical development of acoustic radiation
force is significant for better applying acoustophoresis in many
applications to manipulate particles.

In the past decades, many investigations were conducted
in the field of acoustic radiation force. In 1934, King [6]
analytically studied the radiation force exerted by plane waves
on a rigid sphere suspended in nonviscous fluids in the long-
wavelength limit where the radius was far smaller than the
wavelength. Based on this seminal contribution, the theoretical
study of the radiation force was later extended to take into
account viscosity [7,8], temperature [9], elasticity of objects
[10], and acoustic streaming [11,12]. Compared with spher-
ical structures, cylindrical objects received less attention in
the research of acoustic radiation force. Furthermore, many
objects in particle manipulations can be treated as cylindrical
structures such as nanowires [13], nanotubes [14], muscle cells
[15], and fibers [16]. Therefore, it is meaningful to do extensive
research on the radiation force acting on cylinders.

*chhw@mail.xjtu.edu.cn

The first theoretical study on acoustic radiation force in-
cident on cylinders dates back to the early work done by
Awatani [17], who derived an exact formula for the force due
to plane progressive waves on a rigid cylinder with restrictions
on the radius. Hasegawa [10] extended the radiation force
theory for elastic cylinders and imposed no restrictions on the
radiuses by the near-field direction approach. Wu [18] not only
calculated the radiation force on a rigid cylinder exposed to
plane standing waves, but also did an corresponding experi-
ment to verify the result. Wei and Marston [19–23] developed
general theoretical schemes for calculating the radiation force
exerted on cylindrical structures in plane standing waves and
carried out experiments to verify the schemes. Mitri [24–27]
further developed the theory to include absorbing cylinders,
viscoelastic cylinders, and coated cylindrical shells.

Previous researchers did much work in the theory of acous-
tic radiation force on cylinders due to plane traveling waves
(PTWs) and plane standing waves (PSWs). As far as the authors
know, none of them theoretically studied the radiation force
exerted on cylinders in the standing surface acoustic waves
(SSAWs). As sketched in Fig. 1(a), the SSAW is formed by two
traveling surface acoustic waves (TSAWs), each propagating
from the substrate into fluids at an angle (i.e., Rayleigh angle)
[28]. The SSAW-based microfluidic techniques have become
increasingly popular for the advantages of less requirements,
label-free operation, good biocompatibility, compact size,
and easy integration with other devices. Great potential has
been shown in a wide variety of microfluidic applications
such as forcing particles [29], cell enrichment [30], droplets
generation [31], sorting particles [32–34], and patterning cells
[35–37]. Although the SSAW-based applications receive great
attention, the theory used in this field is still based on plane
standing waves. As technological development pushes for
higher accuracy, and more refined SSAW-based applications, it
is extremely necessary to model the radiation force on particles
in the SSAW.
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FIG. 1. (a) Two TSAWs generated by a pair of IDTs propagate
towards each other. (b) In the microchannel, a cylinder whose axis
is perpendicular to the wave vectors of the two TSAWs. A local
cylindrical coordinate system (r,θ,z) is built at the instantaneous axis
of the cylinder. Additionally, the positive x direction in the global
Cartesian coordinate system is normal to the piezoelectric substrate,
while the positive y direction is parallel to the substrate.

In this work, a model of acoustic radiation force exerted by
the SSAW on a rigid cylinder is revised, where the Rayleigh
angle is considered to accurately describe the radiation force.
Theoretical study of the model is started from the perturbation
theory of the Navier-Stokes equations. The scattering coeffi-
cient is calculated to determine the first-order velocity based
on the boundary condition. Ignoring viscosity, we compute the
radiation force according to the near-field derivation approach,
which was applied by Hasegawa [10] in the calculation of
the acoustic radiation force stemming from plane waves on
an elastic solid cylinder. As Hasegawa, Wei, and Mitri did in
previous papers [10,19,24], we introduce the acoustic radiation
force function to describe the force. As sketched in Fig. 1(a),
when Rayleigh angles equal 0◦ and 90◦, the SSAWs degenerate
into PTWs and PSWs, respectively. The analytical expressions
obtained from the revised model in the two special Rayleigh
angles can reduce to the formulas derived in the corresponding
waves. Numerical calculations are carried out to illustrate
the Rayleigh angle effects on the radiation force incident on
cylinders.

II. THE SOUND FIELD OF THE REVISED MODEL

A. Basic derivation for the sound field

In this model, a rigid cylinder is immersed in ideal flu-
ids. Without incident waves, the motion of ideal quiescent
fluids can be described by the following Navier-Stokes equa-
tions [38]:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1a)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p, (1b)

where ρ is the fluid density, u describes the velocity field, and
p denotes the pressure.

When an incident wave transports into the bulk medium,
additional parts are written based on perturbation theory:

ρ = ρf + ρ1 + ρ2, (2a)

p = pf + p1 + p2, (2b)

u = 0 + u1 + u2, (2c)

where we consider the perturbations to first and second
order (subscripts 1 and 2, respectively). The stationary parts,
denoted by quantities with subscript f , represent the undis-
turbed properties of fluids. Both the incident and scattering
waves are first-order quantities which are extremely small
compared with the equilibrium ones.

The first-order quantities are harmonic in time with angular
frequency ω, resulting in a zero net force over a period.
However, the second-order quantities yield a nonzero value
on time averaging, and in fact they contribute to the radiation
force. Because the time-averaged second-order quantities are
written in terms of the first-order ones, it is necessary to solve
linearized Navier-Stokes equations:

∂ρ1

∂t
+ ρf ∇ · u1 = 0, (3a)

ρf

∂u1

∂t
= −∇p1. (3b)

In an adiabatic condition, the pressure depends only on
density as p = p(ρ). Thus, it can be expressed by p(ρ) =
pf + (∂p/∂ρ)sρ1 on perturbation expansion. The derivative
is related to the speed of sound by (∂p/∂ρ)s = cf

2. Con-
sequently, the relation between the first-order pressure and
density can be expressed by

p1 = cf
2ρ1. (4)

Similarly, the time-averaged second-order Navier-Stokes
equations are obtained by inserting Eq. (2) into Eq. (1) and
averaging all second-order terms on time as

ρf ∇ · 〈u2〉 + ∇ · 〈ρ1u1〉 = 0, (5a)〈
ρ1

∂u1

∂t

〉
+ ρf 〈u1 · ∇u1〉 = −∇〈p2〉, (5b)

where a time-averaged quantity 〈X〉 represents the quantity
X(t) averaged over a full oscillation period τ :

〈X〉 = 1

τ

∫ τ

0
X(t) dt. (6)

The time-averaged second-order pressure can be derived
from Eq. (5) (to learn more details about the derivation, see
Ref. [38]):

〈p2〉 = 1

2ρf c2
f

〈
p2

1

〉 − 1

2
ρf

〈
u2

1

〉
. (7)

B. Evaluating the sound field of the revised model

The SSAW is produced by a pair of identical interdigital
transducers (IDTs) fabricated on the piezoelectric substrate.
The IDTs generate two TSAWs with the speed of sound cs
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propagating towards each other. When fluids make contact with
the surface where the two TSAWs propagate, part of the vibra-
tion energy leaks into fluids yielding two longitudinal waves.
As sketched in Fig. 1(a), each travels with the speed of sound
cf at the Rayleigh angle [28] ϕ with respect to the orthogonal:

ϕ = arcsin(cf /cs). (8)

The TSAWs deliver energy from the substrate to fluids, lead-
ing to the wave amplitude decaying exponentially along the
fluid-solid interface. However, the microchannel is extremely
small for the SSAW-based applications. The attenuation caused
by the delivery can thus be neglected in the analysis. Ulti-
mately, the SSAW can be handled as two plane progressing
waves with the same amplitude, frequency, and phase, each
traveling along the Rayleigh angle ϕ into fluids (see video in
the Supplemental Material [39]). Since the cylinder acted on
by the flowing fluids tends to lie parallel to the microchannel,
the axis of the cylinder is assumed to be perpendicular to the
wave vectors of the two TSAWs. In addition, we assume the
length of the cylinder is infinite to exclude the end effects in
the derivation.

In ideal fluids, the first-order velocity using the Helmholtz
decompositions can be expressed in terms of a scalar
potential φ:

u1 = ∇φ. (9)

The above-mentioned velocity potential consists of the
external incident potential φc and the scattering potential φs

resulting from different acoustic impedances compared with
fluids. In the next step, we have to describe the two velocity
potentials and further compute the scattering coefficient, and
thereby determine the scattering potential.

A cylindrical coordinate system with unit vectors (er,eθ ,ez)
is built at the instantaneous axis of the cylinder, as sketched in
Fig. 1(b). The SSAW is expanded in a cylindrical partial-wave
series with respect to the system as

φc = φ0

∞∑
(n=0)

εn(i)nJn(kf r)[2 cos(kf y0 sin ϕ) cos nϕ

× cos nθ + 2i sin(kf y0 sin ϕ) sin nϕ sin nθ ]e−iωt ,

(10)

where φ0 is the amplitude of scalar velocity potential, kf is the
wave number, and y0 describes the distance from the center
of the cylinder to a pressure antinode. εn is the Neumann
factor, which is defined by ε0 = 1 and εj = 2,j = 1, . . . ,n,
and Jn(kf r) denotes the Bessel function of the first kind with
order n. For more details about the derivation, see Eq. (A1).

In the same manner, the scattered wave potential is given as

φs = φ0

∞∑
(n=0)

εn(i)nsnHn(kf r)[2 cos(kf y0 sin ϕ) cos nϕ

× cos nθ + 2i sin(kf y0 sin ϕ) sin nϕ sin nθ ]e−iωt ,

(11)

where H (kf r) is Hankel function of the first kind with order n,
and sn denotes the scattering coefficient which is determined
by the boundary condition on the cylinder surface.

The first-order velocity of the cylinder is determined by the
instantaneous force caused by hydrodynamic stress. The force
can be obtained by integrating the stress on the cylinder surface.
In ideal fluids, the tangential stress dependent on viscosity
vanishes and only the normal stress is left driving the cylinder,

σrr = −iωρf φ, (12)

where

φ = φ0

∞∑
(n=0)

εn(i)n[Jn(kf r) + snHn(kf r)][2 cos(kf y0 sin ϕ)

× cos nϕ cos nθ + 2i sin(kf y0 sin ϕ) sin nϕ

× sin nθ ]e−iωt . (13)

The instantaneous force can be decomposed into two
forces F1x and F1y pointing to positive x and y directions,
respectively, due to the symmetry of the cylinder. Thus,

F1x = a

∫ 2π

0
σrr |r=a cos θ dθ

= 2ωρf aπφ0[J1(xf ) + s1H1(xf )] cos(kf y0 sin ϕ)

× cos ϕe−iωt , (14a)

F1y = a

∫ 2π

0
σrr |r=a sin θ dθ

= 2iωρf aπφ0ε1[J1(xf ) + s1H1(xf )] sin(kf y0 sin ϕ)

× sin ϕe−iωt , (14b)

where a is the radius of the cylinder and kf a is denoted by xf .
According to Newton’s second law, the forces can also be

written as

F1x = ρpVp

dupx

dt
, (15a)

F1y = ρpVp

dupy

dt
, (15b)

where ρp is the density of the cylinder, and Vp is the unit-length
volume of the cylinder.

Substituting Eq. (14) into Eq. (15), we obtain the instanta-
neous velocities in the x and y directions:

upx = 2iφ0ε1[J1(xf ) + s1H1(xf )] cos(kf y0 sin ϕ)

× cos ϕe−iωt /(ρ̄a), (16a)

upy = −2φ0ε1[J1(xf ) + s1H1(xf )] sin(kf y0 sin ϕ)

× sin ϕe−iωt /(ρ̄a), (16b)

where ρp/ρf is denoted by ρ̄.
Combining Eq. (9) with Eq. (10), we obtain the normal

velocity in fluids:

ur |r=a = φ0

∞∑
(n=0)

εn(i)nkf [J ′
n(xf ) + snH

′
n(xf )]

× [2 cos(kf y0 sin ϕ) cos nϕ cos nθ

+ 2i sin(kf y0 sin ϕ) sin nϕ sin nθ ]e−iωt . (17)
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In ideal fluids, the appropriate boundary condition on the
cylinder surface is the continuity of normal velocity, which
means the velocities on the surface inside fluids and the
cylinder have to satisfy the following equation:

ur = upx cos θ + upy sin θ. (18)

Substituting Eqs. (16) and (17) into Eq. (18), we obtain the
scattering coefficient of each order n:

sn =
{−J ′

n(xf )/H ′
n(xf ) (n �= 1)

ρ̄xf J ′
1(xf )−J1(xf )

H1(xf )−ρ̄xf H ′
1(xf ) (n = 1)

. (19)

Since the scattering coefficient is calculated, any first-order
quantity can be determined.

III. EVALUATING THE RADIATION FORCE
AND ANALYSIS OF THE RESULTS

In ideal fluids, acoustic radiation force per unit length can be
derived by integrating the time-average radiation-stress tensor
on the cylinder surface following the procedure in Ref. [10],
where the radiation-stress tensor (�) represents the momentum
transferred from the SSAW to the cylinder,

F = −
∮

s

〈�〉 ds = −
∮

s

〈p2 + ρf u1u1〉ds, (20)

where F is acoustic radiation force, ds = nds is the elementary
area, n represents the unit vector normal to the surface of the
cylinder and pointing outwards, and p2 denotes a scalar matrix
with element p2. Inserting Eq. (7) into Eq. (20) and rewriting
the expression in terms of φ, we obtain the radiation force,

F = −
∫∫

s

({
1

2

ρf

cf
2

〈[
Re

(
∂φ

∂t

)]2〉
− 1

2
ρf 〈|∇Re(φ)|2〉

}
n

+ ρf 〈(unn + ut t)un〉
)

ds, (21)

where unn and ut t are the velocities in the normal and tan-
gential directions, respectively. On the circumferential surface,
they can also be rewritten as ur and uθ .

A. Calculation of the radiation force in the positive x direction

In the calculation, the time-averaged unit-length radiation
force is decomposed into two forces Fx and Fy pointing to
positive x and y directions, respectively, due to the symme-
try of the cylinder. The radiation force in the x direction
(Fx) including four terms is first evaluated according to
Eq. (20),

Fx = Fxr + Fxθ + Fxrθ + Fxt , (22)

where each term is given as

Fxr = −1

2
aρf

〈 ∫ 2π

0

[
Re

(
∂φ

∂r

)]2

r=a

cos θ dθ

〉
, (23a)

Fxθ = ρf

2a

〈 ∫ 2π

0

[
Re

(
∂φ

∂θ

)]2

r=a

cos θ dθ

〉
, (23b)

Fxrθ = ρf

〈 ∫ 2π

0

[
Re

(
∂φ

∂r

)]
r=a

[
Re

(
∂φ

∂θ

)]
r=a

sin θ dθ

〉
,

(23c)

Fxt = − aρf

2cf
2

〈∫ 2π

0

[
Re

(
∂φ

∂t

)]2

r=a

cos θ dθ

〉
. (23d)

Moreover, Fx can also be written as

Fx = YpxScE, (24)

where E = 1
2ρf kf

2φ0
2 denotes the characteristic energy den-

sity of the incident wave, Sc = 2a is the unit-length cross-
sectional area, and Ypx represents acoustic radiation force
function [10,40], a dimensionless factor selected for ease of
the investigation of the Rayleigh angle effects on the radiation
force.

The real and imaginary parts (i.e., αn and βn, respectively)
of the scattering coefficient sn are introduced to simplify the
expression for Ypx . Using Eqs. (A2)–(A5), we obtain a simple
and valuable expression for Ypx ,

Ypx = − 8

xf

∞∑
(n=0)

(αn + αn+1 + 2αnαn+1 + 2βnβn+1)Pn,

(25)

where

Pn = cos2(kf y0 sin ϕ) cos nϕ cos(n + 1)ϕ

+ sin2(kf y0 sin ϕ) sin nϕ sin(n + 1)ϕ. (26)

Compared with the formula derived in PTWs [Eq. (22) in
Ref. [10]], our expression for Ypx is very similar to it in the
form, but every term in our expression is corrected by a factor
Pn related to the Rayleigh angle.

The exact solution for the radiation force function is
applicable for a rigid cylinder with any size in the SSAW, but
including infinite terms resulting in trouble for researchers in
the design of SSAWs for particle manipulations. In addition,
some SSAW-based applications may fall in the range of a �
λf (i.e., xf � 1), which means the radius of the cylinder is
far smaller than the wavelength in fluids. Note that the range
discussed hereby is different from the long-wavelength limit
mentioned in other parts where a � λs , as most cases appear
in the microfluidic systems when operating with the SSAW.
Taylor expansion and truncation are applied to simplify Ypx ,
yielding an approximate solution Yapx valid only for xf � 1:

Yapx = π2xf
3

[
1

2
+ ρ̄ − 1

ρ̄ + 1
+ 1

2

(
ρ̄ − 1

ρ̄ + 1

)2]

× cos2(kf y0 sin ϕ)cosϕ

+ π2xf
3

2

(
ρ̄ − 1

ρ̄ + 1

)2

[cos2(kf y0 sin ϕ) cos ϕ

× cos 2ϕ + sin2(kf y0 sin ϕ) sin ϕ sin 2ϕ]. (27)

Two special Rayleigh angles are considered to examine the
exact expression for the radiation force function Ypx . When
ϕ = 0◦, both TSAWs progress in the direction normal to
the substrate, which can be regarded as a PTW with double
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TABLE I. The speeds of sound of SAWs in two different piezo-
electric materials [41,42].

Material Sound speed cs (ms−1)

Bi12GeO20 1640–1800
KNbO3/diamond 12 600

amplitude 2φ0 propagating in the x direction. Substituting
ϕ = 0◦ into Eq. (26) and neglecting the difference in the
scattering coefficient, one can find the expression at ϕ = 0◦ is
the same as Eq. (22) in Ref. [10]. In other words, the formula
derived in PTWs is recovered when the Rayleigh angle equals
0◦. When ϕ = 90◦, a PSW is formed in the y direction, and
Ypx is zero, identical to the result predicted by the symmetry
principle.

1. Analysis of the calculation results

Before proceeding with the analysis of the Rayleigh angle
effects, we have to discuss the practical range for the Rayleigh
angle. As given in Eq. (8), the angle is determined by the
speeds of sound in the piezoelectric substrate and fluids. We
consider two special speeds of sound, namely, the smallest and
the largest ones, as far as we know, in both the piezoelectric
materials and fluids. The speeds of sound of TSAWs in different
piezoelectric materials are listed in Table I and the speeds of
sound in different fluids are listed in Table II. We first note the
case of air and KNbO3/diamond contributing to the smallest
Rayleigh angle (i.e., 1.6◦). In the next step, we find the Rayleigh
angle could approach 90◦ in the case of glycol and Bi12GeO20.
Therefore, the practical range for Rayleigh angle is 1.6◦–90◦.

The Rayleigh angle effects in Ypx are illustrated by curves
plotted based on numerical calculations using a Matlab code.
When the SSAW formed on the substrate, the wavelength λs

and wave number ks are determined by the width of IDTs
limited to a reasonable range according to the practical fab-
rication conditions. The corresponding quantities in fluids λf

and kf can be expressed by λf = λs sin ϕ and kf = ks/sin ϕ,
respectively. The size factor on the substrate defined as xs =
ksa is introduced to analyze the Rayleigh angle effects in Ypx .
For ease of investigation, the wavelength of the SSAW is set
to λs = 0.4 mm in the following numerical calculations.

In Fig. 2 the value of the dimensionless radiation force Ypx

obtained from the revised model is plotted as a function of
y0 in the logarithmic scale for four different Rayleigh angles.
The case analyzed in the figure describes how a steel cylinder
(ρp = 7900 kg/m3) with size parameter xs = 0.2 immersed in
water (ρf = 997 kg/m3) responses to the SSAW. It is observed
that Ypx is a periodic function with period λs/2 as a result of
the term Pn in Eq. (25) with the same period for each order n. In
addition, the computation result reveals that at pressure nodes
(i.e., y0 = 0.1 or 0.3 mm) the cylinder is also acted on by the

TABLE II. The speeds of sound in two different fluids [9].

Material Sound speed cf (ms−1)

Air 347.4
Ethylene glycol 1658

FIG. 2. The value of Ypx from Eq. (25) is plotted as a function
of y0 for four different Rayleigh angles (20◦, 40◦, 60◦, and 80◦) by
considering the case of a steel cylinder (ρp = 7900 kg/m3) with fixed
size (xs = 0.2) immersed in water (ρf = 997 kg/m3).

radiation force stemming from the SSAW, but much smaller
than what is estimated at pressure antinodes (i.e., y0 = 0, 0.2,
or 0.4 mm). By changing the Rayleigh angle, the curves for
Ypx can be almost shifted vertically, which means the value
of Ypx exhibits great dependence on the Rayleigh angle. More
specifically, the magnitude of Ypx increases with the reduction
of Rayleigh angle.

Figure 3 shows the values of Ypx over a wide range of size xf

for four different Rayleigh angles using the parameters from

FIG. 3. The value of Ypx from Eq. (25) is plotted as a function
of xs for four different Rayleigh angles (20◦, 40◦, 60◦, and 80◦) by
considering the case of a steel cylinder (ρp = 7900 kg/m3) with fixed
size (xs = 0.2) immersed in water (ρf = 997 kg/m3) and placed at
pressure antinodes. In addition, the value of Ypx from Eq. (22) in
Ref. [10] is plotted by varying xf for the same case, but in PTWs with
the wavelength length being 0.4 mm.
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FIG. 4. The value of Ypx from Eq. (25) is plotted as a function of ϕ

by considering the case of water (ρf = 997 kg/m3) with a suspended
steel cylinder (ρp = 7900 kg/m3) placed at pressure antinodes for
three different size factors (xs = 0.1, 0.3, and 0.5).

the case of a steel cylinder suspended in water and placed
at pressure antinodes. Moreover, the situation of PTWs pro-
gressing along the x direction is also taken into consideration
by plotting the function varying with xf according to Eq. (22)
in Ref. [10], for which the wavelength is set to λf = 0.4 mm.
In PTWs, the radiation force turn to be large enough to drive
the cylinder, only if xf approaches or exceeds 1. Conversely,
the size restriction for the same purpose in the SSAW can be
greatly relaxed by the Rayleigh angle effects. This is expected
because for small values of xs , Ypx is proportional to xf

3

according to Eq. (27) and xs is related by xs = xf sin ϕ to xf .
The particle can thus be displaced even in the long-wavelength
limit for which xs � 1. Inspection of Fig. 3 also reveals that
for Rayleigh angle being 80◦, there are xs regions where Ypx

becomes negative, which means the radiation force is directed
toward the substrate on which the SSAW is induced. To our
knowledge, this phenomenon has never been discovered before
in the research on SSAW-based particle manipulations. With
the Rayleigh angle effects the SSAW shows the ability to either
trap an object or pull it back toward the source, being a better
form of acoustic tweezers.

Using the case of a steel cylinder suspended in water and
placed at pressure antinodes, we plot the values of Ypx over the
whole range of Rayleigh angle (0◦–90◦) for three different sizes
in Fig. 4. The revised model predicts a sharp drop in the value
of Ypx as a consequence of the term Pn in Eq. (25). This means
only the SSAW within a critical Rayleigh angle threshold
can exert the radiation force on particles. Furthermore, the
threshold value is positively related to the size parameter.

B. Calculation of the radiation force in the positive y direction

Similarly, the acoustic radiation force in the y direction (Fy)
also consists of four terms,

Fy = Fyr + Fyθ + Fyrθ + Fyt , (28)

where each part is written as

Fyr = −1

2
aρf

〈∫ 2π

0

[
Re

(
∂φ

∂r

)]2

r=a

sin θ dθ

〉
, (29a)

Fyθ = ρf

2a

〈∫ 2π

0

[
Re

(
∂φ

∂θ

)]2

r=a

sin θ dθ

〉
, (29b)

Fyrθ = −ρf

〈∫ 2π

0

[
Re

(
∂φ

∂r

)]
r=a

[
Re

(
∂φ

∂θ

)]
r=a

cos θ dθ

〉
,

(29c)

Fyt = − aρf

2cf
2

〈∫ 2π

0

[
Re

(
∂φ

∂t

)]2

r=a

sin θ dθ

〉
. (29d)

Substituting Eq. (29) into Eq. (28) and noting Fy = YpyScE,
we obtain the radiation force function in the y direction. The
real and imaginary parts of the scattering coefficient (αn and
βn, respectively) are introduced to simplify the expression for
Ypy . Based on Eqs. (A2)–(A5), Ypy can be expressed by

Yyp = − 4

xf

∞∑
(n=0)

(βn − βn+1 − 2αnβn+1 + 2βnαn+1)Qn,

(30)

where

Qn = sin(2kf y0 sin ϕ) sin(2n + 1)ϕ. (31)

Note that every term in Ypy is corrected by a factor Qn

related to Rayleigh angle.
In the same way, we apply Taylor expansion and truncation

to simplify Ypy . An approximate solution Yapy is obtained as

Yapy = πxf

(
2ρ̄

ρ̄ + 1
sin ϕ + 1 − ρ̄

ρ̄ + 1
sin 3ϕ

)
sin(2kf y0 sin ϕ).

(32)

Two special Rayleigh angles (ϕ = 0◦ and ϕ = 90◦) are
considered to examine the formula Ypy . When ϕ = 0◦, Ypy

equals zero, which is identical to the result predicted according
to the symmetry principle. When ϕ = 90◦, the SSAW degen-
erates into a PSW. Ypy is the same as Eq. (19) in Ref. [19],
which means the formula derived in a PSW is recovered when
Rayleigh angle is 90◦.

1. Analysis of the calculation results

The value of the dimensionless radiation force [Eq. (30)]
caused by the SSAW incident on a steel cylinder with fixed
size parameter (xs = 0.2) in water is plotted by varying y0 in
Fig. 5, where five different Rayleigh angles are considered.
The value of Ypy for each Rayleigh angle is found to show
a periodic change as a result of the position-dependent term
sin(2ksy0) in Qn. As mentioned above, the radiation force
induced by PSWs can be recovered when Rayleigh angle is 90◦.
We note that the value of the position-independent form of Ypy

for steel cylinders illuminated by PSWs in water is positive,
which means that steel particles are focused at pressure nodes.
Conversely, the particles acted by the SSAW can be expected to
move toward pressure antinodes stemming from the Rayleigh
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FIG. 5. The value of Ypy from Eq. (30) is plotted as a function
of y0 by considering the case of a steel cylinder (ρp = 7900 kg/m3)
with fixed size (xs = 0.2) surrounded by water (ρf = 997 kg/m3) for
five different Rayleigh angles (10◦, 30◦, 50◦, 70◦, and 90◦).

angle corrections according to our revised model, when the
Rayleigh angle is 10◦. It is known that the equilibrium positions
(i.e., pressure nodes or antinodes) are determined by the size
of the cylinder and material properties of both fluids and the
cylinder, resulting in great restrictions for particle-handling
applications. Fortunately, the limit can be broken by the
Rayleigh angle effects. In addition, the magnitudes of Ypy

show remarkable deviation from what predicted according to
the theory of PSWs, especially for small Rayleigh angle as
depicted in Fig. 5.

Using the parameters from the case of a steel cylinder
surrounded by water, we plot the values of Ypy/ sin(2ksy0)
over a wide range of size factor for five different Rayleigh
angles in Fig. 6. The value of Ypy/ sin(2ksy0) exhibits strong
dependence on the size factor by a profound relation according
to Eq. (30). In addition, the sign of its value also changes
with the size factor, which may provide another solution for
us to actively tune the equilibrium positions. However, the
radius of the cylinder in biophysical or other applications is
not allowed to be varied, so as to avoid cell damage or physical
properties to change in the particle. Upon comparing the five
curves, we note that the magnitude and sign of Ypy/ sin(2ksy0)
are both dependent on Rayleigh angle over the whole range
of the size factor considered in the figure. It implies that
Rayleigh angle can be used to actively manipulate particles,
regardless of their sizes. Inspection of Fig. 7 reveals the same
argument that Rayleigh angle plays a dominant role in the
magnitude and direction of the radiation force. Furthermore,
since ϕ = arcsin(cf /cs), there are two direct ways of tuning
the equilibrium positions, i.e., by changing the sound speed of
the SSAW or the host medium.

Since the relative density is fixed for the above-mentioned
case of a steel cylinder immersed in water, we hereby plot the
value of Ypy by varying the relative density to avoid loss of
generality in Fig. 8, where the size parameter is set to xs = 0.5
and five different Rayleigh angles are considered. It is clearly

FIG. 6. The value of Ypy/ sin(2ksy0) from Eq. (30) is plotted as
a function of xs by considering the case of a steel cylinder (ρp =
7900 kg/m3) immersed in water (ρf = 997 kg/m3) for five different
Rayleigh angles (10◦, 30◦, 50◦, 70◦, and 90◦).

observed that the value of Ypy is a monotonically increasing
or decreasing function of ρ̄, determined by Rayleigh angle.
In addition, the magnitude and sign of Ypy show a nontrivial
relative density dependence with profound consequences for
the radiation force exerted on rigid particles. Since ρ̄ = ρp/ρf ,
the phenomenon predicted by the revised model inspires us to
actively tune the equilibrium positions by changing the density
of the host medium. Also, note that the densities for common
fluids fall in the range of 800–1500 kg/m3, and for biophysical
applications, the host medium is usually water not allowed to be
replaced. This may result in a certain restriction for the design
of particle-handling devices. However, as discussed above, the

FIG. 7. The value of Ypy/ sin(2ksy0) from Eq. (30) is plotted as
a function of ϕ by considering a steel cylinder (ρp = 7900 kg/m3)
immersed in water (ρf = 997 kg/m3) for three different size factors
(xs = 0.1, 0.5, and 1).
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FIG. 8. The value of Ypy/ sin(2ksy0) from Eq. (30) is plotted as
a function of ρ̄ for five different Rayleigh angles (10◦, 30◦, 50◦, 70◦,
and 90◦) by fixing the size factor (xs = 0.5).

direction change in the radiation force can be achieved by
tuning the Rayleigh angle without any limit in particle size. As
depicted in Fig. 8, the condition can be further relaxed leading
to the active manipulation valid for any relative densities.

IV. CONCLUSION

In this work, a model for the radiation force caused by
the SSAW on a rigid cylinder in inviscid fluids is extended
to account for the dependence on the Rayleigh angle. The
derivation starts from the perturbation theory of Navier-Stokes
equations and is accomplished on the basis of the scattered the-
ory and the near-field derivation approach. The results obtained
from plane traveling and standing waves are recovered when
Rayleigh angles equal to 0◦ and 90◦, respectively. Numerical
calculations are carried out to analyze the Rayleigh angle
effects on the radiation force incident on particles.

In the direction normal to the piezoelectric substrate, the
revised model reveals that the radiation force can be enlarged
by Rayleigh angle, leading to displacing cylinders even in
the long-wavelength limit, which is almost impossible for
cylinders illuminated by PTWs. Furthermore, the SSAW has
the ability to either push the particle away or pull it back toward
the sound source, being a better form of acoustic tweezers.
In the direction parallel to the substrate, the Rayleigh angle
effects play a dominant role in the magnitude and direction
of acoustic radiation force. The equilibrium positions (i.e.,
pressure nodes or antinodes) in PSWs are determined by the
shape of the cylinder and material properties of both fluids
and the cylinder, resulting in great restrictions for particle-
handing applications. The problem can be easily solved in
the SSAW by changing Rayleigh angle according to the
prediction of the revised model. The model can thus be used
in the design of the SSAW-based applications for particle
manipulations.
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APPENDIX: CYLINDRICAL EXPANSION OF SSAWs
AND SPECIAL FUNCTIONS

The SSAW expressed in Sec. II can be derived as the
following steps:

φc = φ0e
−iωt (eik1·(y0+r) + eik2·(y0+r))

= φ0e
i(k1y0)

∞∑
n=0

εn(i)nJn(kr) cos n(θ − ϕ)e−ωt

+φ0e
i(k2y0)

∞∑
n=0

εn(i)nJn(kr) cos n(θ + ϕ)e−ωt ,

= φ0

∞∑
(n=0)

εn(i)nJn(kr)[2 cos(ky0 sin ϕ) cos nϕ

× cos nθ + 2i sin(ky0 sin ϕ) sin nϕ sin nθ ]e−iωt ,

(A1)

where k1 and k2 are the wave vectors for the two TSAWs, as
shown in Fig. 1(a). In Eqs. (23) and (29), the following relations
are used:

∫ 2π

0
cos nθ cos mθ cos θ dθ =

⎧⎪⎨
⎪⎩

π (n + m = 1)
π
2

(n − m = ±1,

n �= 0,m �= 0)
0 otherwise

,

(A2a)∫ 2π

0
sin nθ sin mθ cos θ dθ =

⎧⎨
⎩

π
2

(n − m = ±1,

n �= 0,m �= 0)
0 otherwise

,

(A2b)

∫ 2π

0
cos nθ sin mθ sin θ dθ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 (n = 1,m = 0)
π (n = 0,m = 1)
−π
2 (n− m = 1,m �= 0)

π
2 (m − n= 1,n �= 0)

0 otherwise

,

(A2c)∫ 2π

0
cos nθ cos mθ sin θ dθ = 0. (A2d)

In Eqs. (A3) and (A4), Fn(xf ) could represent either Jn(xf )
or Nn(xf ):

F ′
n(xf ) = [Fn−1(xf ) − Fn+1(xf )]/2, (A3)

xf F ′
n(x) = nFn(xf ) − xf Fn+1(xf ), (A4a)

xf F ′
n+1(xf ) = xf Fn(xf ) − (n + 1)Fn+1(xf ). (A4b)

The relation between Jn(xf ) and Nn(xf ) can be written as

[Jn+1(xf )Nn(xf ) − Jn(xf )Nn+1(xf )]xf = 2/π. (A5)

033103-8



REVISED MODEL FOR THE RADIATION FORCE EXERTED … PHYSICAL REVIEW E 97, 033103 (2018)

[1] T. Laurell, F. Petersson, and A. Nilsson, Chip integrated strate-
gies for acoustic separation and manipulation of cells and
particles, Chem. Soc. Rev. 36, 492 (2007).

[2] J. Friend and L. Y. Yeo, Microscale acoustofluidics: Microflu-
idics driven via acoustics and ultrasonics, Rev. Mod. Phys. 83,
647 (2011).

[3] Y. Li, J. Y. Hwang, K. K. Shung, and J. Lee, Single-beam acoustic
tweezers: A new tool for microparticle manipulation, Acoust.
Today 9, 10 (2013).

[4] K. A. Johnson, H. R. Vormohr, A. A. Doinikov, A. Bouakaz,
C. W. Shields, G. P. López, and P. A. Dayton, Experimental
verification of theoretical equations for acoustic radiation force
on compressible spherical particles in traveling waves, Phys.
Rev. E 93, 053109 (2016).

[5] S. Sepehrirahnama, F. S. Chau, and K.-M. Lim, Effects of
viscosity and acoustic streaming on the interparticle radiation
force between rigid spheres in a standing wave, Phys. Rev. E 93,
023307 (2016).

[6] L. V. King, On the acoustic radiation pressure on spheres, Proc.
R. Soc. London A 147, 212 (1934).

[7] M. Settnes and H. Bruus, Forces acting on a small particle in
an acoustical field in a viscous fluid, Phys. Rev. E 85, 016327
(2012).

[8] S. Annamalai, S. Balachandar, and M. K. Parmar, Mean force
on a finite-sized spherical particle due to an acoustic field in a
viscous compressible medium, Phys. Rev. E 89, 053008 (2014).

[9] J. T. Karlsen and H. Bruus, Forces acting on a small particle in
an acoustical field in a thermoviscous fluid, Phys. Rev. E 92,
043010 (2015).

[10] T. Hasegawa, K. Saka, N. Inoue, and K. Matsuzawa, Acoustic
radiation force experienced by a solid cylinder in a plane
progressive sound field, J. Acoust. Soc. Am. 83, 1770 (1988).

[11] A. A. Doinikov, Acoustic radiation pressure on a rigid sphere in
a viscous fluid, Proc. R. Soc. London 447, 447 (1994).

[12] A. A. Doinikov, Acoustic radiation force on a spherical particle
in a viscous heat-conducting fluid. II. Force on a rigid sphere,
J. Acoust. Soc. Am. 101, 722 (1997).

[13] Y. Chen, X. Ding, S.-C. S. Lin, S. Yang, P.-H. Huang, N. Nama,
Y. Zhao, A. A. Nawaz, F. Guo, W. Wang et al., Tunable nanowire
patterning using standing surface acoustic waves, ACS Nano 7,
3306 (2013).

[14] Z. Ma, J. Guo, Y. J. Liu, and Y. Ai, The patterning mechanism of
carbon nanotubes using surface acoustic waves: The acoustic
radiation effect or the dielectrophoretic effect, Nanoscale 7,
14047 (2015).

[15] J. G. Tidball and T. L. Daniel, Myotendinous junctions of tonic
muscle cells: Structure and loading, Cell Tissue Res. 245, 315
(1986).

[16] S. T. Dubas, P. Kumlangdudsana, and P. Potiyaraj, Layer-by-
layer deposition of antimicrobial silver nanoparticles on textile
fibers, Colloids Surf. A 289, 105 (2006).

[17] J. Awatani, Study on acoustic radiation pressure (IV), radiation
pressure on a cylinder, Mem. Inst. Sci. Ind. Res. Osaka Univ. 12,
95 (1955).

[18] J. Wu, G. Du, S. S. Work, and D. M. Warshaw, Acoustic
radiation pressure on a rigid cylinder: An analytical theory and
experiments, J. Acoust. Soc. Am. 87, 581 (1990).

[19] W. Wei, D. B. Thiessen, and P. L. Marston, Acoustic radiation
force on a compressible cylinder in a standing wave, J. Acoust.
Soc. Am. 116, 2597 (2004).

[20] S. F. Morse, D. B. Thiessen, and P. L. Marston, Capillary bridge
modes driven with modulated ultrasonic radiation pressure,
Phys. Fluids 8, 3 (1996).

[21] M. J. Marr-Lyon, D. B. Thiessen, and P. L. Marston, Stabilization
of a cylindrical capillary bridge far beyond the Rayleigh-plateau
limit using acoustic radiation pressure and active feedback,
J. Fluid Mech. 351, 345 (1997).

[22] M. J. Marr-Lyon, D. B. Thiessen, and P. L. Marston, Passive
Stabilization of Capillary Bridges in Air with Acoustic Radiation
Pressure, Phys. Rev. Lett. 86, 2293 (2001).

[23] P. L. Marston and D. B. Thiessen, Manipulation of fluid objects
with acoustic radiation pressure, Ann. NY Acad. Sci. 1027, 414
(2004).

[24] F. G. Mitri, Radiation force acting on an absorbing cylinder
placed in an incident plane progressive acoustic field, J. Sound
Vib. 284, 494 (2005).

[25] F. G. Mitri, Theoretical calculation of the acoustic radiation force
acting on elastic and viscoelastic cylinders placed in a plane
standing or quasistanding wave field, Eur. Phys. J. B 44, 71
(2005).

[26] F. G. Mitri and Z. E. A. Fellah, Acoustic radiation force on
coated cylinders in plane progressive waves, J. Sound Vib. 308,
190 (2007).

[27] F. G. Mitri, Acoustic radiation force due to incident plane-
progressive waves on coated cylindrical shells immersed in ideal
compressible fluids, Wave Motion 43, 445 (2006).

[28] X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D.
Slotcavage, X. Mao, J. Shi, F. Costanzo et al., Surface acoustic
wave microfluidics, Lab on a Chip 13, 3626 (2013).

[29] Z. Tengfei, W. Chaohui, N. Dong, J. Weitao, S. Yongsheng, Y.
Lei, C. Bangdao, L. Hongzhong, and D. Yucheng, Exploitation
of surface acoustic waves to drive nanoparticle concentration
within an electrification-dependent droplet, RSC Adv. 4, 46502
(2014).

[30] Y. Chen, S. Li, Y. Gu, P. Li, X. Ding, L. Wang, J. P. McCoy,
S. J. Levine, and T. J. Huang, Continuous enrichment of low-
abundance cell samples using standing surface acoustic waves
(SSAW), Lab on a Chip 14, 924 (2014).

[31] S. Li, X. Ding, F. Guo, Y. Chen, M. I. Lapsley, S.-C. S. Lin,
L. Wang, J. P. McCoy, C. E. Cameron, and T. J. Huang, An on-
chip, multichannel droplet sorter using standing surface acoustic
waves, Anal. Chem. 85, 5468 (2013).

[32] T. Zhu, R. Cheng, S. A. Lee, E. Rajaraman, M. A. Eiteman,
T. D. Querec, E. R. Unger, and L. Mao, Continuous-flow
ferrohydrodynamic sorting of particles and cells in microfluidic
devices, Microfluid. Nanofluid. 13, 645 (2012).

[33] X. Ding, S.-C. S. Lin, M. I. Lapsley, S. Li, X. Guo, C. Y. Chan,
I.-K. Chiang, L. Wang, J. P. McCoy, and T. J. Huang, Standing
surface acoustic wave (SSAW) based multichannel cell sorting,
Lab on a Chip 12, 4228 (2012).

[34] L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo,
L. Wang, J. P. McCoy, S. J. Levine et al., A high-throughput
acoustic cell sorter, Lab on a Chip 15, 3870 (2015).

[35] J. Shi, D. Ahmed, X. Mao, S.-C. S. Lin, A. Lawit, and T. J.
Huang, Acoustic tweezers: Patterning cells and microparticles
using standing surface acoustic waves (SSAW), Lab on a Chip
9, 2738 (2009).

[36] X. Ding, J. Shi, S.-C. S. Lin, S. Yazdi, B. Kiraly, and T. J. Huang,
Tunable patterning of microparticles and cells using standing
surface acoustic waves, Lab on a Chip 12, 2491 (2012).

033103-9

https://doi.org/10.1039/B601326K
https://doi.org/10.1039/B601326K
https://doi.org/10.1039/B601326K
https://doi.org/10.1039/B601326K
https://doi.org/10.1103/RevModPhys.83.647
https://doi.org/10.1103/RevModPhys.83.647
https://doi.org/10.1103/RevModPhys.83.647
https://doi.org/10.1103/RevModPhys.83.647
https://doi.org/10.1121/1.4826996
https://doi.org/10.1121/1.4826996
https://doi.org/10.1121/1.4826996
https://doi.org/10.1121/1.4826996
https://doi.org/10.1103/PhysRevE.93.053109
https://doi.org/10.1103/PhysRevE.93.053109
https://doi.org/10.1103/PhysRevE.93.053109
https://doi.org/10.1103/PhysRevE.93.053109
https://doi.org/10.1103/PhysRevE.93.023307
https://doi.org/10.1103/PhysRevE.93.023307
https://doi.org/10.1103/PhysRevE.93.023307
https://doi.org/10.1103/PhysRevE.93.023307
https://doi.org/10.1098/rspa.1934.0215
https://doi.org/10.1098/rspa.1934.0215
https://doi.org/10.1098/rspa.1934.0215
https://doi.org/10.1098/rspa.1934.0215
https://doi.org/10.1103/PhysRevE.85.016327
https://doi.org/10.1103/PhysRevE.85.016327
https://doi.org/10.1103/PhysRevE.85.016327
https://doi.org/10.1103/PhysRevE.85.016327
https://doi.org/10.1103/PhysRevE.89.053008
https://doi.org/10.1103/PhysRevE.89.053008
https://doi.org/10.1103/PhysRevE.89.053008
https://doi.org/10.1103/PhysRevE.89.053008
https://doi.org/10.1103/PhysRevE.92.043010
https://doi.org/10.1103/PhysRevE.92.043010
https://doi.org/10.1103/PhysRevE.92.043010
https://doi.org/10.1103/PhysRevE.92.043010
https://doi.org/10.1121/1.396511
https://doi.org/10.1121/1.396511
https://doi.org/10.1121/1.396511
https://doi.org/10.1121/1.396511
https://doi.org/10.1098/rspa.1994.0150
https://doi.org/10.1098/rspa.1994.0150
https://doi.org/10.1098/rspa.1994.0150
https://doi.org/10.1098/rspa.1994.0150
https://doi.org/10.1121/1.418036
https://doi.org/10.1121/1.418036
https://doi.org/10.1121/1.418036
https://doi.org/10.1121/1.418036
https://doi.org/10.1021/nn4000034
https://doi.org/10.1021/nn4000034
https://doi.org/10.1021/nn4000034
https://doi.org/10.1021/nn4000034
https://doi.org/10.1039/C5NR04272K
https://doi.org/10.1039/C5NR04272K
https://doi.org/10.1039/C5NR04272K
https://doi.org/10.1039/C5NR04272K
https://doi.org/10.1007/BF00213937
https://doi.org/10.1007/BF00213937
https://doi.org/10.1007/BF00213937
https://doi.org/10.1007/BF00213937
https://doi.org/10.1016/j.colsurfa.2006.04.012
https://doi.org/10.1016/j.colsurfa.2006.04.012
https://doi.org/10.1016/j.colsurfa.2006.04.012
https://doi.org/10.1016/j.colsurfa.2006.04.012
https://doi.org/10.1121/1.398927
https://doi.org/10.1121/1.398927
https://doi.org/10.1121/1.398927
https://doi.org/10.1121/1.398927
https://doi.org/10.1121/1.4785364
https://doi.org/10.1121/1.4785364
https://doi.org/10.1121/1.4785364
https://doi.org/10.1121/1.4785364
https://doi.org/10.1063/1.868809
https://doi.org/10.1063/1.868809
https://doi.org/10.1063/1.868809
https://doi.org/10.1063/1.868809
https://doi.org/10.1017/S002211209700726X
https://doi.org/10.1017/S002211209700726X
https://doi.org/10.1017/S002211209700726X
https://doi.org/10.1017/S002211209700726X
https://doi.org/10.1103/PhysRevLett.86.2293
https://doi.org/10.1103/PhysRevLett.86.2293
https://doi.org/10.1103/PhysRevLett.86.2293
https://doi.org/10.1103/PhysRevLett.86.2293
https://doi.org/10.1196/annals.1324.034
https://doi.org/10.1196/annals.1324.034
https://doi.org/10.1196/annals.1324.034
https://doi.org/10.1196/annals.1324.034
https://doi.org/10.1016/j.jsv.2004.09.025
https://doi.org/10.1016/j.jsv.2004.09.025
https://doi.org/10.1016/j.jsv.2004.09.025
https://doi.org/10.1016/j.jsv.2004.09.025
https://doi.org/10.1140/epjb/e2005-00101-0
https://doi.org/10.1140/epjb/e2005-00101-0
https://doi.org/10.1140/epjb/e2005-00101-0
https://doi.org/10.1140/epjb/e2005-00101-0
https://doi.org/10.1016/j.jsv.2007.07.023
https://doi.org/10.1016/j.jsv.2007.07.023
https://doi.org/10.1016/j.jsv.2007.07.023
https://doi.org/10.1016/j.jsv.2007.07.023
https://doi.org/10.1016/j.wavemoti.2006.02.005
https://doi.org/10.1016/j.wavemoti.2006.02.005
https://doi.org/10.1016/j.wavemoti.2006.02.005
https://doi.org/10.1016/j.wavemoti.2006.02.005
https://doi.org/10.1039/c3lc50361e
https://doi.org/10.1039/c3lc50361e
https://doi.org/10.1039/c3lc50361e
https://doi.org/10.1039/c3lc50361e
https://doi.org/10.1039/C4RA07090A
https://doi.org/10.1039/C4RA07090A
https://doi.org/10.1039/C4RA07090A
https://doi.org/10.1039/C4RA07090A
https://doi.org/10.1039/C3LC51001H
https://doi.org/10.1039/C3LC51001H
https://doi.org/10.1039/C3LC51001H
https://doi.org/10.1039/C3LC51001H
https://doi.org/10.1021/ac400548d
https://doi.org/10.1021/ac400548d
https://doi.org/10.1021/ac400548d
https://doi.org/10.1021/ac400548d
https://doi.org/10.1007/s10404-012-1004-9
https://doi.org/10.1007/s10404-012-1004-9
https://doi.org/10.1007/s10404-012-1004-9
https://doi.org/10.1007/s10404-012-1004-9
https://doi.org/10.1039/c2lc40751e
https://doi.org/10.1039/c2lc40751e
https://doi.org/10.1039/c2lc40751e
https://doi.org/10.1039/c2lc40751e
https://doi.org/10.1039/C5LC00706B
https://doi.org/10.1039/C5LC00706B
https://doi.org/10.1039/C5LC00706B
https://doi.org/10.1039/C5LC00706B
https://doi.org/10.1039/b903687c
https://doi.org/10.1039/b903687c
https://doi.org/10.1039/b903687c
https://doi.org/10.1039/b903687c
https://doi.org/10.1039/c2lc21021e
https://doi.org/10.1039/c2lc21021e
https://doi.org/10.1039/c2lc21021e
https://doi.org/10.1039/c2lc21021e


SHEN LIANG AND WANG CHAOHUI PHYSICAL REVIEW E 97, 033103 (2018)

[37] D. J. Collins, B. Morahan, J. Garcia-Bustos, C. Doerig, M.
Plebanski, and A. Neild, Two-dimensional single-cell patterning
with one cell per well driven by surface acoustic waves, Nat.
Commun. 6, 8686 (2015).

[38] H. Bruus, Acoustofluidics 7: The acoustic radiation force on
small particles, Lab on a Chip 12, 1014 (2012).

[39] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.97.033103 for the formation process of the
SSAW in the microchannel.

[40] F. G. Mitri, Axial time-averaged acoustic radiation force on
a cylinder in a nonviscous fluid revisited, Ultrasonics 50, 620
(2010).

[41] R. G. Pratt, G. Simpson, and W. A. Crossley, Acoustic-
surface-wave properties of Bi12GeO20, Electron. Lett. 8, 320
(1972).

[42] S.-i. Shikata, H. Nakahata, A. Hachigo, and M. Narita, Sim-
ulation of characteristics of KNbO3/diamond surface acoustic
wave, Diam. Relat. Mater. 14, 167 (2005).

033103-10

https://doi.org/10.1038/ncomms9686
https://doi.org/10.1038/ncomms9686
https://doi.org/10.1038/ncomms9686
https://doi.org/10.1038/ncomms9686
https://doi.org/10.1039/c2lc21068a
https://doi.org/10.1039/c2lc21068a
https://doi.org/10.1039/c2lc21068a
https://doi.org/10.1039/c2lc21068a
http://link.aps.org/supplemental/10.1103/PhysRevE.97.033103
https://doi.org/10.1016/j.ultras.2010.01.002
https://doi.org/10.1016/j.ultras.2010.01.002
https://doi.org/10.1016/j.ultras.2010.01.002
https://doi.org/10.1016/j.ultras.2010.01.002
https://doi.org/10.1049/el:19720235
https://doi.org/10.1049/el:19720235
https://doi.org/10.1049/el:19720235
https://doi.org/10.1049/el:19720235
https://doi.org/10.1016/j.diamond.2004.09.012
https://doi.org/10.1016/j.diamond.2004.09.012
https://doi.org/10.1016/j.diamond.2004.09.012
https://doi.org/10.1016/j.diamond.2004.09.012



