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Heavy inertial particles in turbulent flows gain energy slowly but lose it rapidly
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We present an extensive numerical study of the time irreversibility of the dynamics of heavy inertial particles in
three-dimensional, statistically homogeneous, and isotropic turbulent flows. We show that the probability density
function (PDF) of the increment, W (τ ), of a particle’s energy over a time scale τ is non-Gaussian, and skewed
toward negative values. This implies that, on average, particles gain energy over a period of time that is longer
than the duration over which they lose energy. We call this slow gain and fast loss. We find that the third moment
of W (τ ) scales as τ 3 for small values of τ . We show that the PDF of power-input p is negatively skewed too; we
use this skewness Ir as a measure of the time irreversibility and we demonstrate that it increases sharply with the
Stokes number St for small St; this increase slows down at St � 1. Furthermore, we obtain the PDFs of t+ and
t−, the times over which p has, respectively, positive or negative signs, i.e., the particle gains or loses energy.
We obtain from these PDFs a direct and natural quantification of the slow gain and fast loss of the energy of the
particles, because these PDFs possess exponential tails from which we infer the characteristic loss and gain times
tloss and tgain, respectively, and we obtain tloss < tgain for all the cases we have considered. Finally, we show that
the fast loss of energy occurs with greater probability in the strain-dominated region than in the vortical one; in
contrast, the slow gain in the energy of the particles is equally likely in vortical or strain-dominated regions of
the flow.
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I. INTRODUCTION

Heavy inertial particles (or heavy particles) advected by
turbulent flows are found in many natural phenomena and
industrial processes; examples include dust particles in a
storm [1], water droplets in a turbulent cloud [2], pollutant
dispersions, the formation of planetesimals [3], and turbulent
mixing in chemical reactions [4–8]. These heavy particles
cannot be modeled as tracers because of their finite size
and inertia. Many experimental, numerical, and theoretical
studies have been carried out to understand the statistics
of these particles in turbulent flows (see, e.g., Refs. [9–11]
for reviews). Such a system of heavy particles also displays
many intriguing features that are of interest in nonequilibrium
statistical mechanics.

Some recent studies have investigated the time irreversibil-
ity of fluid turbulence by using the statistics of Lagrangian-
tracer particles [12–15]. Fully developed Navier-Stokes tur-
bulence occurs in the limit of infinite Reynolds number or
zero viscosity. The rate of energy dissipation ε does not go
to zero, but it remains constant even at the highest values
of the Reynolds numbers (Re) that have been obtained in
experiments and numerical simulations. The hypothesis ε > 0
as Re → ∞, which lies at the core of the Kolmogorov theory
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(K41) of turbulence, is known as the zeroth law of turbulence
[16]. Fully developed forced turbulence is a nonequilibrium,
statistically stationary state, which displays a constant average
flux of energy from large to small length scales, where it is
dissipated by viscosity. Hence, obviously, such turbulence is
irreversible in time. However, this is not immediately obvious
to our eyes if we look at movies of the advection of Lagrangian
tracers. By following the evolution of the kinetic energy of a
single tracer particle, Ref. [12] shows that, on average, these
tracers decelerate faster than they accelerate. This phenomenon
of slow gain and fast loss of energy has been suggested to be the
signature of irreversible, turbulent dynamics in the trajectory
of a single Lagrangian tracer, and it has been quantified,
indirectly, in Ref. [12] by the negative third moment of the
probability density function (PDF) of the particle’s energy
increments and the negative skewness of the PDF of the power
input p to the particles by the flow. This observation suggests a
violation of the principle of detailed balance in turbulent flows.

It is straightforward to understand this slow-gain and fast-
loss phenomenon qualitatively via the K41 phenomenology of
turbulence: The turbulent cascade in the inertial range con-
serves energy. The energy is injected into the fluid at the large,
integral length scale and dissipated significantly at the small
length scales that lie below the Kolmogorov dissipation scale.
The eddies at the largest length scales evolve most slowly, and
those at the smallest length scales are the fastest, hence the
dynamics of a single tracer particle shows the slow-gain and
fast-loss features described above; the resulting irreversibility
is, therefore, related to the aforementioned separation of time
scales in turbulent flows.
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We extend these ideas to heavy particles in turbulent
flows by carrying out an extensive numerical study of the
time irreversibility of the dynamics of heavy inertial parti-
cles in three-dimensional (3D) statistically homogeneous and
isotropic turbulent flows. In addition to being advected by the
time-irreversible turbulent flow, heavy particles experience a
drag force that introduces an additional source of dissipation.
Nevertheless, it is still impossible to distinguish visually
between forward-in-time and backward-in-time trajectories of
individual particles. We illustrate this in videos V1 and V2 [17]
for representative heavy-particle trajectories in statistically
stationary turbulent flows that are homogeneous and isotropic;
video V1 runs forward in time and V2 runs backward. How-
ever, merely by looking at the two videos, it is not possible to
tell which one is which. Following Ref. [12], which considers
Lagrangian tracers, we first characterize the irreversibility
of the trajectories of heavy particles by the following two
quantities: (a) The energy difference of a particle across a time
scale τ ,

W (τ ) = E(t + τ ) − E(t), (1)

where E(t) is the energy per unit mass of the particle at
time t ; and (b) the skewness of the PDF of the power input
p to the particle by the flow. We show that the PDF of the
increment, W (τ ), of a particle’s energy over a time scale τ is
non-Gaussian and skewed toward negative values. This implies
that, on average, particles gain energy over a period of time that
is longer than the duration over which they lose energy. We call
this slow gain and fast loss. We find that the third moment of
the PDF of W (τ ) is negative and scales as τ 3 for small values of
τ . Next, we calculate the PDFs of times over which the power
p retains the same sign. In particular, we show that the PDF of
p is negatively skewed; we use this skewness Ir as a measure
of the time-irreversibility, and we demonstrate that it increases
sharply with the particle Stokes number St (see below) for
small St; this increase slows down at St � 1. Furthermore, we
obtain the PDFs of t+ and t−, the times over which p has,
respectively, positive or negative signs, i.e., the particle gains
or loses energy. From these PDFs we obtain a direct and natural
quantification of the slow-gain and fast-loss feature, because
these PDFs possess exponential tails from which we infer the
characteristic loss and gain times tloss and tgain, respectively. We
obtain tloss < tgain for all the cases we have considered. It is well
known that, in 3D turbulent flows, every point in the flow can be
classified into two topological classes [18,19]: vortical regions
or saddles, which are strain-dominated, depending on whether
the discriminant of the velocity-gradient matrix is positive or
negative. By using this discriminant, we show that the slow
gain in energy of the particles is equally likely in vortical or

strain-dominated regions of the flow; in contrast, the fast loss
of energy occurs with greater probability in the latter than in
the former.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the models we use and the numerical
methods we employ to study them. Section III is devoted to a
presentation of our results. We discuss our results in Sec. IV.

II. MODEL AND NUMERICAL METHODS

If the flow velocity at the position of the particle is u, then
the motion of a heavy particle is governed by the following
equations:

Ẋ = v, (2a)

v̇ = 1

τp
[u(X,t) − v]. (2b)

Here v(t) and X(t) denote, respectively, the velocity and
position of the particle at time t , and τp = (2a2ρp)/(9νρf ) is
the Stokes or response time of the particle, with a and ρp

the radius and material density of the particle, respectively.
Equation (2) is valid if (a) the radius of the particle a � η,
with η the Kolmogorov dissipation scale of the advecting
fluid (or the particle-scale Reynolds number is very small),
(b) interactions between particles are negligible (e.g., at low
number densities of particles), (c) the particle density ρp � ρf

(the fluid density), (d) typical particle accelerations are much
larger than the acceleration because of gravity, and (e) the fluid
velocity is not affected by the particles.

A. Three-dimensional Navier-Stokes turbulence

We consider the motion of the particles described by Eqs. (2)
in 3D, homogeneous, and isotropic turbulent flows. The veloc-
ity field u(x,t) is obtained by solving the 3D, incompressible,
Navier-Stokes equation, i.e.,

∂t u + u · ∇u = ν∇2u − ∇p + f , (3a)

∇ · u = 0, (3b)

where p, f , and ν are the pressure, the external force,
and the kinematic viscosity, respectively. To solve Eq. (3)
numerically, we use a pseudospectral method [20] with a
cubical simulation domain with periodic boundary conditions
and the 2/3 dealiasing rule. Table I gives the parameters for
our DNSs of the 3D Navier-Stokes equation [21]. The Stokes
number that we use is St = τp/tη.

TABLE I. Parameters for our 3D runs R1 and R2 with N3 collection points, ν the coefficient of kinematic viscosity, δt the time step, Np

the number of particles, kmax the largest wave number in the simulation, ε the mean rate of energy dissipation, η and τη the dissipation length
and time scales, respectively, λ the Taylor microscale, Reλ the Taylor-microscale Reynolds number, Il the integral length scale, and Teddy the
large-eddy turnover time.

Run N ν δt Np Reλ kmaxη ε η λ Il τη Teddy

R1 256 3.8 × 10−3 5 × 10−4 40 000 43 1.56 0.49 1.82 × 10−2 0.16 0.51 8.76 × 10−2 0.49
R2 512 1.2 × 10−3 2 × 10−4 100 000 79 1.21 0.69 7.1 × 10−3 0.08 0.47 4.18 × 10−2 0.41
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FIG. 1. (a) Probability density functions of the energy increments, W (τ ), for the different values of the time lags, τ , for St = 1. (b) Probability
density function of W (τ ) for τ = 20tη and St = 1 (magenta circles), compared with a normal distribution with zero mean and unit variance
(solid black line). (c) The third moment of the PDF of W (τ ) as a function of τ for different values of St.

III. RESULTS

We first allow the flow to develop until it reaches a
statistically stationary turbulent state, and then we introduce
the particles. We also ignore the transients until the heavy
particles reach a nonequilibrium statistically stationary state,
which we monitor via the temporal evolution of the total energy
of the particles. In this nonequilibrium state, the PDF of any
component vk of the velocity of a heavy particle is a Gaussian
with zero mean and a variance

〈v2〉 ≈ u2
rms

1 + StT
, (4)

where StT is the Stokes number defined with respect to the
large-eddy-turnover time. The autocorrelation function C(t) ≡
〈vk(0)vk(t)〉/〈v2

k 〉, at large t , decays with a time scale that
is shorter than the large-eddy-turnover time of the flow (see
Appendix A 1 for details). Equation (4) is derived for a random
velocity field u that has a Gaussian distribution and finite-time
correlation [22].

As we have mentioned above, we follow the Lagrangian-
tracer studies of Ref. [12], and we characterize the irre-
versibility of the dynamical system formed by the particles
by calculating the statistics of the energy increments W and
the power p:

W (τ ) ≡ E(t + τ ) − E(t), (5a)

p ≡ v · dv

dt
, (5b)

where E ≡ (1/2) | v |2 is the energy per unit mass.

A. Statistics of energy increments

In Fig. 1(a), we plot the PDF of the energy increment,
W (τ ), across a time scale τ (normalized by the dissipation
time tη), for several different values of τ and St = 1. A careful
look at this figure shows that this PDF is asymmetric about
zero, with an asymmetry that is most pronounced for small
τ . Even for large τ , these PDFs do not approach a Gaussian
distribution, as we demonstrate in Fig. 1(b). In Fig. 1(c), we
plot the simplest characterization of the asymmetry of the PDF
of W (τ ), namely, its third moment 〈W 3(τ )/E3

flow〉, as a function
of τ for different values of St, where the characteristic energy of
the flow, Eflow ≡ (1/2)〈u2〉, is used to nondimensionalize W .

As we expect [12], at small τ the third moment scales as
τ 3 because W (τ ) is smooth, so it can be Taylor-expanded at
small τ .

B. Statistics of the power input

We plot in Fig. 2(a) the PDF of the power input p to the
particle per unit mass; p is normalized by ε, the rate-of-energy
dissipation of the flow. A careful look at the figure shows that
the tails of the PDF are negatively skewed; they fall off more
slowly on the negative side than on the positive side. This can
be quantified by plotting the skewness of these PDFs, which,

FIG. 2. (a) The PDF of the nondimensionalized power input p/ε

to the particle by flow. (b) The measure of time irreversibility Ir,
defined in Eq. (6), as a function of St.

033102-3



BHATNAGAR, GUPTA, MITRA, AND PANDIT PHYSICAL REVIEW E 97, 033102 (2018)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
t+/Teddy, t

−/Teddy

10−5

10−4

10−3

10−2

10−1

100

Q+

Q−

0.5 1.5 2.5
St

0.3

0.4

0.5

0.6

t l
os

s,
t g

ai
n

FIG. 3. The two cumulative PDFs, Q+ and Q−, of the times for
which the p remains, respectively, positive (red) and negative (blue),
for St = 1. The two straight lines are linear fits to the tail of the data.
The slopes of these straight lines are tgain and tloss. These are plotted as
a function of St in the inset, tgain (red circles) and tloss (blue squares).
These time scales are scaled by a large eddy turnover time of the flow
Teddy.

following Ref. [12], we define as the irreversibility parameter:

Ir = 〈p3〉
〈p2〉3/2

. (6)

In Fig. 2(b), we plot Ir as a function of St. As St → 0, we expect
that Ir should approach its value for Lagrangian tracers. We find
that Ir remains negative for all St; in particular, its magnitude
increases sharply at small St, but this increase slows down at
about St � 1.

C. Time scales of the gain and loss of energy

We now provide a direct and natural quantification of the
slow-gain and fast-loss phenomenon by analyzing the time
series of p as follows: Let t+ (t−) be the time over which p

has a positive (negative) sign, i.e., the particle gains (loses)
energy. These times are the first-passage times, from positive
to negative values or vice versa, of the random variable p.
The PDFs of such first-passage times are called persistence
PDFs; if a persistence PDF has a power-law tail, the exponent
of the power law is called the persistence exponent (see, e.g.,
Refs. [23,24] for the use of persistence in various problems
of nonequilibrium statistical mechanics). The same idea has
been used to calculate the persistence PDFs of residence
times of tracers [25] and heavy inertial particles in topological
structures in 2D [26] and 3D [27] turbulent flows.

From the time series of p we calculate the cumulative
probability distribution (CDF) of both t+ and t−, which we
denote by Q+ and Q−, respectively [28]. These two CDFs,
for St = 1, are plotted in the main panel of Fig. 3 on log-
lin scales. Clearly both Q+ and Q− have exponential tails,
with characteristic time scales tgain and tloss, respectively. This
implies that the corresponding PDFs also possess exponential
tails, with the same characteristic time scales. These two time
scales are plotted, as functions of St, in the inset of Fig. 3, from
which we infer that, for all St, tgain < tloss, which is a natural
quantification of the slow-gain and fast-loss feature.

D. Irreversibility and the topology of the flow

The topology of a 3D vector field can be characterized by its
gradient matrix. A 3 × 3 matrix B has three invariants, namely
its trace Tr B = λ1 + λ2 + λ3, Q ≡ λ1λ2 + λ2λ3 + λ3λ1, and
its determinant det B = λ1λ2λ3, where λ1, λ2, and λ3 are the
three eigenvalues of B. If the vector field is incompressible,
like our flow velocity field, there are only two invariants
because the trace of the velocity-gradient matrix is zero
everywhere. We consider incompressible turbulent flows, so
the velocity-gradient matrix is a random matrix with zero trace;
it is conventional [18,19] to denote its two invariants by the
symbols Q and R ≡ − det B. Depending on the values of Q

and R, four different types of flow topologies are possible: two
are elliptic (or vortical) points, with a third stable or unstable
direction, and two are saddles, with axial or biaxial strain.
Whether the flow at a point is a topological vortex or a saddle
depends on the sign of the discriminant, 
 ≡ (27/4)R2 + Q3,
of the characteristic equation of the velocity-gradient matrix; it
is positive in vortical regions and negative in strain-dominated
saddles. We have argued above that the particles lose
energy to fast, small-length-scale eddies and gain energy from
large-length-scale eddies. The topological structures are small-
length-scale properties; hence, by the usual assumption of
length-scale-separation in turbulence, we expect that the gain
in energy, which occurs in large-scale eddies, does not depend

FIG. 4. Top panel: The PDFs of the nondimensionalized power in-
put p/ε obtained separately from vortical (red) and strain-dominated
(blue) regions of the flow, for St = 1. Bottom panel: Contributions
to the irreversibility parameter Ir from vortical (red) and strain-
dominated (blue) regions of the flow.
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on the topology of the flow. By contrast, the loss in energy
occurs in small-length-scale eddies, which are intimately
connected with the topological structures we have described
above. It has been established recently that heavy particles,
in 3D turbulent flows, spend more time in strain-dominated
regions than in vortical regions [27]; consequently, we expect
that the loss of energy occurs more in strain-dominated regions
than in vortical regions in the flow. To check the validity of this
expectation, we plot, in the top panel of Fig. 4, the PDFs of
p, obtained separately from regions with saddles and vortices.
There is no distinction between these two PDFs for positive
p, i.e., when the particles gain energy. By contrast, when p is
negative, i.e., when the particles lose energy, this loss is more
likely to occur in strain-dominated flow regions than in vortical
ones. This is also confirmed in the bottom panel of Fig. 4, where
we plot the contribution to the irreversibility parameter Ir, ob-
tained separately from vortical and strain-dominated regions,
for several different values of St; in particular, the contribution
from the vortices is significantly smaller in magnitude than that
from the saddles, which shows that the dominant contribution
to the skewness of the PDF of the power comes from the
saddles.

IV. CONCLUSIONS

We have carried out a detailed numerical study of the
time irreversibility of the dynamics of heavy particles in
3D, statistically homogeneous, and isotropic turbulent flows.
We have shown that these particles, which follow Eq. (2),
reach nonequilibrium statistically stationary states. We have
characterized these states by calculating a variety of PDFs and
autocorrelation functions. The simplest of these are PDFs and
autocorrelation functions of the velocity components; we have
shown that these PDFs are close to Gaussian. We have also
computed the PDFs of the increments of the particle’s energy
W (τ ) for different values of τ , and we have shown that these
PDFs are non-Gaussian and skewed toward negative values.
This implies that, on average, particles gain energy over a
period of time that is longer than the duration over which they
lose energy. For passive Lagrangian tracers, this phenomenon
has been called a flight-crash effect in Ref. [12]; we simply
refer to it as slow gain and fast loss. We have also found
that the third moment of W (τ ) scales as ∼τ 3 at small values
of τ .

We have computed the PDFs of the scaled power input p

for different values of St, and we showed that it is negatively
skewed. This negative skewness provides us with a measure
of the time irreversibility Ir. We have demonstrated that the
magnitude of Ir increases with St, sharply for small St but more
slowly thereafter (at about St ≈ 1). These qualitative features
can also be captured by models in which the flow velocity is
obtained from stochastic models with nonzero correlation time
[29].

Our study has led to a direct and natural measure of the slow
gain and fast loss of energy. Specifically, we have calculated
the PDFs of t+ and t−, the times over which p has, respectively,
positive or negative signs. These PDFs have exponential tails
from which we have inferred the characteristic loss and gain
times tloss and tgain, respectively. We have shown tloss < tgain

for all the values of St that we have considered. Furthermore,

we have shown that the slow gain in energy of the particles
is equally likely in vortical or strain-dominated regions of the
flow; in contrast, the fast loss of energy occurs with greater
probability in the latter than in the former.

Time irreversibility for Lagrangian tracers, advected by
turbulent flows, arises solely because of the time-irreversible
nature of such flows. In contrast, for the case of heavy
particles, time irreversibility arises because of two reasons: (a)
turbulent flows, which advect such particles, are irreversible;
and (b) the Stokes drag, exerted by the flow on the particle,
is dissipative. The separation of the effects of particle inertia
and turbulence on time irreversibility is nontrivial. Our study
has shown how the effect of inertia can be captured clearly
by the dependence of Ir on St, which we have shown in
Fig. 2.

The time irreversibility for Lagrangian tracers, advected
by turbulent flows, has been studied theoretically, numeri-
cally, and experimentally (see, e.g., Ref. [12]). Our study
has carried out analogous theoretical and numerical studies
for heavy particles advected by turbulent flows, and we
have obtained clear signatures for such irreversibility, which
can be measured in heavy-particle-laden flows. We hope,
therefore, that our studies will stimulate experimental inves-
tigations of time irreversibility in such heavy-particle-laden
flows.

ACKNOWLEDGMENTS

This work has been supported in part by the Swedish
Research Council under Grants No. 2011-542 and No. 638-
2013-9243 (D.M.), the Knut and Alice Wallenberg Foundation
(D.M. and A.B.) under the project Bottlenecks for particle
growth in turbulent aerosols (Dnr. KAW 2014.0048), the
Council of Scientific and Industrial Research (CSIR), the
University Grants Commission (UGC), and the Department
of Science and Technogy (DST India) (A.B. and R.P.). We
thank SERC (IISc) for providing computational resources.
D.M. thanks the Indian Institute of Science for hospitality
during the time some of these calculations were initiated. R.P.
thanks NORDITA for hospitality during the period in which
this paper was being written. We thank Prasad Perlekar and
Samriddhi Shankar Ray for useful discussions.

APPENDIX

1. Characterization of the statistically stationary
turbulent state

In Fig. 5 we show plots of PDFs of x component vx of
the velocity of the particle (left panel). These PDFs are close
to a Gaussian distribution. The middle panel shows the mean
of v2 plotted as a function of the Stokes number defined, by
Teddy, as StT = τp/Teddy; the black solid line shows the plot of
〈u2〉/(1 + StT) as a function of StT. The right panel shows the
autocorrelation function

C(t) ≡ 〈vx(t)vx(0)〉
〈v2

x〉
(A1)

of the x component of v. The autocorrelation functions de-
cay at large times. The characteristic decay time decreases
with St.
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FIG. 5. Left panel: The PDFs of the x component of the velocity of the particle. The black solid line shows a normal distribution with mean
zero and standard deviation unity. Middle panel: The mean of v2 plotted as a function of the Stokes number defined, by Teddy, as StT = τp/Teddy;
the black solid line shows the plot of 〈u2〉/(1 + StT) as a function of StT. Right panel: The autocorrelation function Cvx

of the x component of
the velocity of the particle.
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