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Statistical symmetry restoration in fully developed turbulence:
Renormalization group analysis of two models
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In this paper we consider the model of incompressible fluid described by the stochastic Navier-Stokes equation
with finite correlation time of a random force. Inertial-range asymptotic behavior of fully developed turbulence is
studied by means of the field theoretic renormalization group within the one-loop approximation. It is corroborated
that regardless of the values of model parameters and initial data the inertial-range behavior of the model is
described by the limiting case of vanishing correlation time. This indicates that the Galilean symmetry of the
model violated by the “colored” random force is restored in the inertial range. This regime corresponds to the only
nontrivial fixed point of the renormalization group equation. The stability of this point depends on the relation
between the exponents in the energy spectrum E ∝ k1−y and the dispersion law ω ∝ k2−η. The second analyzed
problem is the passive advection of a scalar field by this velocity ensemble. Correlation functions of the scalar
field exhibit anomalous scaling behavior in the inertial-convective range. We demonstrate that in accordance
with Kolmogorov’s hypothesis of the local symmetry restoration the main contribution to the operator product
expansion is given by the isotropic operator, while anisotropic terms should be considered only as corrections.
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I. INTRODUCTION

The very important phenomenological concept in the theory
of fluid turbulence is the concept of statistical symmetry
restoration [1,2]. The Navier-Stokes (NS) equation describing
fluid dynamics possesses a number of symmetries: transla-
tional and rotational covariance and covariance with respect
to Galilean transformation. Some of these symmetries are
violated inevitably by the experimental setup or, speaking
mathematically, by initial and boundary conditions. Moreover,
some of the remaining symmetries can be broken sponta-
neously as the Reynolds number Re increases; see Refs. [1,2]
for detailed discussions and examples.

However, for fully developed turbulence (Re � 1) these
symmetries can be restored in the statistical sense, that is,
for various correlation or structure functions and in a proper
range of scales (inertial interval). This concept dates back to
Kolmogorov’s idea of locally isotropic turbulence [3–6] and
is intuitively explained by the idea of the Richardson cascade
[7]. According to Richardson the energy fed into the system at
very large scales is transferred down scales through numerous
fractions of turbulent eddies. Thus, eventually, at small scales
the system “forgets” about details of the energy pumping; see
Refs. [8–13] and review paper [14] for some examples of such
behavior.

In spite of their great value, phenomenological theories
might appear to be inaccurate or even incorrect. Nowadays it is
widely accepted that, due to the phenomenon of intermittency,
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correlation functions of developed turbulence depend on the
integral (external) scale L, which is in disagreement with the
classical Kolmogorov K41 theory. In particular, the equal-time
structure functions of the velocity field or those of the advected
scalar field are described by an infinite set of independent
anomalous exponents; see Refs. [1,2] for detailed discussion
and references.

Thus, it is desirable to test predictions of phenomenological
theories on the basis of certain specific models and by means
of some analytical tools. An example of such a simplified
but very fruitful model is provided by Kraichnan’s rapid-
change model, where the existence of anomalous scaling was
demonstrated by several approaches, and the corresponding
exponents were calculated both numerically and analytically,
within controlled approximations and regular perturbation
expansions; see Ref. [15] for a review and references.

The effective approach to the discussed problem is the field
theoretic renormalization group (RG); see the monographs
[16–18] and review paper [19]. Kraichnan’s model allows one
to construct a controlled expansion for anomalous exponents,
which is similar to the famous epsilon expansion in the
theory of critical state [20,21]. The practical calculations were
performed up to the third (three-loop) order [22]. What is
more important, the model can be generalized to the more
realistic cases: finite correlation time and non-Gaussianity
of the advecting velocity field [23–28], strong anisotropy
[29–32], compressibility [33–36], helicity [37–40], and so on
[41–44]. Admittedly, in application to the NS equation itself
the RG method has so far had restricted success [45].

In this paper, we study two analytic examples of statistical
symmetry restoration in fully developed turbulence, based
on the stochastic NS equation. The fluid is assumed to be
incompressible. As it is standard for the RG approach, we con-
sider the NS equation subjected to an external stirring random
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force with the prescribed Gaussian statistics. In the majority
of studies, the random force is δ correlated in time (“white
noise”), which is dictated by the Galilean symmetry. Here,
we do not assume this symmetry in advance and choose the
force with finite correlation time (“colored noise”). This gives
much more freedom for the form of the correlation function.
For definiteness, we take the random force as the variant of
the Ornstein-Uhlenbeck process [46,47]. Such statistics were
used earlier in Ref. [48] for generation of the velocity field
itself. In our case, however, the velocity field is not described
within a certain statistical ensemble but is determined by the
real nonlinear NS equation. Various aspects of finite correlation
time of a random noise in stochastic dynamics were discussed
earlier, e.g., in Refs. [49–53].

The model can be reformulated as a multiplicatively renor-
malizable quantum field theory. It is well known that in such
case the possible large-scale, long-distance asymptotic regimes
are associated with infrared (IR) attractive fixed points of
the RG equations. We perform the leading-order (one-loop)
calculation and show that the only nontrivial IR attractive fixed
point corresponds to the δ correlated force. From a physical
point of view this means that the Galilean symmetry is restored
immediately in the IR range, which is in accordance with the
general concept.

The second problem is the passive advection of a scalar
quantity (temperature, density of a pollutant, etc.) in a tur-
bulent fluid. The latter is described by the previously studied
stochastic NS field. In view of the aforementioned result, the
random force is taken to be δ correlated in time. The scalar
field is governed by the standard advection-diffusion equation
with a random force. The latter maintains the steady state and
is a source of a large-scale anisotropy. The corresponding field
theory is renormalizable and possesses the only IR attractive
fixed point. It is well known that correlation functions of the
scalar field demonstrate anomalous scaling, so that the K41
theory does not hold; see Ref. [54] for two-loop calculation
in the isotropic case. In the RG approach, the anomalous
exponents are identified with scaling dimensions of certain
composite fields (“composite operators” in the quantum-field
terminology). For the anisotropic case, it is natural to expand
the structure functions in spherical harmonics Ylm, where l can
be viewed as a degree of anisotropy of the given contribution.
In the present model, a special anomalous exponent can be
assigned to any contribution.

In this paper we restrict ourselves to the pair correlation
function and calculate anomalous exponents in the one-loop
approximation for all l. It turns out that these exponents exhibit
a kind of hierarchy: they increase monotonically with l. As a
result, turbulence becomes less and less anisotropic in the depth
of the inertial range, and the leading-order term is given by
the isotropic contribution. Similar effect was observed earlier
in the models of scalar and vector advection by “synthetic”
Gaussian velocity fields; see Refs. [23,55–57] and literature
cited therein.

The paper is organized as follows. In Sec. II a detailed
description of the stochastic Navier-Stokes equation for an
incompressible fluid is given. Section III is devoted to the
field theoretic formulation of the model and the correspond-
ing diagrammatic technique. In particular, possible types of
divergent Green’s functions are discussed. In Sec. IV the

renormalizability of the model is proven. One-loop explicit
expressions for the renormalization constants are presented
and RG functions (anomalous dimensions and β functions) are
derived and analyzed. In Sec. V the IR asymptotic behavior,
obtained by solving the RG equations, is discussed. It is shown
that, depending on two exponents y and η that describe the
energy spectrum and dispersion law of the velocity field, the
RG equations exhibit two nontrivial fixed points, but only one
of them is stable in the IR region. This means that the Galilean
symmetry of the model violated by the colored random force
is restored in the inertial range. In Sec. VI the corresponding
scaling dimensions of the fields are presented.

In Sec. VII an advection of a passive scalar field by the
incompressible velocity field which obeys the NS equation is
analyzed. The field theoretic formulation of the full model is
presented. The existence of a scaling regime in the IR range is
established. In Sec. VIII the operator product expansion for the
pair correlation function is carried out. Section IX is devoted to
the renormalization of composite operators. An inertial-range
behavior of the correlation functions is studied. It is shown that
the leading terms of the inertial-range behavior are determined
by the contributions which correspond to the isotropic terms.

Section X is reserved for conclusions. The main one is that
the Galilean symmetry and isotropy, broken by introducing
the external stochastic force with finite correlation time and by
distinguished direction, are restored in the statistical sense (for
measurable quantities) in the inertial range of fully developed
turbulence.

Appendix A contains detailed calculations of the diagrams,
needed to perform multiplicative renormalization of the model
of incompressible fluid. Appendix B contains all calculations
related to the renormalization procedure and calculation of
anomalous dimensions of the composite operators of the
advected field.

II. DESCRIPTION OF THE MODEL

One of the possible approaches to model fully developed
turbulence within the framework of some microscopic model
is to study the stochastic Navier-Stokes equation with a random
external force [1,2]. It has the form

∂tvk + (vi∂i)vk + ∂k℘ = ν0∂
2vk + φk, (2.1)

where vi(x) is a transverse (owing to the incompressibility)
velocity field, x ≡ {t,x}, ∂t ≡ ∂/∂t , ∂i ≡ ∂/∂xi , ν0 is the
molecular kinematic viscosity, ∂2 = ∂i∂i is the Laplace op-
erator, ℘ = −∂−2(∂ivl)(∂lvi) is the pressure per unit mass, and
φk is the external force per unit mass. Since the field vi(x) is
incompressible we may use special units in which the density
ρ(x) = 1. The turbulence is modeled by the force φk , which
is assumed to be a random variable. In stochastic formulation
of the problem it mimics the input of energy into the system
from the outer large scale L. Without loss of generality the
correlations of the random force φk in Fourier space read [3]

〈φi(ω,k) φj (ω′,k′)〉 ∝ δ(ω + ω′)δ(k + k′)Pij (k)Dφ(ω,k),

(2.2)
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where Pij (k) = δij − kikj /k2 is the transverse projector
and two δ functions are consequences of the translational
invariance.

The Galilean invariance for the model requires the func-
tion Dφ(ω,k) in Eq. (2.2) to be δ correlated in time [45].
Nevertheless, it is very intriguing to consider such a model
with a colored noise, i.e., with finite and not small correlation
time, which is much more realistic from the physical point of
view. In the general case this modification breaks the Galilean
invariance, so the main question of the paper is the following:
is this symmetry restored in the statistical sense for relevant
measurable quantities?

The random force φi is simulated in the present paper
by the statistical ensemble being a particular case of the
Ornstein-Uhlenbeck process: it is assumed to be Gaussian
and homogeneous, with zero mean and correlation function
[46–48]

〈φi(t,x)φj (t ′,x′)〉

= D0

∫
dω

2π

∫
k>m

dk
(2π )d

Pij (k)
k8−d−(y+2η)

ω2 + ν2
0u2

0k
4−2η

× eik·(x−x′)−iω(t−t ′). (2.3)

Here k ≡ |k| is the wave number, D0 > 0 is an amplitude
factor, d is an arbitrary (for generality) dimension of x space,
and 1/m is the integral turbulence scale, related to the stirring.
The function (2.3) involves two independent exponents y and
η. The first one describes the energy spectrum of the velocity
in the inertial range E ∝ k1−y . The second exponent is related
to the dispersion law: the correlation time of the momentum k

scales as k−2+η. In the RG approach these two exponents play
the role of two formal expansion parameters. A parameter u0 is
introduced here for dimensionality reasons. Such an ensemble
was employed in some systems, studied in Refs. [23–25]. It was
shown that depending on the values of the exponentsy andη the
model reveals various types of inertial-range scaling regimes
with nontrivial anomalous exponents, which were explicitly
derived to the first [23] and second [24] orders of the double
expansion in y and η.

Depending on the parameter u0, the function (2.3) demon-
strates two interesting limiting cases: if u0 → 0, the situation
corresponds to the independent of time (“frozen”) random
force, and the case u0 → ∞ corresponds to the zero-time
correlated model. The relations

D0/ν
5
0u2

0 = g0 ∝ �y+2η, u0 ∝ �η (2.4)

define the coupling constant g0, which plays the role of
the expansion parameter in ordinary perturbation theory, and
the characteristic ultraviolet (UV) momentum scale �. The
parameter u0 introduced in Eq. (2.3) is written in the first
expression for calculation reasons; in particular, it is convenient
in the case of large u0.

III. FIELD THEORETIC FORMULATION OF THE MODEL

According to the general theorem [16–18], the stochastic
problem (2.1) and (2.3) is equivalent to the field theoretic model
with a doubled set of fields  ≡ {v′

i ,vi} and the De Dominicis-
Janssen action functional, which can be written in a compact

v v v v

FIG. 1. Graphical representation of the bare propagators in the
model (3.1).

form as

Sv() = 1
2v′

iDikv
′
k + v′

k[−∂t − (vi∂i) + ν0∂
2]vk. (3.1)

Here Dik is the correlator (2.3) and we employ a condensed
notation, in which integrals over the spatial variable x and the
time variable t , as well as summation over the repeated indices,
are omitted and assumed implicitly:

v′
k∂tvk =

d∑
k=1

∫
dt

∫
dx v′

k(t,x)∂tvk(t,x),

v′
iDikv

′
k =

d∑
i,k=1

∫
dt

∫
dt ′

∫
dx

∫
dx′ vi(t,x)

×Dik(t − t ′,x − x′)vk(t ′,x′). (3.2)

Since the auxiliary field v′
k is transverse, i.e., ∂kv

′
k = 0, the

pressure term in expression (3.1) can be eliminated using
integration by parts:

v′
k∂k℘ = −℘∂kv

′
k = 0. (3.3)

Expression (3.3) means that the field v′
k acts as a transverse

projector and selects the transverse parts of the expressions
with which it is contracted.

The field theoretic formulation (3.1) means that various
correlation and response functions of the original stochastic
problem are represented by functional averages over the full set
of fields with the functional weight expSv(), and in this sense
they can be interpreted as the Green’s functions of the field
theoretic model [16–18]. The perturbation theory of the model
can be constructed according to the well-known Feynman
diagrammatic expansion. Bare propagators are read off from
the inverse matrix of the Gaussian (free) part of the action
functional, while a nonlinear part of the differential equation
(2.1) leads to the interaction vertex −v′

k(vi∂i)vk . The propaga-
tor functions in the frequency-momentum representation read

〈vivj 〉0 = D0
k8−d−(y+2η)

ω2 + ν2
0u2

0k
4−2η

Pij (k)

ω2 + ν2
0k4

, (3.4)

〈viv
′
j 〉0 = Pij (k)

−iω + ν0k2
; (3.5)

the triple vertex corresponds to the expression

Vijl = i(δilkj + δij kl). (3.6)

Due to incompressibility the derivative in the vertex can be
moved onto the field v′

i , hence ki is the momentum of the field
v′

i . Graphical representations of the propagator functions and
interaction vertex are depicted in Figs. 1 and 2, respectively.
From now on, the end of a solid line without a slash denotes
the field vi , and the end of a solid line with a slash denotes the
field v′

i .
The analysis of UV divergences is based on the analysis of

the 1-irreducible Green’s functions. In the case of dynamical

033101-3



ANTONOV, GULITSKIY, KOSTENKO, AND MALYSHEV PHYSICAL REVIEW E 97, 033101 (2018)

FIG. 2. Graphical representation of the interaction vertex in the
model (3.1).

models [17] two independent scales (the time scale T and the
length scale L) have to be introduced:

[F ] ∼ [T ]−dω
F [L]−dk

F , (3.7)

where dω
F and dk

F are frequency and momentum dimensions of
the quantity F , respectively. The normalization conditions are

dk
k = −dk

x = dω
ω = −dω

t = 1,

dk
ω = dk

t = dω
k = dω

x = 0. (3.8)

Based on dk
F and dω

F the total canonical dimension dF = dk
F +

2dω
F can be introduced, which in the renormalization theory of

the dynamic models plays the same role as the conventional
(momentum) dimension does in the static problems.

The canonical dimensions for the model (3.1) are given in
Table I, including the renormalized parameters (without the
subscript “0”), which will be introduced later. The parameters
θ , θ ′, κ , and w are connected with the problem of the advection
of scalar field and will be used in Secs. VII–IX. From Table I it
follows that our model is logarithmic (the coupling constants
g0 ∼ [L]−y and u0 ∼ [L]−η are simultaneously dimension-
less) at y = η = 0, so in the minimal subtraction (MS) scheme,
which we use in this paper, the UV divergences in the Green’s
functions manifest themselves as poles in y, η and their linear
combinations.

The total canonical dimension of an arbitrary 1-irreducible
Green’s function �N

= 〈 . . . 〉1-ir is given by the relation

d� = d + 2 −
∑


Nd = d + 2 − Nv′dv′ − Nvdv. (3.9)

Here N = {Nv,Nv′ } are the numbers of corresponding fields
entering the function � and d is the corresponding total
canonical dimension of a field  [16–18]. The superficial UV
divergences whose removal requires counterterms might be
present only in the functions � for which the formal index
of divergence δ� (being the value of d� in the logarithmic
theory) is a non-negative integer. Dimensional analysis should
be augmented by the following considerations.

(1) In any dynamical model of the type (3.1) all the 1-
irreducible functions without the response field v′

i necessarily
contain closed circuits of retarded propagators similar to (3.5).

Therefore, such functions vanish identically and do not require
counterterms.

(2) Using the transversality condition of the field vi we can
move the derivative in the vertex −v′

k(vi∂i)vk from the field vk

onto the field v′
i . Therefore, in any 1-irreducible diagram it is

always possible to move derivatives onto external “tails” v′
i ,

which reduces the real index of divergence: d ′
� = d� − Nv′ .

From Table I and Eq. (3.9) we find that

d� = d + 2 − dNv′ − Nv. (3.10)

From this expression we conclude that for anyd > 2 superficial
divergences can be present only in the 1-irreducible functions
of two types. The first example is the function 〈v′

αvβ〉1-ir,
for which the real index of divergence is d� = 2. Another
possibility is the function 〈v′

αvβvγ 〉1-ir with d� = 1. This means
that all the UV divergences in our model can be removed by the
counterterms of the form vi∂

2vi and v′
k(vi∂i)vk . The Galilean

invariance which holds in case of the δ correlated in time func-
tion Dφ(ω,k) forbids the divergence of the vertex 〈v′

αvβvγ 〉1-ir,
which we have in our case of the colored noise (2.3). For d = 2
an additional UV divergence arises in the function 〈v′

αv′
β〉1-ir,

and a counterterm v′
i∂

2v′
i should be included [58]. This case

requires a special treatment, and in the following we assume
d > 2.

The model (3.1) is multiplicatively renormalizable with
two independent renormalization constants Z1 and Z2; the
renormalized action functional has the form

SvR
() = 1

2v′
iDvv

′
k + v′

k[−∂t − Z1(vi∂i) + Z2ν∂2]vk.

(3.11)

Here g, ν, and u are the renormalized counterparts of the origi-
nal (bare) parameters; the function Dv is expressed in the renor-
malized parameters using the relation g0ν

5
0u2

0 = gμy+2ην5u2;
the reference scale μ is an additional free parameter of the
renormalized theory.

The renormalized action (3.11) is obtained from the original
one (3.1) by the renormalization of the fields v → Zvv, v′ →
Zv′v′ and the parameters

g0 = gμyZg, u0 = uμηZu, ν0 = νZν. (3.12)

The renormalization constants in Eqs. (3.11) and (3.12) are
related as

Zν = Z2, Zu = Z−1
2 , Zg = Z2

1Z
−3
2 , Zv = Z−1

v′ = Z1.

(3.13)

The renormalization constants are found from the requirement
that the Green’s functions of the renormalized model (3.11),
when expressed in renormalized variables, have to be UV
finite and can depend only on the completely dimensionless
parameters g,u,d,y, and η.

TABLE I. Canonical dimensions of the fields and parameters in the model (3.1).

F v′ v θ θ ′ M,m,μ,� ν,ν0, κ , κ0 u,u0 g0 g, w, w0

dω
F −1 1 −1/2 1/2 0 1 0 0 0

dk
F d + 1 −1 0 d 1 −2 η y 0

dF d − 1 1 −1 d + 1 1 0 η y 0
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IV. RENORMALIZATION OF THE MODEL
AND RG FUNCTIONS

Let us consider the generating functional of the 1-
irreducible Green’s functions:

�() = Sv() + �̃(), (4.1)

where Sv() is the action functional (3.1) and �̃() is the sum
of all the 1-irreducible diagrams with loops.

Hence, one-loop approximation for the 1-irreducible
Green’s functions that require UV renormalization provides

〈v′
αvβ〉1-ir = (iω − ν0p

2)Pαβ( p) + �αβ, (4.2)

〈v′
αvβvγ 〉1-ir = Vαβγ + (�1 + �2 + �3). (4.3)

FIG. 3. The one-loop approximation of the 1-irreducible response
function 〈v′

αvβ〉1-ir . Greek letters denote external (free) indices of the
diagram; Latin letters correspond to internal indices of the vector
fields with implied summation.

Here, Pαβ( p) is the transverse projector; �αβ is the self-energy
operator, graphical representation for which is depicted in
Fig. 3; Vαβγ is the vertex factor (3.6); the diagrams �1, �2,
and �3 are depicted in Figs. 4(a)–4(c).

The calculation of the renormalization constants Z1 and Z2

in the one-loop approximation gives

Z1 = 1 − g
1

d(d + 2)

u

(u + 1)3

1

y
, (4.4)

Z2 = 1 − g
1

d(d + 2)

u3d(d − 1) + 3u2d(d − 1) + 2u(d2 − d + 2)

4(u + 1)3

1

y
. (4.5)

Here, we redefined coupling constant g → gSd/(2π )d with
Sd being the surface area of the unit sphere in d-dimensional
space; see Appendixes A 1 and A 2 for details. The corrections
of orders g2 and higher are neglected.

The relation between the initial and renormalized action
functionals S(,e0) = SR(Z,e,μ), where e is the complete
set of parameters, yields the fundamental RG differential
equation:

{D̃μ + Nvγv + Nv′γv′ } GR(e,μ, . . . ) = 0, (4.6)

where G = 〈 · · · 〉 is the correlation function of the fields ;
Nv and Nv′ are the numbers of the renormalization-requiring
fields v and v′, respectively, which are the inputs to G; the
ellipsis in the expression (4.6) stands for the other arguments
of G (spatial and time variables, etc.). Further, D̃μ is the
differential operation μ∂μ taken for fixed e0 and expressed
in the renormalized variables:

D̃μ = Dμ + βg∂g + βu∂u − γνDν . (4.7)

Here and below we have denoted Dx ≡ x∂x for any variable x.
The anomalous dimension γF of a certain quantity F (a field
or a parameter) is defined as

γF = Z−1
F D̃μZF = D̃μ ln ZF . (4.8)

The β functions for the two dimensionless coupling constants
g and u are

βg = D̃μg = g(−y − γg),

βu = D̃μu = u(−η − γu), (4.9)

where the latter equations result from the definitions and the
relations (3.12).

From the definitions and expressions (4.4) and (4.5) for the
renormalization constants Z1 and Z2 one finds

γ1 = g
1

d(d + 2)

u

(u + 1)3
, (4.10)

γ2 = g
1

d(d + 2)

u3d(d − 1)+3u2d(d − 1)+2u(d2 − d + 2)

4(u + 1)3
,

(4.11)

and from the relations (3.13) it follows that

βg = g(−y − 2γ1 + 3γ2), βu = u(−η + γ2). (4.12)

Equations (4.12) give us the full set of β functions defining
fixed points, which are responsible for asymptotic behavior of
correlation and structure functions.

V. IR ATTRACTIVE FIXED POINTS

One of the basic RG statements is that the asymptotic
behavior of the model is governed by the fixed points {g∗,u∗},
defined by the equations βg = 0, βu = 0. The type of a fixed
point (IR/UV attractive or a saddle point), i.e., the character of
the RG flow in the vicinity of the point, is determined by the
matrix �ik = ∂βi/∂gk at a given point, where βi is the full set
of β functions and gk is the full set of couplings. For an IR
attractive fixed point, the matrix � has to be positive definite,
i.e., the real parts of all its eigenvalues have to be positive.

(a) (b) (c)

FIG. 4. The one-loop approximation of the 1-irreducible function
〈v′

αvβvγ 〉1-ir . Greek letters denote external (free) indices of the
diagram; Latin letters correspond to internal indices of the vector
fields with implied summation.
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α = 1/3

α = 1/3 + a∗
η

y

Trivial

δ correlated
model

α = 1/3

y

Trivial

δ correlated
model

FIG. 5. Domains of the existence and IR stability of the fixed
points for the model (3.1) in the plane (y,η); a∗ = 4/3

3d(d−1)+2 . Gray
areas correspond to the regions where the trivial and δ correlated
model fixed points are IR attractive; hatched areas which are lying
inside the gray ones correspond to the regions where another nontrivial
(saddle type) point exists; in white areas there is no IR attractive fixed
point.

A direct analysis of the β functions reveals the existence of
the three fixed points: the trivial one and two nontrivial ones.
The free Gaussian fixed point, for which all interactions are
irrelevant and no scaling and universality are expected, has the
coordinates

g∗ = 0, u∗ = 0 (5.1)

and is IR attractive if both y and η are negative.
Let us define α ≡ η/y [see Eq. (2.3)]. If parameter α

satisfies the inequalities

1

3
< α <

1

3
+ 4/3

3d(d − 1) + 2
, (5.2)

the system possesses the fixed point {g∗,u∗} with the coordi-
nates

u∗ =
−3 +

√
1 − 16(α−1)

d(d−1)(3α−1)

2
, (5.3)

g∗ = d(d + 2)
(u∗ + 1)3

u∗
3α − 1

2
y (5.4)

(see Fig. 5). However, it turns out that one of the two
eigenvalues of the matrix � for this point is negative. This
means that this fixed point is a saddle one, i.e., for any values
of y and η it is IR attractive only in one of the two possible
directions. This fixed point exists for all d except the limit
d → ∞, where the inequality (5.2) has no solution (see details
below).

Another case to be considered is u∗ → ∞. From Eqs. (2.3)
and (3.4) it follows that this case corresponds to the previously
studied model with the δ correlated in time random force [59].
Therefore, one should obtain the well-known fixed point of
this model. This is indeed the case. To prove this statement it
is convenient to pass from the variable u to a variable x = 1/u.
The limit u → ∞ corresponds now to the limit x → 0; the β

function for the newly introduced parameter x is

βx = D̃μx = − 1

u2
βu. (5.5)

If u∗ → ∞ anomalous dimensions have the following simple
form:

γ1 = 0, (5.6)

γ2 = g
d − 1

4(d + 2)
. (5.7)

Therefore, we obtain the set of β functions

βg = g

[
−y + g

3(d − 1)

4(d + 2)

]
, (5.8)

βx = x

[
η − g

d − 1

4(d + 2)

]
. (5.9)

From Eqs. (5.8) and (5.9) it follows that the system possesses
the fixed point with the coordinates

x∗ = 0, g∗ = 4(d + 2)

3(d − 1)
y, (5.10)

which coincides with the results of Ref. [59] and is IR attractive
for y > 0 and η > y/3.

An interesting situation corresponds to the limit d → ∞.
The study of the large d behavior of fluid turbulence is not
only an academic interest: one can hope that in this case the
intermittency and anomalous scaling disappear or acquire a
simple “calculable” form and finite-dimensional turbulence
can be studied within the expansion around this “solvable”
limit, hence the idea of expansion in 1/d, considered in
Refs. [60–63]. If d → ∞ the set of the β functions (4.12)
reads

βg = g

[
−y + g

3u(u + 2)

4(u + 1)2

]
, (5.11)

βu = u

[
−η + g

u(u + 2)

4(u + 1)2

]
. (5.12)

Therefore, the system βg = 0, βu = 0 admits several possible
solutions. The trivial one is g∗ = u∗ = 0, which corresponds
to Eqs. (5.1) at finite d. Another solution is an infinite fixed
point:

x∗ = 0, g∗ = 4
3y, (5.13)

where x = 1/u (see above) and βx is given by expression
(5.5). This point is IR attractive for y > 0 and η > y/3 and
corresponds to Eqs. (5.10). Furthermore, there is one more
solution of the system (5.11)–(5.12):

g∗ u∗(u∗ + 2)

4(u∗ + 1)2
= y

3
= η, (5.14)

where both g∗ and u∗ are undefined separately. This case
corresponds to the saddle type point (5.3)–(5.4), but with one
significant difference: if d → ∞, two eigenvalues of the matrix
� are

λ1 = 0; λ2 = g
u(3u2 + 9u + 8)

4(u + 1)3

∣∣∣∣
g∗,u∗

. (5.15)
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Equations (5.14) and (5.15) are in agreement with the results
(5.3)–(5.4) for finite d. If d → ∞, there is no solution for in-
equality (5.2), and two hatched triangles, denoting the possible
areas of existence of this point, degenerate into one line η = y

3
(see Fig. 5). At the same time one of the two eigenvalues, which
was negative at finite d, tends to zero. This means that we have
not a point but a line η = y

3 with zero velocity along it, which is
(and was at finite d) IR attractive in the perpendicular direction.
It is a very intriguing phenomenon. On the one hand, there is a
continuous limit from finite d to the case d → ∞. Moreover,
the expression limd→∞ λ1 = 0 can be checked directly from
the original β functions at the fixed point (5.3)–(5.4). On the
other hand, the saddle type point, which can be reached only
if the initial data (both position and velocity) are very specific
and allow it, transforms into an IR attractive line, which will
be achieved for any initial data.

The results presented in this section are based on the
explicit form of the β functions (4.10)–(4.12) derived within
the leading one-loop approximation. They exhibit a very fine
structure and can well appear to be sensitive to inclusion of
higher-order corrections. This interesting issue lies beyond
the scope of our discussion and will be a subject of further
investigation.

VI. CRITICAL DIMENSIONS

In the leading order of the IR asymptotic behavior, the
Green’s functions satisfy the RG equation with the substitution
g → g∗ and u → u∗. This property together with canonical
scale invariance gives us the critical dimensions of the fields
in the model, which, in fact, govern the asymptotic behavior
of arbitrary correlation functions:

�F = dk
F + �ωdω

F + γ ∗
F , where �ω = −�t = 2 − γ ∗

ν .

(6.1)

Here, �F denotes the critical dimension of the quantity F ,
while �t and �ω are the critical dimensions of time and
frequency. The symbol γ ∗

F denotes the value γF at the fixed
point.

If u∗ → ∞ one obtains the exact answers (with no correc-
tions of orders y2 and higher)

�v = 1 − y/3, �v′ = d − 1 + y/3, (6.2)

which are in agreement with Ref. [59].
The saddle fixed point (5.3)–(5.4) gives

�v = 1 + η − y

2
, �v′ = d − 1 + η − y

2
. (6.3)

The latter dimensions have higher-order corrections ynηm

with n + m � 2. Evaluation of these corrections requires
consideration beyond the one-loop approximation.

VII. ADVECTION OF PASSIVE SCALAR FIELDS

Let us consider a passive advection of a scalar field θ (x) ≡
θ (t,x), which satisfies the stochastic differential equation

∂tθ + ∂i(viθ ) = κ0∂
2θ + fθ . (7.1)

Equation (7.1) describes the advection of a density field,
e.g., density of a pollutant. The advection of a tracer field

θ θ θ θ

FIG. 6. Graphical representation of the bare propagators 〈θθ ′〉0

and 〈θθ〉0.

(temperature, specific entropy, or concentration of the im-
purity particles) differs from this case by the transformation
∂i(viθ ) → (vi∂i)θ on the left-hand side of Eq. (7.1). Therefore,
in case of an incompressible carrier flow (i.e., if ∂ivi = 0) both
density and tracer fields are described by the same equation.

The coefficient κ0 in Eq. (7.1) is the molecular diffusivity,
∂2 = ∂i∂i is the Laplace operator, vi(x) is the velocity field
which obeys Eq. (2.1), and fθ = fθ (x) is a Gaussian noise
with zero mean and given covariance

〈fθ (x)fθ (x ′)〉 = δ(t − t ′) C(r/Lθ ), r = x − x′. (7.2)

The function C(r/Lθ ) in Eq. (7.2) is finite at (r/Lθ ) → 0
and rapidly vanishes when (r/Lθ ) → ∞. The expression (7.2)
brings about another external (integral) scale Lθ , related to
the noise fθ , but henceforth we will not distinguish it from
its analog L = m−1 in the correlation function of the stirring
force (2.3). The noise simulates effects of initial and boundary
conditions of the system.

If the velocity vi obeys the stochastic Navier-Stokes equa-
tion (2.1), the problem (7.1)–(7.2) is tantamount to the field
theoretic model of the full set of fields ̃ ≡ {θ ′,θ,v′

i ,vi} and
the action functional

S(̃) = Sθ (θ ′,θ,vi) + Sv(v′
i ,vi), (7.3)

where the advection-diffusion component

Sθ (θ ′,θ,vi) = 1
2θ ′Df θ ′ + θ ′[−∂tθ − ∂i(viθ ) + κ0∂

2θ ]

(7.4)

is the De Dominicis-Janssen action for the stochastic problem
(7.1)–(7.2) at fixed vi , while the second term is given by (3.1)
and represents the velocity statistics;Df is the correlation func-
tion (7.2), and all the required integrations and summations
over the vector indices are assumed; see explanations (3.2).

In addition to the expressions (3.4)–(3.6), the diagrammatic
technique in the full problem involves a new vertex −θ ′∂j (vj θ )
and two new propagators:

〈θθ ′〉0 = 1

−iω + κ0k2
, (7.5)

〈θθ〉0 = C(k)

ω2 + κ2
0 k4

. (7.6)

In the frequency-momentum representation the new vertex
reads

Vj (k) = ikj , (7.7)

where k is the momentum carried by the field θ ′.
A graphical representations of the newly introduced prop-

agator functions and vertex are depicted in Figs. 6 and 7,
respectively. From now on, the end of a double solid line
without a slash denotes the field θ , and the end of a double
solid line with a slash denotes the field θ ′.
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FIG. 7. Graphical representation of the interaction vertex Vj .

The model (7.3) was considered earlier in Ref. [64] in case
of the zero-time correlation function

〈φi(t,x)φj (t ′,x′)〉

= δ(t − t ′)D̃0

∫
k>m

dk
(2π )d

Pij (k)k4−d−y eik·(x−x′), (7.8)

where D̃0 = D0/ν
2
0u2

0. Here, we consider the Navier-Stokes
equation (2.1) with the colored random force (2.3). As it was
shown above the only IR attractive fixed point (5.10) of this
system corresponds to the model with zero-time correlations.
This means that the Galilean symmetry broken by colored
noise is restored and we take advantage of the previous study,
namely, the fact that the full model (7.3) is multiplicatively
renormalizable and possesses the IR attractive fixed point
{g∗,w∗} in the full space of couplings:

g∗ = 4(d + 2)

3(d − 1)
y + O(y2), w∗(w∗ + 1) = 2(d + 2)

d
. (7.9)

Here, we have introduced the dimensionless variable w0 =
κ0/ν0 with ν0 from Eq. (2.1) and its renormalized analog w.
The critical dimensions of the advected field θ and additional
field θ ′ are

�θ = −1 + y/6, �θ ′ = d + 1 − y/6 (7.10)

and have no corrections of the orders y2 and higher.

VIII. OPERATOR PRODUCT EXPANSION FOR THE PAIR
CORRELATION FUNCTION AND LARGE-SCALE

ANISOTROPY

Let us consider the influence of large-scale anisotropy,
introduced into the system at the large scale L through the
correlation function of the random noise (7.2), on the inertial
range behavior of the pair correlation function 〈θ (t,x)θ (t,x′)〉.
The goal is to check Kolmogorov’s local symmetry restoration
hypothesis, which states that the spatial symmetries of the
system are restored in the measurable statistical quantities.

We start our consideration with the structure functions of
the following form:

Sn(r) = 〈[θ (t,x) − θ (t,x′)]2n〉. (8.1)

Dimensionality considerations together with the RG equations
give the asymptotic expressions in the region μr � 1:

Sn(r) = (νμ2)−n(μr)−2n�θ ζ (mr), (8.2)

where r = |x′ − x|, m = L−1, the critical dimensions of the
fields are given by Eq. (7.10), and ζ are certain scaling
functions [20].

We assume that the function C(r/Lθ ) in Eq. (7.2) depends
additionally on a constant unit vector n = {ni} that determines

a certain distinguished direction. Thus, the operator product
expansion (OPE) in the irreducible composite operators [16]

[θ (t,x)−θ (t,x′)]2n �
∑
F

CF (mr)F (t,x), x = (x + x′)/2,

(8.3)

which is valid for r → 0, provides the expansion in the
irreducible representations of the SO(d) group. Since in order
to identify all critical dimensions it is sufficient to consider
uniaxial anisotropy, Eq. (8.3) gives rise to the d-dimensional
generalizations of the Legendre polynomials Pl(cos ϑ) (which
are the basis of such representation), where ϑ is the angle
variable between the vectors r and n. The structure functions
(8.1) are obtained by averaging (8.3) with the weight expSR ,
whereSR is the renormalized action functional (7.3). The mean
values 〈F (x)〉 ∝ (mr)�F appear in the right-hand side.

The main contribution to the “shell” with a given rank l is
determined by the lth rank operator with the lowest critical
dimension. The expansion that takes into account only the
leading term in each shell has the form

Sn � r−2n�θ

2n∑
l=0

Al(mr) Pl(cos ϑ) (mr)�(2n,l) + · · · , (8.4)

where we omit the dimensional factors ν and μ and the ellipsis
stands for the contributions with l > 2n, which contain more
derivatives than fields;Al(mr) are the coefficient functions ana-
lytical in mr . The dimensions �(2n,l) are the critical dimensions
of the operators

F
(n,l)
i1...il

= ∂i1θ · · · ∂il θ (∂iθ∂iθ )s + · · · , (8.5)

which are constructed solely of the gradients of the passive
scalar field and have the lowest canonical dimension (i.e.,
contain the minimal number of the derivatives). Here, l is
the number of the free vector indices (i.e., the rank of the
tensor) and n = l + 2s is the total number of the fields θ

entering a given operator. The ellipsis then represents the
subtractions with Kronecker’s delta symbols that make the
operator irreducible (so that the contraction with respect to
any pair of the free tensor indices vanishes). For example,

F
(2,2)
ij = ∂iθ∂j θ − δij

d
(∂kθ∂kθ ). (8.6)

For the pair correlation functions, the full analog of the
expression (8.4) can be presented in the form that includes all
the shells:

〈θ (t,x)θ (t,x′)〉 = r−2�θ

∞∑
l=0

Al(mr) Pl(cos ϑ) (mr)�l . (8.7)

This is a consequence of the expression

F (x)∂G(x) = −G(x)∂F (x) + ∂[F (x)G(x)] (8.8)

for the operators F (x) and G(x) of the form

Fi1...il (x) = θ (x)∂i1 · · · ∂il θ (x) + · · · , (8.9)

where the ellipsis stands for the subtractions with Kronecker’s
delta symbols that make the operator irreducible. It is clear
that for the pair correlation function the leading term of the
lth shell is determined by the single operator (8.9) with two
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fields θ and l tensor indices. From Eq. (8.8) it follows that
this operator is unique up to derivatives, which have vanishing
mean values and do not contribute to the quantities of interest;
see Secs. IV C and VC in Ref. [35] for detailed discussion.
The critical dimensions �l in Eq. (8.7) are dimensions of the
composite operators (8.9).

Furthermore, from the relation (8.8) it follows that for odd
l the operator (8.9) itself reduces to a linear combination of
the derivatives. In the following, we will be interested only in
the operators which are not reducible to derivatives and will
consider only even values of l.

IX. INERTIAL RANGE ASYMPTOTIC BEHAVIOR
OF THE PAIR CORRELATION FUNCTION

In general, a local composite operator is a polynomial
constructed from the primary fields (x) and their finite-order
derivatives at a single space-time point x = {t,x}. Due to a
coincidence of the field arguments, additional UV divergences
arise in the Green’s functions with such objects [16,17].
The total canonical dimension of an arbitrary 1-irreducible
Green’s function � = 〈F  . . . 〉 that includes one composite
operator F and an arbitrary number of the primary fields  (the
formal index of UV divergence) is given by the relation

d� = dF −
∑


Nd, (9.1)

where N is the number of the fields  entering �, d is
the total canonical dimension of the given field , and dF is
the canonical dimension of the operator. In the process of the
renormalization, operators can mix with each other:

Fi =
∑

j

ZijF
R
j , (9.2)

where Zij is the renormalization matrix.
We are interested in the scaling dimensions of the operators

(8.9), which are given by the eigenvalues of the matrix �F [see
(6.1)] calculated for the mixed operators. Since the original
stochastic equation (7.1) is linear in field θ , the necessary
diagrams for a calculation of the matrix Zij do not contain the
propagator 〈θθ〉0 from Eq. (7.6). Hence, all the calculations
can be performed directly in the model without the random
noise in Eq. (7.1), i.e., in the SO(d) covariant model, where
the irreducible tensor operators with different ranks cannot
mix in renormalization procedure. The only possibility to mix
during the renormalization is mixing within the operator’s
own “family” of derivatives: the operators with additional
derivatives or with the fields θ ′ and v′

i have too high canonical
dimensions, the appearance of a field vi is forbidden by
the (restored) Galilean symmetry, and additional fields θ are
forbidden by the linearity of the model. Herewith, relation (8.8)
shows that all the other operators obtained the same rank differ
from (8.9) by a total derivative and, therefore, give the same
contribution into the OPE. This means that the matrix �F is
in fact triangular and the composite operators (8.9) can be
treated as multiplicatively renormalizable, F (n,l) = Z(n,l)F

(n,l)
R ,

with certain renormalization constants Z(n,l) denoted later for
simplicity as Zl .

Let us introduce �n(x; θ ), the θn term of the expansion
in θ (x) of the generating functional of 1-irreducible Green’s

FIG. 8. The one-loop approximation of the function �n(x; θ ).
Latin letters i and j denote the internal indices of the velocity field
with implied summation.

functions with one composite operator F (x) and any number
of the fields θ :

�n(x; θ ) =
∫

dx1 · · ·
∫

dxn〈F (x)θ (x1) · · · θ (xn)〉
× θ (x1) · · · θ (xn). (9.3)

The renormalization constants Zl are determined by the re-
quirement that the 1-irreducible functions (9.3) are UV finite
in the renormalized theory.

The one-loop approximation for the 1-irreducible function
�n(x; θ ) can be formally written as

�n(x; θ ) = F (x) + 1
2 �̃, (9.4)

where the first term is the tree (loopless) approximation, �̃ is
the one-loop graph depicted in Fig. 8, and 1/2 is the symmetry
coefficient of the given graph. The dot with two attached lines
in the top of the diagram denotes the operator vertex, i.e., the
variational derivative:

V (x; x1,x2) = δ2F (x)/δθ (x1)δθ (x2). (9.5)

The contribution of a specific diagram into the functional (9.4)
for any composite operator F is represented in the form

�n = V × I × θ . . . θ, (9.6)

where V is the vertex factor given by Eq. (9.5), I is the diagram
itself, and the product θ . . . θ corresponds to the external tails.

The calculation of the renormalization constant Zl and
anomalous dimension γl (see Appendix B 1 for details) gives

Zl = 1 − g

2(w2 + 1)

1

y
Sl(d), (9.7)

γl = g

2(w2 + 1)
Sl(d). (9.8)

The factor Sl(d) in Eqs. (9.7) and (9.8) denotes the double sum

Sl(d) =
s+m+2�l∑

s,m=0

(−1)s+m2sCs+m+2
l (s + m + 2)!

d(d + 2) . . . [d + 2(s + m) + 2]

×
(

2w2

w2 + 1

)m

. (9.9)

This sum can be calculated for any given l:

Sl(d) = l(l − 1)

4z

[
w2 + 1

l + z − 1

− w2

z + 1
2F1

(
1,2 − l; 2 + z;

w2

w2 + 1

)]
, (9.10)
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2 4 6 8

0.1

0.2

S (3/2)l

l

FIG. 9. The graph of the function Sl(3/2) as a function of l.

where z = d/2 and 2F1 is the hypergeomeric function, defined
for |t | < 1 as

2F1(a,b; c; t) = 1 +
∞∑

k=1

[
k−1∏
l=0

(a + l)(b + l)

(1 + l)(c + l)

]
t k (9.11)

(see Appendix B 2 for details).
The critical dimension of the operator (8.9) is obtained using

the relations (6.1) and (7.10):

�l = l + 2�θ + γ ∗
l = l − 2 + y/3 + γ ∗

l , (9.12)

where γ ∗
l is the value of γl at the fixed point. For the realistic

values of the parameters d = 3 and w∗ ≈ 1.393 [see Eq. (7.9)],
we get

γ ∗
l ≈ 0.566Sl(3/2) × y (9.13)

with the higher-order corrections in scaling exponent y. The
factor Sl(3/2) is given by the expression

Sl(3/2)= l(l − 1)

6

[
2.94

l + 1/2
−0.776 2F1(1,2 − l; 7/2; 0.66)

]
(9.14)

and depends on l as depicted in Fig. 9; the same type of behavior
is valid for any spatial dimension d � 3.

It is important that Sl(3/2) > 0 for l � 1: this leads to a
monotonical increase of �l as l → ∞; see expression (9.12).
Moreover, �0 < 0. The quantity of the spatial derivatives l

illustrates the degree of anisotropy: the larger l the higher
the degree of the anisotropy; see Eq. (8.7). Thus, there is a
hierarchy of the anisotropic contributions in the inertial range
asymptotic behavior of the pair correlation function (8.7), and
the leading term is given by the scalar operator θ2.

This fact has a clear physical interpretation: in the inertial
range, the leading contribution is given by the isotropic shell
l = 0 and coincides with the scalar isotropic model, while the
terms with l � 2 provide only corrections which become in-
significant as mr → 0. Moreover, the corrections become less
pronounced with increasing l, i.e., with increasing degree of
the anisotropy. This effect confirms Kolmogorov’s hypothesis
of the local isotropy restoration.

It is worth mentioning that an analogy exists between the
present hierarchy and the well-known multipole expansion
in ordinary classical electrostatics which can also be written
as an expansion in spherical harmonics [65]. The multipole
expansion can be viewed as a series with progressively finer
angular features. The initial isotropic term, corresponding to
the potential of a pointlike charge, gives the leading contribu-

tion at large distances. The other terms are anisotropic (they
involve angular dependence) and give corrections that decay
faster and faster as the “degree of anisotropy” l increases.

This is not just a superficial analogy. It becomes especially
clear if one applies the zero-mode approach to the advection
problem in Kraichnan’s rapid-change model (or in some
analogous model, in which turbulent flow is simulated by
some Gaussian statistics); see, e.g., Ref. [55]. Employing
the zero-mode approach terminology, the individual terms
of the spherical harmonics expansion in electrostatics are
the homogeneous solutions (the so-called zero modes) of
the Poisson equation. If we are interested in the asymptotic
behavior at small or large distances, only the zero modes re-
stricted at the origin or at infinity should be taken into account,
respectively. The difference with electrostatic problems is that
for the turbulent advection the differential operator is more
complicated. Moreover, since we are interested in the inertial
range behavior (i.e., behavior in the interval, restricted by
both large and small scales) it is not so simple to choose the
right solution from two possible zero modes. Nevertheless,
the result is similar to the electrostatic case: the leading
term corresponds to l = 0 and is isotropic, while the other
(anisotropic) contributions provide the decaying corrections
and obey the hierarchy with respect to the value of l.

X. CONCLUSION

In this paper incompressible fluid is studied using the
field theoretic approach. We have considered the stochastic
Navier-Stokes equation with colored noise (i.e., the model with
arbitrary finite correlation time of the velocity field) to describe
fluid dynamics. The second problem considered is the advec-
tion of the passive scalar field by this turbulent flow. The critical
dimensions of the fields are calculated for both problems.

Within the one-loop approximation the only nontrivial
regime of the long-distance (IR) behavior is found to be
reduced to the limiting case of the rapid-change type behavior.
This regime is realized for y > 0, η > y/3, where y and η

describe the energy spectrum E ∝ k1−y and the dispersion
law ω ∼ k2−η of the velocity field. The second nontrivial
fixed point, existing if 1

3 <
y

η
< 1

3 + 4/3
3d(d−1)+2 , is a saddle type

point. The fact that the only nontrivial IR attractive fixed point
corresponds to vanishing correlation time means, in particular,
that the Galilean symmetry, violated by the colored stochastic
force, is automatically restored in the IR limit. As it should be
for the case of rapid-change behavior, the calculated critical
dimensions of the fields coincide with the results obtained for
the zero-time model which was considered earlier in Ref. [59].

The inertial-range behavior of the correlation function of
two composite operators constructed from the advected fields θ

was studied using the OPE. Existence of the anomalous scaling
(singular powerlike dependence on the integral scale L) was
established. From the leading-order (one-loop) calculations
it follows that the main contribution into the OPE is given
by the isotropic term corresponding to l = 0, where l is the
number of the Legendre polynomial entering the expansion of
the correlation function and signifies a degree of the anisotropy;
all other terms with l � 2 provide only corrections.

These two facts (the restoration of the Galilean symmetry
and isotropy restoration) give a quantitative illustration of

033101-10



STATISTICAL SYMMETRY RESTORATION IN FULLY … PHYSICAL REVIEW E 97, 033101 (2018)

the general concept that the symmetries of the Navier-Stokes
equation, broken spontaneously and by initial or boundary con-
ditions, are restored in the statistical sense for fully developed
turbulence [1–6].
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APPENDIX A: CALCULATION DETAILS FOR THE
MODEL OF INCOMPRESSIBLE FLUID

This section contains detailed calculations of the diagrams,
defining the renormalization constants Z1 and Z2 (see Sec. IV).
All calculations are performed in the analytical regularization
and MS scheme.

1. Calculation of the self-energy operator

Let us start with the graph presented in Fig. 3. The analytical
expression for it reads

�αβ = D0

∫
dω

2π

∫
dk

(2π )d
Vαab( p)Vdcβ ( p + k)Pac( p + k)Pbd (k)

k8−d−y−2η(
ω2 + ν2

0u2
0k

4−2η
)(

ω2 + ν2
0k4

)
(−iω + ν0| p + k|2)

. (A1)

Here and below Vijk( p) is the triple vertex (3.6); Greek letters α and β and Latin letters a−d denote the vector indices of the
propagators (3.4) and (3.5) with the implied summation over the repeated indices. Since the index of divergence for this diagram
d� = 2, we have to calculate only the terms proportional to p2, where p denotes an external momentum.

Let us consider the expression (4.2). Taking trace of both sides of it one obtains the scalar equation

�2 = iω − ν0p
2 + �, (A2)

where we have introduced for brevity

� = �αβPαβ/(d − 1). (A3)

The calculation of the (scalar) index structure J of the quantity � yields

J = Vαab( p)Vdcβ( p + k)Pac( p + k)Pbd (k)Pαβ( p) ∼= (A · p) + Bp2 + O(p3). (A4)

The vector coefficient A and scalar coefficient B are

A = 2k, (A5)

B = sin4 ϕ − 3 sin2 ϕ cos2 ϕ + (2 − d) sin2 ϕ, (A6)

where ϕ is the angle between the external momenta p and internal momenta k.
The integration over the frequency ω in the expression (A1) gives∫

dω

2π

1(
ω2 + ν2

0u2
0k

4−2η
)(

ω2 + ν2
0k4

)
(−iω + ν0| p + k|2)

= 1

2ν4
0

u0k
2−η + k2 + | p + k|2

u0k2k2−η(k2 + u0k2−η)(u0k2−η + | p + k|2)(k2 + | p + k|2)
. (A7)

Combining the expression (A4) with the numerator of the expression (A7) gives

� ∝
∫

dk
(2π )d

Â + B̂
u0k4−η(k2 + u0k2−η)(u0k2−η + | p + k|2)(k2 + | p + k|2)

. (A8)

Here, the coefficients Â and B̂ denote the quantities proportional to p2 and p, respectively:

Â = p2(u0k
2−η + 2k2)A + 2B( p · k) p, (A9)

B̂ = B(u0k
2−η + 2k2) p, (A10)

with the vector A and scalar B defined in the expressions (A5) and (A6).
The integration over the internal momenta k can be simplified in the MS scheme, in which all the anomalous dimensions

γ1,2 are independent of the regularizers like y and η. Hence, we may choose them arbitrarily with the only restriction that our
diagrams have to remain UV finite; see Ref. [24] for detailed discussion. The most convenient way is to put η = 0, so expanding
the denominator of (A8), combining it with (A9) and (A10), and taking into account that we are interested only in the term
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proportional to p for B̂ and to p0 for Â one obtains

�αβ ∝ p2 1

2(u0 + 1)

∫
dk

(2π )d
1

k2

[
A(u0 + 2) − 4 sin2 ϕ cos2 ϕ + 2(u0 + 2)(u0 + 3)

u0 + 1
sin2 ϕ cos2 ϕ

]
; (A11)

the coefficient A is defined in Eq. (A5).
In order to integrate over the vector k we need to average the expression (A11) over the angles:∫

dkf (k) = Sd

∫ ∞

m

dk kd−1 〈f (k)〉, (A12)

where 〈· · · 〉 is the averaging over the unit sphere in the d-dimensional space, Sd is its surface area, and k = |k|. To average the
function (A11) over the angles in the orthogonal subspace we use the relations

〈cos2 ϕ〉 = 1

d
, 〈cos4 ϕ〉 = 3

d(d + 2)
. (A13)

This gives

� ∝ p2 2

(u0 + 1)2

∫
dk

(2π )d
1

k2
X, (A14)

where

X = d − 1

d(d + 2)

[
u2

0d(d − 1) + 3u0d(d − 1) + 2d2 − 2d + 4
]
. (A15)

Combining the expression (A1) with the expressions (A3), (A7), and (A14) and expression (2.4) for the amplitude D0 we find

�αβ = −1

4
p2g0ν0

u0

(u0 + 1)3
X

∫ ∞

m

dk

(2π )d
1

kd+y
. (A16)

Taking into account the multiplier (d − 1)−1 coming from (A3), after the integration of the expression (A16) over the modulus k

one obtains

� = −1

4
p2g0ν0

u3
0d(d − 1) + 3u2

0d(d − 1) + 2u0(d2 − d + 2)

d(d + 2)(u0 + 1)3
Cd

m−y

y
, (A17)

where Cd ≡ Sd/(2π )d . Combining this expression with Eq. (4.2) from Sec. IV one immediately obtains the renormalization
constant Z2 = Zν .

2. Calculation of the vertex diagrams

Let us start with the graph presented in Fig. 4(a). The analytical expression for it is

�1 = D0

∫
dω

2π

∫
dk

(2π )d
Vαcd ( p)Vaβb(−k)Vef γ ( p + k)

× Pac(k)Pde( p + k)Pbf (q − k)

(iω + ν0k2)(−iω + ν0| p + k|2)

(q − k)8−d−y−2η(
ω2 + ν2

0 |q − k|4)(ω2 + ν2
0u2

0|q − k|4−2η
) . (A18)

Here and below p and q are the external momenta, and k denotes an internal (loop) momenta; the index of divergence for
this diagram d� = 1, therefore we need to calculate only the terms proportional to p1 or q1. Since �1 ∝ Vαcd ( p), we may set
q = p = 0 in all the other multipliers. This observation significantly simplifies the expression for the divergent part of Eq. (A18):

�1
∼= D0

∫
dω

2π

∫
dk

(2π )d
Vαcd ( p)Vaβb(−k)Vef γ (k)

Pac(k)Pde(k)Pbf (k)

(iω + ν0k2)(−iω + ν0k2)

k8−d−y−2η(
ω2 + ν2

0k4
)(

ω2 + ν2
0u2

0k
4−2η

) . (A19)

Integration over the frequency at η = 0 leads to∫
dω

2π

1

(iω + ν0k2)(−iω + ν0k2)
(
ω2 + ν2

0k4
)(

ω2 + ν2
0u2

0k
4−2η

) = u0 + 2

4k10ν5
0u0(u0 + 1)2

. (A20)

The calculation of the index structure J 1
αβγ of the quantity �1 is straightforward:

J 1
αβγ = Vαcd ( p)Vaβb(−k)Vef γ (k)Pac(k)Pde(k)Pbf (k) = 2i

[
pα − ( p · k)kα

k2

]
kβkγ . (A21)
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In order to integrate the expression (A21) over the vector k we employ the relations similar to Eqs. (A13):〈
kikj

k2

〉
= δij

d
,

〈
kikj klkm

k4

〉
= δij δlm + δilδjm + δimδjl

d(d + 2)
. (A22)

Taking into account the expressions (A20)–(A22), for the divergent part of the diagram �1 one obtains

�1 = i g0
u0(u0 + 2)

2(u0 + 1)2

(d + 1)pαδβγ − pβδαγ − pγ δαβ

d(d + 2)
Cd

m−y

y
. (A23)

The analytical expression for the graph presented in Fig. 4(b) is

�2 = D0

∫
dω

2π

∫
dk

(2π )d
Vαcd ( p)Vaβb( p − k)Vf eγ (q − k)

× Pac( p − k)Pde(k)Pbf (q − k)

(iω + ν0| p − k|2)(iω + ν0|q − k|2)

k8−d−y−2η(
ω2 + ν2

0k4
)(

ω2 + ν2
0u2

0k
4−2η

) . (A24)

Like in the previous case, since �2 ∝ Vαcd ( p) we may set q = p = 0 in all the other multipliers:

�2
∼= D0

∫
dω

2π

∫
dk

(2π )d
Vαcd ( p)Vaβb(k)Vf eγ (k)

Pac(k)Pde(k)Pbf (k)

(iω + ν0k2)2

k8−d−y−2η(
ω2 + ν2

0k4
)(

ω2 + ν2
0u2

0k
4−2η

) . (A25)

The integration over the frequency ω at η = 0 leads to the expression∫
dω

2π

1

(iω + ν0k2)2
(
ω2 + ν2

0k4
)(

ω2 + ν2
0u2

0k
4−2η

) = u0(u0 + 3) + 4

8k10ν5
0u0(u0 + 1)3

. (A26)

The calculation of the index structure J 2
αβγ gives

J 2
αβγ = Vαcd ( p)Vaβb(k)Vf eγ (k)Pac(k)Pde(k)Pbf (k) = −2ipcPcα(k)kβkγ . (A27)

Taking into account the expressions (A26) and (A27), the integration of the expression (A25) over the momenta k gives

�2 = −i g0
u0

(
u2

0 + 3u0 + 4
)

4(u0 + 1)3

(d + 1)pαδβγ − pβδαγ − pγ δαβ

d(d + 2)
Cd

m−y

y
. (A28)

The analytical expression for the divergent part of the graph presented in Fig. 4(c) coincides with the expression (A25). Thus,
�3 = �2 and it is also given by the expression (A28).

Using the transversality condition ∂ivi = 0 together with the expression (3.6) and moving the derivative in the vertex from the
field v′ onto the field v we conclude that the term proportional to a momentum pα gives no contribution, therefore for the sum of
the three triangle diagrams �1, �2, and �3 [see Eqs. (A23) and (A28)] one obtains

�1 + �2 + �3 = i g0
u0

(u0 + 1)3

pβδαγ + pγ δαβ

d(d + 2)
Cd

m−y

y
. (A29)

Combining this expression with Eq. (4.3) from Sec. IV one immediately obtains the renormalization constant Z1 = Zv .

APPENDIX B: CALCULATION DETAILS FOR THE MODEL OF PASSIVE ADVECTION

This section contains detailed calculations of the diagram, defining the renormalization constant Zl , and the double sum Sl(d),
entering in the expression for the anomalous dimension γl (see Sec. IX). The calculation of renormalization constant is performed
in the analytical regularization and the MS scheme.

1. Calculation of the diagram with insertion of the composite operator

The only graph �̃ which is required for the critical dimensions of the correlation functions (8.7) is presented in Fig. 8. To
simplify the process of calculations it is convenient to contract the operator (8.9) with a constant vector λ = {λi}. As a result one
obtains the scalar operator

Fl = θ (λi∂i)
lθ + · · · , (B1)

where the terms, denoted by the ellipsis, necessarily involve the factors of λ2. The appearance of λ2 means that the corresponding
initial operator contains ∂2, i.e., its canonical dimension is too high. Therefore, we should omit the terms with λ2. The vertex
factor (9.5) in this case takes the form

V (x; x1,x2) = δ(x − x1)(λi∂i)
lδ(x − x2) + {x1 ↔ x2}. (B2)
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Let us choose the external momentum p to flow into the diagram through the left lower vertex and to flow out of the diagram
through the right lower one. Since the divergence of the graph �̃ is logarithmic, the external momentum flowing through the
operator vertex and all the external frequencies are set equal to zero. We are interested in the value of the anomalous dimension at
the fixed point, therefore we may perform the substitutions g = g∗, w = w∗ [see Eq. (7.9)], and u → ∞ from the very beginning;
furthermore, the limiting case u → ∞ means that (u0ν0)2 � ω2, so the propagator function (3.4) reads

〈vivj 〉0 = g0ν
3
0

k4−d−y

ω2 + ν2
0k4

Pij (k). (B3)

Thus, the core of the diagram takes the form

�̃ ∼= pipj

∫
dω

2π

∫
k>m

dk
(2π )d

2il(λ · q)l
gμyν3k4−d−y

ω2 + ν2k4
Pij (k)

1

ω2 + w2ν2q4
. (B4)

Here the factor pipj comes from the vertices Vj [see Eq. (7.7)] and from the observation that in the case of incompressible
carrying fluid the derivative can act directly on the field θ ; the factor 2il(λ · q)l comes from the vertex (B2) for even l [for odd l

the two terms in Eq. (B2) would cancel each other], the factors depending on k represent the velocity correlation function (B3),
and the last factor comes from the propagators 〈θ ′θ〉0; the momentum k flows through the velocity propagator, so that q = k + p.

In order to find the corresponding renormalization constant it is sufficient to retain in the result for the counterterm only the
terms of the same form, i.e., the terms of the form (λ · p)l , and drop all the other terms containing λ2 or p2. Thus, the structure
with Pij (k) is simplified and takes the form

pipjPij (k) ∼= −( p · k)2/k2. (B5)

The integration over the frequency ω in Eq. (B4) is straightforward:

�̃ ∼= −gμy il
∫

k>m

dk
(2π )d

( p · k)2(λ · q)l
k−d−y

q2(k2 + w2q2)
. (B6)

Expanding all the denominators in the integrand of Eq. (B6) in p together with dropping all the terms with p2 gives

1

q2
� 1

k2 + 2( p · k)
= 1

k2

∞∑
s=0

(−2)s( p · k)s

k2s
, (B7)

1

k2 + w2q2
� 1

k2(w2 + 1) + 2w2( p · k)
= 1

(w2 + 1)k2

∞∑
m=0

(−1)m( p · k)m

k2m

(
2w2

w2 + 1

)m

. (B8)

Expanding the numerator of (B6) using Newton’s binomial formula (note that q = k + p) one obtains

(λ · q)l =
l∑

n=0

Cn
l (λ · k)n(λ · p)l−n. (B9)

Combining the expressions (B7)–(B9) one obtains threefold series over n,m, and s:

(λ · q)l
1

q2(k2 + w2q2)
= 1

k4(w2 + 1)

l∑
n=0

Cn
l (λ · p)l−n

∞∑
m,s=0

(−1)m(−2)s( p · k)m+s+2(λ · k)n

k2(s+m)

(
2w2

w2 + 1

)m

, (B10)

in which we need to collect only the terms proportional to (λ · p)l . This leads to the restriction n = s + m + 2 and hence to the
finite double sum

(λ · q)l
1

q2(k2 + w2q2)
∼= 1

k4(w2 + 1)

s+m+2�l∑
s,m=0

(−1)m(−2)sCs+m+2
l

(λ · p)l−m−s−2( p · k)m+s+2(λ · k)s+m+2

k2(s+m)

(
2w2

w2 + 1

)m

. (B11)

Substitution of this sum into the expression (B6) gives rise to the integrals

Ii1...i2n
(m) =

∫
k>m

dk
(2π )d

k−d−y ki1 . . . ki2n

k2n
(B12)

with n = s + m + 2 � 2. They can be found using the expressions

Ii1...i2n
(m) = δi1i2 . . . δi2n−1i2n

+ all permutations

d(d + 2) . . . (d + 2n − 2)
I (m), (B13)

where I (m) is the scalar integral:

I (m) =
∫

k>m

dk
(2π )d

1

kd+y
= Cd

m−y

y
. (B14)
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The sum over all the possible permutations of 2n tensor indices in the numerator of Eq. (B13) involves (2n − 1)!! = (2n)!/2nn!
terms, but we have to keep only the terms that give rise to the structure (λ · p)n after the contraction with the vectors λ and p in
the expression (B11). Hence, there are only n! such permutations.

Collecting all the factors for the core (B4) leads to the expression

�̃ ∼= −il(λ · p)lg
1

(w2 + 1)
Cd

(
μ

m

)y 1

y
Sl(d), (B15)

where

Sl(d) =
s+m+2�l∑

s,m=0

(−1)s+m2sCs+m+2
l (s + m + 2)!

d(d + 2) . . . [d + 2(s + m) + 2]

(
2w2

w2 + 1

)m

. (B16)

For l = 0, sums (B11) and (B16) contain no terms, so that S0(d) = 0.
Thus, expression (9.4) for the functional (9.3) reads

�2(x) = Fl(x)

[
1 − g

2(w2 + 1)

(
μ

m

)y 1

y
Sl(d)

]
, (B17)

where Fl is the operator (B1) and the substitution g → gCd is implied. For the renormalization constant Zl in the MS scheme
one obtains

Zl = 1 − g

2(w2 + 1)

1

y
Sl(d). (B18)

According to Sec. VIII the parameter l defining the composite operator (B1) counts the Legendre polynomials entering in the
OPE for correlation functions.

2. Calculation of the double sum Sl (d)

It turns out that the double sum Sl(d) in Eqs. (9.9) and (B16) can be reduced to a simpler onefold sum. Let us pass from the set
of variables s and m to the variables k and m, where k = s + m, and substitute the explicit expression for the binomial coefficient
Ck+2

l = l!/(k + 2)!(l − k − 2)!. This gives

Sl(d) = l!
k+2�l∑
k=0

[
k∑

m=0

(
w2

w2 + 1

)m
]

(−2)k

(l − k − 2)! d(d + 2) . . . (d + 2k + 2)
. (B19)

The internal summation over m gives

k∑
m=0

(
w2

w2 + 1

)m

= (w2 + 1)

[
1 −

(
w2

w2 + 1

)k+1
]

; (B20)

changing now the summation variable k → k + 2 one obtains

Sl(d) = l! (w2 + 1)
l∑

k=2

(−2)k−2

(l − k)! d(d + 2) . . . (d + 2k − 2)

[
1 −

(
w2

w2 + 1

)k−1
]
. (B21)

Substitution z = d/2 allows us to construct the expression with the ratio of two factorials:

Sl(z) = l! (w2 + 1)
l∑

k=2

(−1)k(z − 1)!

4(l − k)! (z + k − 1)!

[
1 −

(
w2

w2 + 1

)k−1
]
, (B22)

which can be calculated for any given l:

Sl(z) = l(l − 1)

4z

[
w2 + 1

l + z − 1
− w2

z + 1
2F1

(
1,2 − l; 2 + z;

w2

w2 + 1

)]
. (B23)

Here 2F1 denotes the hypergeomeric function, defined for |t | < 1 as

2F1(a,b; c; t) = 1 +
∞∑

k=1

[
k−1∏
l=0

(a + l)(b + l)

(1 + l)(c + l)

]
t k. (B24)

The explicit expression (B23) allows us to analyze the dependence of the anomalous dimensions γl over l being in the present
context the degree of the anisotropy.
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