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We develop and extend a method presented by Patinet, Vandembroucq, and Falk [Phys. Rev. Lett. 117, 045501
(2016)] to compute the local yield stresses at the atomic scale in model two-dimensional Lennard-Jones glasses
produced via differing quench protocols. This technique allows us to sample the plastic rearrangements in a
nonperturbative manner for different loading directions on a well-controlled length scale. Plastic activity upon
shearing correlates strongly with the locations of low yield stresses in the quenched states. This correlation is
higher in more structurally relaxed systems. The distribution of local yield stresses is also shown to strongly
depend on the quench protocol: the more relaxed the glass, the higher the local plastic thresholds. Analysis of
the magnitude of local plastic relaxations reveals that stress drops follow exponential distributions, justifying
the hypothesis of an average characteristic amplitude often conjectured in mesoscopic or continuum models.
The amplitude of the local plastic rearrangements increases on average with the yield stress, regardless of the
system preparation. The local yield stress varies with the shear orientation tested and strongly correlates with
the plastic rearrangement locations when the system is sheared correspondingly. It is thus argued that plastic
rearrangements are the consequence of shear transformation zones encoded in the glass structure that possess
weak slip planes along different orientations. Finally, we justify the length scale employed in this work and extract
the yield threshold statistics as a function of the size of the probing zones. This method makes it possible to derive
physically grounded models of plasticity for amorphous materials by directly revealing the relevant details of the
shear transformation zones that mediate this process.
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I. INTRODUCTION

Despite numerous advances during the past two decades,
a physical description of plasticity in amorphous materials,
known to be quantitatively tied to well-characterized atomistic
processes, remains a grand challenge [1–3]. All the constitutive
laws describing the plastic flow of this large class of materials,
such as glasses, amorphous polymers, or gels, remain based
on phenomenological assumptions. This fact is due to the
lack of systematic characterization of elementary mechanisms
of plasticity at the atomic scale. For the amorphous solids,
the absence of crystalline order prevents, by definition, any
identification of crystallographic defects such as dislocations.
These defects are, however, the quanta of plastic deformation
from which it has been possible to derive constitutive equations
of crystal plasticity on robust physical grounds. In amorphous
materials, plastic deformation manifests as local rearrange-
ments [4] exhibiting a broad distribution of sizes and shapes
[5], nonaffine displacements [6,7], and connectivity changes
between particles [8] that lead to a redistribution of elastic
stresses in the system [9,10]. By analogy with dislocations,
it therefore appears natural to try to describe the plastic flow
from the dynamics of localized defects commonly referred to
as shear transformation zones (STZs) [11].
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A variety of metrics have been proposed to locate and
characterize the defects that control plastic activity including
structural properties (free volume [12], packing [13], short-
range order [14], and internal stress [15]) and linear responses
measures (elastic moduli [16] and localized soft vibrational
modes [17–25]). Unfortunately, the definition of these struc-
tural properties are often system-dependent and have shown
a relatively low predictive power with respect to the plastic
activity [13,16]. The approaches based on linear response
measures (e.g., soft vibrational mode analysis) have shown
that the correlation between these local properties and the
location of plastic rearrangements decreases rather quickly as
the system is deformed plastically since they are derived from
perturbative calculations [26].

To address these problems, new methods have recently
been proposed. They are based on combinations of static and
dynamic properties (atomic volume and vibrations) [27], on
the nonlinear plastic modes [28,29], or on machine-learning
methods [30–32]. These approaches allow the calculation of
local fields (respectively, named by their authors flexibility
volume, local thermal energy, and softness field), which show
abilities to detect plastic defects far superior to previous at-
tempts. Independently of their high degree of correlation, they
nevertheless have the disadvantage of giving access only to
quantities that are not directly related to local yield criteria that
are more commonly used in models of plasticity. Moreover,
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with the exception of works based on the vibrational soft
modes [33,34], the vast majority of these previous approaches
only gives access to scalar quantities, which by definition
also neglect the important orientational aspect inherent in STZ
activity.

It is precisely in this context that we have recently developed
a numerical technique to systematically measure the local yield
stress field of an amorphous solid on the atomic scale [26].
This new approach responds to some issues raised previously
by providing access to a natural quantity in the context of
plasticity, i.e., a local yield stress, and shows an extremely
strong correlation with the plastic activity. In addition, this
method is nonperturbative and can investigate large strains. It
also gives access to a tensorial quantity and is thus able to
describe several possible directions of flow. It is therefore an
ideal candidate to quantitatively characterize the relationship
between structure and plasticity.

In this paper, we present in detail the principles of this
method. The statistics of local yield stress are calculated in a
model glass synthesized from different quench protocols. The
correlation between local slip threshold and plastic activity is
investigated as a function of the degree of relaxation of the
system. The method is subsequently extended to the study
of the amplitudes of the plastic relaxations. Additionally, the
consequences of the orientation of the mechanical loading are
examined. Finally, we address the effect of the length scale
over which the local yield stress field is computed.

II. SIMULATION METHODS

A. Sample preparation

We performed molecular dynamics and statics simulations
with the LAMMPS open software [35]. The object of study
is a two-dimensional binary glass that is known for its good
glass formability [36,37]. It has previously been used to
study the plasticity of amorphous materials [11,38–40]. One
hundred samples each containing 104 atoms were obtained
by quenching liquids at constant volume. The density of the
system is kept constant and equals 104/(98.8045)2 ≈ 1.02. As
in Ref. [39], we choose our composition such that the number
ratio of large (L) and small (S) particles equals NL : NS =
(1 + √

5)/4. The two types of atoms interact via standard
6–12 Lennard-Jones interatomic potentials. In the following,
all units will therefore be expressed in terms of the mass m and
the two parameters describing the energy and length scales
of interspecies interaction, ε and σ , respectively. Accordingly,
time will be measured in units of t0 = σ

√
m/ε. In the present

study, these potentials have been slightly modified to be twice
continuously differentiable functions. This is done by replacing
the Lennard-Jones expression for interatomic distances greater
than Rin = 2σ by a smooth quartic function vanishing at a
cutoff distance Rcut = 2.5σ . For two atoms i and j separated
by a distance rij :

U (rij ) =

⎧⎪⎪⎨
⎪⎪⎩

4ε
[(

σ
rij

)12 − (
σ
rij

)6]+A, for rij < Rin∑4
k=0 Ck(rij − Rin)k, for Rin < rij < Rcut

0, for rij > Rcut,
(1)

with

A = C0 − 4ε

[(
σ

Rin

)12

−
(

σ

Rin

)6
]

C0 = −(Rcut − Rin)[3C1 + C2(Rcut − Rin)]/6

C1 = 24εσ 6
(
R6

in − 2σ 6
)/

R13
in

C2 = 12εσ 6
(
26σ 6 − 7R6

in

)/
R14

in

C3 = −[3C1 + 4C2(Rcut − Rin)]/[3(Rcut − Rin)2]

C4 = [C1 + C2(Rcut − Rin)]/[2(Rcut − Rin)3]. (2)

Periodic boundary conditions are imposed on square boxes
of linear dimensions L = 98.8045σ . For the nonsmoothed
version of the interatomic potential, the glass transition tem-
perature Tg of this system is known to be approximately Tg =
0.325ε/k, where k is the Boltzmann constant [39]. This tem-
perature corresponds to the mode coupling temperature, which
is an upper bound of the glass transition temperature [38]. To
highlight the links between the microstructure, the stability of
glasses, and their mechanical properties, three different quench
protocols are considered. The first two kinds of glass are
obtained after instantaneous quenches from high-temperature
liquid (HTL) and equilibrated supercooled liquid (ESL) states
at T = 9.18Tg and T = 1.08Tg , respectively. The last protocol
consists in a gradual quench (GQ), in which temperature is con-
tinuously decreased from a liquid state, equilibrated at 1.08Tg ,
to a low-temperature solid state at 0.092Tg , over a period of
106t0 using a Nose-Hoover thermostat [41,42]. Afterwards,
the system is quenched instantaneously as well. All quench
protocols are followed by a static relaxation via a conjugate
gradient method to equilibrate the system mechanically at
zero temperature. The forces on each atom are minimized up
to machine precision. The same relaxation algorithm is used
hereafter to study the response to mechanical loading.

This approach produces three highly contrasting types of
amorphous solids. The greater the temperature from which
the system has fallen out of equilibrium, the less relaxed the
system [43,44]. This fact is clearly reflected in the values of the
average potential energies per atom of the generated inherent
states, equal to −2.1015 ± 0.0011,−2.3248 ± 0.0015, and
−2.3977 ± 0.0019ε for the HTL, ESL, and GQ protocols,
respectively.

B. Mechanical loading: Generation of plastic events

Beginning from a quenched unstrained configuration, the
glasses are deformed in simple shear imposing Lees-Edwards
boundary conditions with an athermal quasi static method
(AQS) [45–48] . We apply a series of deformation increments
�γxy to the material by moving the atom positions �r following
an affine displacement field such that rx → rx + ry�γxy and
ry → ry . After each deformation increment, we relax the
system to its mechanical equilibrium.

In order not to miss plastic events, a sufficiently small
strain increment equal to �γxy = 10−5 is chosen. Plastic
events are detected when the computed stress τxy decreases,
a signature of mechanical instability. A reverse step −�γxy is
systematically applied after each stress drop to confirm that
the strains generated in the solid are irreversible when the
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FIG. 1. (a) Typical stress-strain curves for the three quench proto-
cols: instantaneous quench from a high-temperature liquid (HTL, con-
tinuous line), instantaneous quench from an equilibrated supercooled
liquid (ESL, dashed line), and a gradual quench (GQ, dash-dotted
line). The inset shows a zoom of a stress drop corresponding to
one plastic event. (b) Plastic event computed between the onset of
instability and just after the event: the arrows and the color scale are
the displacement �u and maximum shear strain ηVM fields, respectively.
For the sake of clarity, the arrows are magnified by a factor 200 and
deleted in the core region. The atom with the maximum shear strain
gives the location of the plastic rearrangement.

stress criterion is satisfied. The observed response is typical
for amorphous materials and is characterized by reversible
elastic branches interspersed by plastic events as illustrated in
Fig. 1(a). The more relaxed the system, the stiffer and harder
the glass. In agreement with Ref. [39], we observe that the
localization of plastic strain, under load, increases with the
degree of relaxation of the initial state. Note that in the case of
the GQ system a strong localization of the strain is observed
around γxy ∼ 0.06 due to shear banding.

The average shear moduli μ are obtained from the ratio
between the stress response of the entire system following
a deformation increment �τxy/�γxy , i.e., the slope at the
origin of the stress-strain curves reported in Fig. 1(a). μ

equals 8.85, 14.73, and 19.03 for HTL, ESL, and GQ systems,

respectively. As expected, the stiffness of the system increases
with its level of relaxation.

C. Strain field computation

To quantify the correlation between deformation thresholds
and plastic rearrangements, two types of deformation fields
are calculated. The first corresponds to the plastic deformation
induced by a single plastic event, the second describes the
total cumulative deformation. The displacement field of the
former is calculated using the difference between the position
of atoms after and just before that instability occurs minus the
applied affine displacement increment. The displacement field
of the latter is merely computed as the difference between the
position of atoms in configurations at a given strain and the
as-quenched state, that is to say the state that has not yet been
deformed mechanically. The Green-Lagrange strain tensor ηij

is then evaluated from displacement fields �u of each atom
following the coarse-graining method developed in Ref. [49]
based on the atomic gradient tensor evaluation [50]. An octic
polynomial coarse-graining (CG) function φ(r) is employed
[10]. This function has a single maximum and continuously
vanishes at r = RCG where r is the distance between the strain
evaluation location and the atom positions. It is expressed as:

φ(r) =
{

15
8πR2

CG

[
1 − 2

(
r

RCG

)4 + (
r

RCG

)8]
, for r < Rcoars

0, otherwise.
(3)

It is desirable to consider a large enough coarse-graining length
scale so that continuum mechanics quantities make sense while
keeping it as small as possible to account for heterogeneity
and to preserve spatial resolution. To this aim, we choose
RCG = 5σ . On this scale, a continuous description makes
sense (Hooke’s law holds) but the solid is still anisotropic and
heterogeneous [16,51,52].

To simplify the analysis, we choose to work with a scalar
quantity by computing the maximum of the shear deformation

ηVM =
√

[(ηxx − ηyy)/2]2 + η2
xy . The positions of a plastic

rearrangement are then defined as the position of the atom
having undergone the maximum ηVM during a plastic event.
This approach allows us to obtain the successive positions of
localized plastic rearrangements during deformation from the
quenched state as exemplified in Fig. 1(b).

III. LOCAL YIELD STRESS MEASUREMENT METHOD

We used a method developed in Ref. [26] that allows us
to sample the local flow stresses of glassy solids for different
loading directions. Similar techniques have been employed to
sample the local elastic moduli [53] or the yield stresses along
a single direction in model glasses [54,55]. The principle of the
numerical method is illustrated in Fig. 2(a). It consists in locally
probing the mechanical response within an embedded region of
size Rfree (named region I) by constraining the atoms outside
of it (named region II) to deform in a purely affine manner.
Only the atoms within the region I are relaxed and can deform
nonaffinely. Plastic rearrangements are, thus, forced to occur
within this region and the local yield stress can be identified.

In Ref. [26], the embedded region I was centered on every
atom of the system to test the reliability of the method. Here, to
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FIG. 2. (a) Schematic drawing of the local yield stress com-
putation on a regular square grid of mesh size Rsampling. Region I
(of radius Rfree) is fully relaxed while region II (of width 2Rcut) is
forced to deform following an affine pure shear deformation in the
α direction. (b) Typical local stress increment-strain curves of the
Region I for different loading directions α = 0, 45, 90, and −45◦.
The measurement of the threshold �τc and relaxation �τr are
represented for α = 90◦. Inset: zoom one the low strain region of
the corresponding stress-strain curves, i.e., without subtracting the
initial local shear stress within the as-quenched glass τ0(α).

lay the groundwork for an up-scaling strategy, we rather sample
the local yield stress on a regular square grid of size Rsampling.
Furthermore, the noninteracting atoms, located farther than a
distance Rfree + 2Rcut from the center of the probed region, are
deleted during the local loading simulations, thereby speeding
up the computation. Unless mentioned explicitly, we chose
Rsampling = L/39 ≈ Rcut and Rfree = 5σ , consistently with the
coarse-graining scale RCG used for the strain computation. The
yield criterion and the AQS incremental method are the same
as those described in Sec. II B to shear the system remotely. At
this scale the amorphous system is highly heterogeneous and
the yield stress may not be the same for all orientations of the
imposed shear. We thus sample the mechanical response using

pure shear loading conditions in different loading directions α.
Eighteen directions, uniformly distributed between α = −90◦
and α = 90◦, are investigated. α = 0◦ corresponds to the
remote simple shear direction αl .

To save computational time, the strain increment is this
time equal to �γ = 10−4. The shear stress in the α direction
τ (α) is computed over the atoms that belong to region I using
the Irving and Kirkwood formula [56] as a function of the
applied strain. The local region is sheared up to the first
mechanical instability occurring at a critical stress τc(α). Even
at rest, the glasses feature nonzero internal stress due to the
frustration inherent to amorphous solids [see inset of Fig. 2(b)].
A more relevant quantity to link the local properties with plastic
activity is thus the amount of stress needed to trigger a plastic
rearrangement. The initial local shear stress state within the
as-quenched glass τ0(α) is thus subtracted from the critical
stress to get the local stress increase that would trigger an
instability �τc(α) = τc(α) − τ0(α). Local shear stress-strain
curves are exemplified for four different directions in Fig. 2(b).
It can be observed that the mechanical response depends on
the loading orientation. As expected from elasticity theory,
we verify that τ0(α) = −τ0(α + 90◦) and that the local shear
moduli μ(α) = μ(α + 90◦) as shown in the inset of Fig. 2(b)
[57]. On the other hand, the critical stress increments �τc

do not show elastic symmetry and depend on the orientation
considered. The computation of �τc is repeated systematically
for all the grid points of the system and for the different loading
directions.

We now want to consider the implications of the field
of local �τc(α) for a particular direction of remote loading
αl . For this purpose, we make the simplifying assumption of
homogeneous elasticity within the system or, equivalently, of
localization tensor equal to the identity tensor. Of course, the
elasticity in this system at this length scale is heterogeneous
and leads to nonaffine displacements under remote loading
as shown in Ref. [16]. This assumption is simply used to be
able to estimate the stress felt by a local zone due to a remote
loading. This assumption will be discussed further in Sec. V.
If the applied shear stress is homogeneous in the glass, plastic
rearrangement that would be activated for a given site is the
minimum (positive) �τc(α) projected along the remote loading
direction. This may be expressed as

�τy = min
α

�τc(α)

cos(2[α − αl])
with |α − αl| < 45◦. (4)

Maps of local �τy are shown in the Fig. 3 for the three quench
protocols. One distinguishes a correlation length correspond-
ing to the size of region I. Indeed, the same shear transformation
zone can be activated for several grid locations if its threshold is
smaller than others in its vicinity which leads to the assignment
of close �τy values on a scale ∼Rfree. The influence of the size
of region I will be addressed in Sec. VI.

IV. LOCAL REARRANGEMENT STATISTICS

A. Distributions of local yield stress

The effect of the quench protocol on the yield stress maps
shown in Fig. 3 is remarkable. It is readily apparent that
the lower the temperature at which the system falls out of
equilibrium during its synthesis, the more mechanically stable
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FIG. 3. Local yield stress maps computed on a regular grid for the three different quench protocols: (a) HTL, (b) ESL, and (c) GQ. The
first ten plastic event locations are shown as open black symbols numbered by order of appearance during remote shear loading. Plastic events
clearly tend to occur in regions characterized by low-yield stresses.

the glass. An advantage of our method is that it allows one to
assess stability not from the global scale, as in Fig. 1(a), but
locally. The HTL system shows an overabundance of small
energy barriers characteristic of systems far from equilibrium.
In contrast, the GQ system has a low proportion of soft
zones embedded in a hard skeleton [39,58]. As expected, ESL
presents an intermediate situation. More quantitatively, the
distributions of �τy are computed for the three quenching
protocols as shown in Fig. 4. The probability densities p(�τy)
are noticeably shifted toward higher values with increasing
system stability, weak areas being depopulated.

Through this method we are able to analyze the statistics of
the sites that are about to rearrange plastically. Previous work
(based on mean-field theoretical approaches [59], atomistic
simulations [60,61], and mesoscopic simulations [62,63]) pro-
posed a scaling for these soft areas such as lim�τy→0 P (�τy) ∼
�τθ

y , where θ is a nontrivial exponent. For systems at rest,
i.e., after the quench, it was shown that θ ≈ 0.6 [60,61]. From
detailed inspections of our results, as shown as inset of Fig. 4,
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FIG. 4. Probability distribution function of the local yield stresses
for the three different quench protocols. The corresponding cumu-
lative distribution functions are represented in log-log scale in the
inset. The straight line is a power law of exponent 1 + θ = 1.6, i.e.,
the expected scaling of the integral of the probability distribution
function as �τy approaches zero.

it seems difficult to extract this exponent with the exception
of ESL. In any case, it appears that the behavior of P (�τy)
in the limit of zero �τy varies with the preparation of the
system. In the case of the GQ system, a smaller exponent can
even be observed while for HTL a larger one can be fitted
for small threshold values. Several reasons may account for
this disagreement, including the lack of statistics or the size
of the strain increment �γ . The fixed boundary conditions
applied during local probing may also prevent some relaxation
of the system. Also, notably, the previous approaches have
considered the distribution of critical strains applied to the
whole system which is strictly equivalent to our approach for
an elastically homogeneous glass, a strong assumption at this
length scale [16]. The answer to this question deserves more
investigation, which is outside the scope of the present study.

B. Correlation with plastic activity

The position of the first ten plastic rearrangements during
remote loading are illustrated in Fig. 3. Plastic rearrangements
clearly tend to occur in the soft zones, i.e., for areas in which
�τy are small. To quantify this correlation, we apply the same
method as in Ref. [26].

We propose a correlation coefficient that allows us to relate
the order of appearance of zones in which the plastic arrange-
ments appear and a local scalar field, the local yield stress.
The aim here is to compute the predictive power of a structural
indicator for the location of successive rearrangements from
the sole knowledge of the initial state of the system, i.e.,
before deformation. To achieve this, the correlation coefficient
is computed from the value of the cumulative distribution
function of �τy corresponding to the point of the grid imax, i.e.,
the closest to the location of the plastic rearrangement (deter-
mined according to the method described in the Sec. II B). The
correlation coefficient is defined as

C�τy
= 1 − 2CDF [�τy(imax,γxy)], (5)

where CDF is the disorder average of the cumulative distri-
bution function. C�τy

∼ 1 indicates a perfect correlation, i.e.,
a localized plastic rearrangement on the lowest yield threshold
grid point (CDF = 0), while C�τy

∼ 0 means an absence
of correlation. C�τy

is calculated for all plastic events as a
function of the deformation applied γxy as shown in Fig. 5(a).
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FIG. 5. Correlation between the local yield stresses computed in
the quenched state and the locations of the plastic rearrangement
as a function of the applied strain for the three quench protocols.
The error bars correspond to one standard deviation. (a) Correlation
computed from individual plastic rearrangements using Eq. (5). The
arrows correspond to the average strain of the tenth plastic event. The
lines are empirical A + Be−(γ /γd )2

fits from which the decorrelation
strain γd is estimated. (b) Pearson correlation coefficient computed
between the local yield stress fields and the local strain fields using
Eq. (6). Error bars are smaller than symbols.

Note that relation Eq. (5) neglects the stress redistribution
due to successive rearrangements. Moreover, it only takes into
account the rearrangements producing the maximum of local
shear strain located at imax and therefore ignores the possibility
that a plastic event may be composed of several localized
rearrangements. In agreement with Ref. [26], an excellent
correlation is observed. Above all, this correlation shows a
slow decrease, indicating a persistence of weak sites.

We observe that the level of correlation depends on the
preparation of the system. The more relaxed the system, the
more robust the observed correlation. The first ten plastic rear-
rangements occur in areas belonging to the softest 23, 13, and
8.5% sites for the HTL, ESL, and GQ systems, respectively. For
slowly quenched glasses GQ, it is interesting to note that the
correlation decreases sharply for a deformation corresponding
to the softening due to the localization of the deformation. It
can be argued that the origin of the best correlation observed in
the most relaxed system comes directly from the distribution

of local thresholds. The relaxed systems have a much smaller
population of low yield threshold zones. They therefore exhibit
larger shear susceptibility when compared to other zones or to
mechanical noise, making it easier to predict the onset of plastic
activity.

The problem of the preceding method is that it assumes the
existence of individual and well-localized events. However,
Refs. [64,65] have shown that if this hypothesis is relatively
well satisfied for small deformation levels, it does not hold with
the increase in deformation during which avalanches, through
system spanning plastic events, are observed. To circumvent
this problem, we deal directly with the correlation between
the entire local yield stress field of the as-quenched state �τy

and the cumulative deformation field ηVM in the same spirit
as Ref. [34]. The cross-correlation, or Pearson’s correlation, is
calculated as a function of the applied strain γxy as:

ρ�τy,ηVM (γxy) = −
∑N

i=1

(
�τi

y − �τy

)(
ηi

VM − ηVM
)

Nσ�τy
σηVM

, (6)

where N is the number of points on the grid on which the
thresholds are calculated, and σ�τy

and σηVM are the standard
deviations of �τy and ηVM, respectively. The minus sign is
added here to obtain a positive value since large ηVM are
expected for locations where �τy are small (i.e., anticorre-
lation). A denotes the ensemble average of the quantity A.
Note that explicit dependence on γxy of ηVM is omitted in the
right-hand side for the sake of simplicity. Figure 5(b) shows the
evolution of ρ�τy,ηVM as a function of the imposed deformation.
The general trend is qualitatively similar to that of Fig. 5(a).
The correlation between local thresholds and plastic activity is
greater for the more relaxed systems. There are, however, some
differences. It can be observed that the correlation begins to
increase as plastic rearrangements start to accumulate on weak
sites. On the other hand, as expected, the decay of the GQ
system is more marked upon the formation of shear bands, the
latter concentrating the deformation.

The correlation appears smaller than the one expected from
the computation based on local rearrangements in Eq. (5);
however, we remark that this calculation is based on crude
assumptions. For example, we have not dissociated the elastic
part from the plastic part when calculating ηVM. Moreover,
this approach does not take into account the distribution of
amplitudes of plastic rearrangements. Still, we have verified
that in both cases—correlation based on the maxima of the
strain field [Eq. (5)] and the cross-correlation based on the
cumulative deformation [Eq. (6)]—the correlations between
�τy and plastic activity are significantly better, and more
persistent with deformation, than those obtained for the local
classical structural indicators reviewed in Ref. [26].

C. Distributions of local relaxation

In this section, we extend our method to study the amplitude
of the local plastic relaxations that follow plastic rearrange-
ments. The loading of region I described in Sec. III is continued
after the instability until the local stress τ (α) increases again,
signaling the end of the plastic rearrangement and the return to
mechanical stability of the sheared zone. This final stress τf (α)
is also computed for all directions. Plastic relaxation in the α
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direction is then deduced by simply subtracting τf (α) from
the stress just before the instability τc(α). This amplitude of
relaxation �τr (α) = τc(α) − τf (α) is exemplified in Fig. 2(b).
Like the thresholds, it depends on the direction of shear. Note
that this method can only give an estimate of the relaxation
amplitude, as the frozen boundary conditions constrain some
degrees of freedom during relaxation.

The plastic rearrangements actually observed during the
shearing of the system correspond to the thresholds �τy

calculated in Eq. (4), and occur when the patch is loaded in
the weakest direction αmin. To place ourselves in a coarse-
graining perspective, we want to derive a scalar indicator that
corresponds to mechanical response in the remote loading
direction αl and disregard for now the tensorial aspect of
the problem. The amplitude of plastic relaxation is therefore
calculated, in turn, by projecting �τr in the αl direction
according to the relation:

�τp = �τr (αmin) cos(2[αmin − αl]). (7)

Note that this estimator of the stress relaxation slightly un-
derestimates the plastic relaxations because of the projection.
Nevertheless, it gives access to a sufficiently simple scalar
indicator. We verified that the absence of projection does not
qualitatively change our results (not shown here).

The distributions of stress relaxation amplitudes reported in
Fig. 6(a) in lin-log scale for the three quench protocols show
an exponential decay. The average stress drops increases with
the relaxation of the system. The mean plastic relaxations cal-
culated from exponential regressions are �τp = 0.164, 0.269,
and 0.337 for HTL, ESL, and GQ systems, respectively. The
amplitude of plastic deformation, or slip increment, can also
be estimated by computing the eigen-deformations of plastic
rearrangements as γp ∼ �τp/μ where μ is the average shear
modulus of the glass. Remarkably, the distributions γp collapse
on a master curve of mean γp = 0.00887 independently of the
quench protocol as reported in the inset of Fig. 6(a). These
results justify the assumption of a characteristic relaxation
commonly used in mesoscopic simulations or in mean-field
models. It is also in agreement with previous atomistic com-
putations based on different methods such as the mapping
between elastic field and Eshelby inclusion model [66,67] and
automatic saddle point search techniques [68].

We also take advantage of this analysis to study the depen-
dence of the relaxation amplitude �τp with the distance to
thresholds �τy as shown in Fig. 6(b). The former increases on
average according to the latter. Remarkably, the relationship
observed does not seem to depend too much on the quench
protocol. If it seems reasonable that the amplitude of relaxation
increases with the increase of the local yield stress, the stored
elastic energy being larger, we have no explanation to derive
this relationship at the moment. An exponential dependence is
adjusted empirically and gives �τp ∼ 0.054e0.976�τy .

Let us note finally that if we are sufficiently confident in
the capacity of this local method to quantify the thresholds,
the measurements of the relaxation amplitudes are more
questionable insofar as the frozen boundary conditions prevent
some relaxations. A more adequate treatment of this question
would require developments that are beyond the scope of this
work. One may for instance think about the implementation
of quasicontinuum simulation techniques that, by relaxing
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FIG. 6. (a) Probability distribution function of the stress drops
for the three different quench protocols in lin-log scale. The same
quantities rescaled by the shear moduli, i.e., the slip increments, are
represented in the inset. The lines are exponential fits. (b) Average
stress drop as a function of the average local yield stress for the free
different quench protocols. The line is an exponential fit.

elastically the surrounding matrix, will provide flexible bound-
ary conditions to the atomistic region. The picture that emerges
from Fig. 6 is nevertheless interesting and sheds new light on
the plastic deformation as it greatly simplifies representation
of relaxation in glassy systems.

V. ORIENTATION EFFECTS

A. Loading direction

So far, relatively few studies have addressed the issue
of the variation of the local yield stress as a function of
loading orientation. This is due to the fact that most of the
proposed local indicators are scalar quantities. Only work
based on soft modes attempted to explore susceptibility to
loading orientation by taking advantage of the vectorial aspect
of vibrational eigenmodes [33,34]. To address this issue, we
use here another asset of our local method which naturally
gives us access to this directional information.

To test the dependence on the direction of the mechanical
loading, the quenched glasses are deformed by the same AQS
protocol but following different orientations. In addition to the
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FIG. 7. Top row: local yield stress maps computed on a regular grid for different loading directions for the GQ protocol: (a) simple shear
αl = 0◦, (b) pure shear αl = 45◦, and (c) negative simple shear αl = 90◦. The red arrows correspond to the applied strains. The first ten
plastic event locations are shown as open black symbols numbered by order of appearance during remote shear loading. Bottom row: local
yield stress contrasts TC(α1

l ,α
2
l ) defined in Eq. (8) between the above loading directions: (d) α1

l = 0◦, α2
l = 45◦, (e) α1

l = 45◦, α2
l = 90◦, and

(f) α1
l = 0◦, α2

l = 90◦.

simple shear described in Sec. II B, the systems are deformed
in pure shear by applying strain increments �γ/2 = −�εxx =
�εyy and simple shear in the negative direction by applying
deformation increments �γ = −�γxy . These remote loadings
correspond in the infinitesimal strain limit to shearing along
αl = 45◦ and αl = −90◦ directions, respectively. Pure shear
thus produces a diagonally oriented shear. The negative simple
shear corresponds to a laterally oriented shear but in the
opposite direction with respect to the positive simple shear
remote loading employed so far. The positions of the first ten
plastic rearrangements for the different loading directions are
exemplified for a GQ glass in the top row of Fig. 7. In agreement
with Ref. [69], the location of plastic rearrangements show a
strong dependence on the loading protocol. Most plastic events
occur in different areas for different loading protocols. Only
occasionally rearrangements will appear in the same location.

At the same time, local yield stresses are also calculated
using the formula Eq. (4) with the corresponding loading
directions αl . αl is thus equal to 0◦, 45◦, and 90◦ for positive
simple shear, pure shear, and negative simple shear, receptively.
The maps of �τy are shown in the top row of Fig. 7. A strong
dependence on the loading orientation is observed. The rotation
of the shear results in the appearance (disappearance) of soft
(hard) zones. For example, the areas close to the first and third
plastic rearrangements for positive simple shear in Fig. 7(a)
disappear in the case of negative simple shear in Fig. 7(c).
Conversely, soft areas appear as those close to the fifth and
seventh rearrangements in Fig. 7(c). As with the simple shear
detailed above, pure shear and negative simple shear show
an excellent correlation between the soft zones and the zones

where the plastic rearrangements occur. The quantification of
correlations through Eqs. (5) and (6) as described in Sec. IV B
is quantitatively similar (not shown here).

To highlight the discrete aspect of the variation of the
local yield stress field, we compute the threshold contrast
(TC) existing between two loading directions. This contrast is
defined locally as the ratio between their difference and their
averages as

TC
(
α1

l ,α
2
l

) =
∣∣�τy

(
α1

l

) − �τy

(
α2

l

)∣∣[
�τy

(
α1

l

) + �τy

(
α2

l

)]/
2
, (8)

where α1
l and α2

l are two remote loading directions. Contrast
maps are shown in the bottom row of Fig. 7. These maps feature
the trends described qualitatively above. The change in loading
angle clearly shows areas of marked contrasts as a function of
the loading orientations considered. The change of loading
direction “turns on” or “turns off” the soft areas, which gives
rise to large local contrasts.

We observe that the greater the difference between the
angles �αl = |α1

l − α2
l |, the greater the number and intensity

of the contrasts. To quantify this trend, we compute the
cross-correlation of the yield stress field as a function of the
difference of the loading angles �αl . The result is shown in
Fig. 8. The trend observed confirms that the correlation of
the yield stress field decreases rapidly with the loading angle,
regardless of the quench protocol. We note, however, that the
correlation is never completely zero, and is still significant even
for the largest �αl = 90◦ that corresponds to the correlation
between a shearing direction and its opposite direction. We
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FIG. 8. Cross-correlation of the local yield stress field as a
function of the loading direction shift. Error bars are smaller than
symbols.

attribute this effect to the small correlation existing between
stable (unstable) zones and their tendency to have large (small)
slip barriers [26,70]. The decorrelation due to the directional
aspect is nevertheless clearly the dominant effect.

This result shows that local stress thresholds are a very
sensitive probe of the loading protocol insofar as it is possible
to accurately predict the plastic activity as a function of the
orientation of the load. Unlike Ref. [69], we thus believe that
these results are consistent with a plasticity-based view of shear
transformation zones. Indeed, from our point of view, the de-
pendence of the plastic activity upon the loading protocol does
not rule out the existence of plastic deformation via discrete
units encoded in the structure, and that these discrete units
clearly preexist within the material prior to loading. Our results
show rather that the plastic deformations of an amorphous
solid, at least for the transient regime at small deformations,
can be seen as a sequence of activation of discrete shear
transformation zones having weak slip orientations.

B. Fluctuations

The local information given by our method allows us to also
study the fluctuations in the direction of plastic rearrangements
around the loading direction αl . At first, we have verified that
the distributions of thresholds do not depend on the angle αl .
As expected, the glasses are isotropic on average in the as-
quenched state. We then consider the angle αmin minimizing
Eq. (4) for a given αl , i.e., the weakest local direction for a
given loading direction. The distributions of αmin around αl ,
shown in Fig. 9(a), are well described by a Gaussian function
of standard deviation σαmin ∼ 12◦. The latter decreases slightly
with the relaxation of the system.

We also examine the consequences of taking into account
the different possibilities of rearrangement directions on the
correlation between local yield stress and plastic activity. Three
types of local indicators can be considered: the minimum
�τc(α) over all directions, the threshold �τc(α = αl) only
along the loading direction and �τy as previously defined in
Eq. (4). The correlations calculated for these three quantities
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FIG. 9. Probability distribution functions of angles for the three
quench protocols for which the projected local yield stress is minimal
αmin. The lines correspond to Gaussian fits which standard deviations
are reported in the inset.

from the relation Eq. (5) are plotted in Fig. 10 as a function of
the imposed deformation.

We observe that the minimum over all angles minα �τc(α)
gives the best correlations only for the very first plastic
rearrangements and then decreases rapidly with deformation.
This indicator corresponds to isotropic excitation, such as fluc-
tuations in thermal energy, and is therefore sensitive to small
barriers. Conversely, �τc(α = αl) shows a poorer correlation
with the location of plastic activity for the first rearrangements
as it misses the low thresholds which are slightly disoriented
with respect to the loading direction of the system. On the
other hand, the correlation is better for larger deformations.
Finally, �τy shows the best correlation for both small and
large deformations. Due to the projection, it is sensitive to
small thresholds while retaining information specialized for
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FIG. 10. Same as Fig. 5(a) for the GQ protocol for different local
yield stress fields: its minimum over all orientations minα �τc(α), its
value along the loading direction �τc(α = αl) and its minimum once
projected along the loading direction minα �τc(α)/ cos[2(α − αl)]
[as in Fig. 5(a)].
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macroscopic loading direction for larger yield stresses. We see
here the importance of having access to a directional quantity.
The local yield stresses defined in this article are therefore
a good compromise between simplicity (purely local and
scalar) and performance that justifies our approach. Note that
qualitatively similar results have been obtained as a function
of the relaxation of the system or when the correlations are
computed from Eq. (6) (not shown here).

VI. LENGTH SCALE OF THE LOCAL PROBING ZONE

A. Optimal size

We are interested here in the effects of the patch size
Rfree (Region I) on which the local yield stresses are com-
puted. Rfree is varied from 2.5 to 15σ . The procedure is the
same as described in Sec. III. The size of the grid Rsampling

on which �τy(Rfree) is sampled is kept constant and equal
to L/39 ≈ Rcut. We first investigate the correlations of the
thresholds with the plastic activity using relation Eq. (5). To
quantify the degree of correlation, three kinds of indicators are
considered: the correlation of the first plastic rearrangements
C�τy

(Rfree,γxy → 0+), the characteristic deformation γd on
which the correlation decreases with imposed deformation and
the average correlation over the investigated strain window
〈C�τy

(Rfree)〉. The variations of these three indicators as a
function of Rfree are shown for the three quench protocols
in Fig. 11.

The correlation of the first plastic rearrangement
C�τy

(Rfree,γxy → 0+) increases with the size Rfree. Indeed, the
increase of the probing zone makes it possible to progressively
integrate the elastic loading heterogeneities. The loading felt
by the sheared zones converges with Rfree toward the effective
loading produced by a remote loading, which makes it easier
to identify the weak zones. For Rfree < 5, we observe a marked
drop of the correlation. For this small size, in addition to
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FIG. 11. Correlation indicators computed as a function of the size
of the probing zone Rfree. Top: Correlation with the first plastic rear-
rangement locations. Middle: decorrelation strain. Bottom: Average
correlation.

larger elastic loading heterogeneities, the frozen boundary
conditions over-constrain the measurement of local shear stress
thresholds.

The decorrelation strain γd is extracted from a fit of the
curves C�τy

(Rfree,γxy) with the expression: A + Be−(γxy/γd )2

as shown in Fig. 5(a). This deformation, corresponding to
the characteristic deformation on which the glasses lose their
memory of the quenched state, decreases with Rfree. Indeed,
after the first plastic events, the use of a large Rfree loses
information about the hard zones surrounding the softest
ones. A small Rfree allows us, while still having good spatial
resolution, to maintain a significant correlation for higher
deformations, the hard zones being simply advected during
plastic flow.

The last kind of correlation indicator is the average of C�τy

computed as

〈C�τy
(Rfree)〉 = (1/γ∗)

∫ γ∗

0
C�τy

(Rfree,γxy)dγxy. (9)

The upper bound of the interval of integration γ∗ is chosen
equal to the largest decorrelation strain γ∗ = γd (Rfree = 2.5),
i.e., computed for the smallest Rfree. This is a global indicator
that gathers information on the degree of correlation at the
origin and during deformation as the glass loses its memory
from the quench state. The results reported in Fig. 11 show
an overall decrease of the average correlation with Rfree. This
decrease is less marked between Rfree = 2.5 and Rfree = 5. The
maximum of average correlation is even found for Rfree = 5
for the quench protocols HTL and GQ.

These results show empirically that a patch size of Rfree = 5
is a good compromise in terms of correlation between �τy

and plastic activity. Calculating the stress thresholds over this
scale allows one to precisely locate the first plastic events while
preserving the spatial resolution and keeping the memory of
the initial quenched state. The effect of quench protocols is
qualitatively similar to our previous observations. A greater
relaxation of the system results in both a greater correlation
for the first plastic events as well as a larger characteristic
decorrelation strain, resulting in a larger average correlation.

B. Statistical size effects

We are interested here in the effect of the patch size Rfree on
the slip barrier statistic. Several mechanisms such as mechan-
ical and statistical size effects can be anticipated. Mechanical
size effects correspond to elastic heterogeneities as well as the
influence of frozen boundary conditions. Frozen boundaries
affect the simulation in the following way: the closer an atom
to the boundary, the more affine its displacement, thus deviating
its trajectory with respect to non constrained simulations.
Statistical size effects play a role insofar as the local yield
stress is primarily controlled by the weakest zones in the patch
since its amplitude is given by the smallest threshold contained
in the patch. Maps of local �τy computed for different Rfree

are shown in Fig. 12 (top row) for the quench protocol GQ. We
observe that the variation of Rfree modifies the global statistic of
the thresholds. The distribution functions presented in Fig. 13
for the three quench protocols show that the increase of Rfree

induces a significant shift of the distributions toward smallest
values of �τy .
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FIG. 12. Top row: Local yield stress maps of a GQ glass computed for different inclusion sizes Rfree: (a) 5, (b) 7.5, (c) 10, and (d) 15.
Bottom row: Corresponding local yield stress maps deduced from local minima obtained from the map computed for Rfree = 5 shown in
panel (a).

Obviously, the maps obtained for the large Rfree can be
explained by the spatial increase of the zones centered on weak
sites. The softest areas tend to “invade” the glass as the radius of
the area on which the threshold is computed increases. Hence,
the statistical effect seems to be dominant. On the basis of
this observation, we try to understand the variations of the
distributions of the local yield stresses with Rfree. We choose
to work from the observed distributions for a size Rfree = 5.
We make the simplifying hypothesis that all the thresholds
�τy(Rfree) of the grid points take the value of the smallest
local minima �τy(Rfree = 5) located inside a disk of radius
Rfree. For comparison, maps deduced by this procedure are
given in Fig. 12 (bottom row). This purely geometric approach
shows a remarkable agreement compared to the local yield
stress maps calculated by actually varying Rfree.

This approach allows us to deduce the distribution of the
yield stresses as a function of a given patch size Rfree > 5
from the distribution obtained for Rfree = 5. The comparisons
between the distributions computed for the three quench
protocols for different Rfree and those estimated from our

procedure reported in Fig. 13 show a satisfactory agreement.
The variation of the distributions of �τy is therefore dominated
by statistical effects. The increase of Rfree plays the role of a
low-pass filter for the thresholds, shifting their distributions
toward smaller yield stress values. The agreement between
the measured distributions and the deduced distributions is
nevertheless slightly lower for the less relaxed systems and
for the large Rfree values. We attribute this discrepancy to the
larger elastic disorder and to the lower sensitivity of the soft
zones due to narrower threshold distributions in these systems.

VII. CONCLUSIONS

In this article, we describe a method for sampling local slip
thresholds in model amorphous solids. A robust correlation is
observed between the zones with small yield stresses and the
locations where the plastic rearrangements occur. As expected,
the more the state of the glass is relaxed, the more the barrier
distributions shift towards the larger values, explaining the
strengthening of glasses from their local stability.
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FIG. 13. Probability distribution function of the local yield stress for the three different quench protocols as a function of the inclusion size
Rfree: (a) HTL, (b) ESL, and (c) GQ. The lines correspond to the zoom-out process exemplified in the bottom row of Fig. 12, where the local
yield stresses are deduced from maps computed with Rfree = 5.
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This local method has been extended to measure the
amplitude of the plastic relaxations. We show that the assump-
tion of a characteristic mean plastic relaxation is reasonable,
the relaxation amplitudes following exponential distributions.
Interestingly, we have shown that the amplitude of the plastic
relaxations increases on average with the yield stresses.

The effects of loading orientation have shown that the
variation of the plastic activity with the direction of loading
is well captured by the variation of the local yield stress
field calculated using our method. Finally, the variation of the
threshold statistics with the size of the probing zones can be
reproduced with reasonable agreement on the basis of simple
geometric arguments. These results reinforce the coherence
of the amorphous plasticity modeling based on discrete flow
defects that possess weak slip directions and which are encoded
in the structure of the material.

The advantages of the method presented in this work
are numerous. It allows to probe the local slip thresholds
in a nonperturbative way over a well-defined length scale.
Moreover, its generalization to other atomic systems does not
seem to pose any particular difficulty since it is, in principle,
transposable to all glassy solids. Finally, a last advantage of this
method is its computational cost. While, for instance, normal
mode analysis based-methods scale as the cube of the number
of atoms, our method scales linearly with it. Furthermore, as it
treats the different parts of the solid independently it is by
construction suited for massively parallel simulations. It is
therefore possible to handle extended systems.

The implementation of this local method opens up several
promising perspectives. It will be interesting to compare

quantitatively the predictive power of the plastic activity of
this method with other recent works also providing robust
indicators of plasticity [27,30–32,68,70–73].

Future research could focus on the measurement of quanti-
ties on an atomic scale needed for coarse-grained approaches
[49]. For instance, our method can provide the threshold
statistics necessary to take into account the disorder in the
mesoscopic models [74–81] and could explicitly deal with the
tensorial nature of the problem and the effect of the loading
geometry [82].

This work paves the way, for example, to study the cor-
relation between local energy barriers and frequencies of
thermally activated rearrangements simulated by molecular
dynamics. Hence, an important question left for future work
is to study the effect of thermomechanical history on the
statistics of local yield stresses. Our method will allow us
to test some of the many phenomenological hypotheses upon
which continuum models are still based [11,83–85] and thus
significantly improve the multiscale modeling of plasticity of
amorphous solids.
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