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Via event-driven molecular dynamics simulations we study kinetics of clustering in assemblies of inelastic
particles in various space dimensions. We consider two models, viz., the ballistic aggregation model (BAM) and
the freely cooling granular gas model (GGM), for each of which we quantify the time dependence of kinetic
energy and average mass of clusters (that form due to inelastic collisions). These quantities, for both the models,
exhibit power-law behavior, at least in the long time limit. For the BAM, corresponding exponents exhibit strong
dimension dependence and follow a hyperscaling relation. In addition, in the high packing fraction limit the
behavior of these quantities become consistent with a scaling theory that predicts an inverse relation between
energy and mass. On the other hand, in the case of the GGM we do not find any evidence for such a picture. In this
case, even though the energy decay, irrespective of packing fraction, matches quantitatively with that for the high
packing fraction picture of the BAM, it is inversely proportional to the growth of mass only in one dimension,
and the growth appears to be rather insensitive to the choice of the dimension, unlike the BAM.
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I. INTRODUCTION

Growth in many physical situations occurs due to inelastic
collisions among particles or aggregates [1–20]. Typical exam-
ples [1,4,7,9–12,14,16–18,21–23] are growth of liquid droplets
and solid clusters in upper atmosphere, clustering in cosmic
dust, etc. In this context, two simple models, referred to as the
ballistic aggregation model (BAM) [1,4,24] and the granular
gas model (GGM) [13], have been of much theoretical interest.
Both the models are classic examples of dissipative systems
and exhibit clustering phenomena. The understanding of the
decay of kinetic energy (E) and the growth of average mass
(m) of clusters in these models is of significant importance.

In the BAM, spherical hard particles move with constant
velocities and merge upon collisions to form larger aggregates,
by keeping the shape unchanged. In this process, mass and
momentum of the system remain conserved, whereas the
(kinetic) energy decays. It is, of course, understood that fol-
lowing collisions fractal structures will emerge [7,25] in space
dimension d > 1. Even though it appears a bit unrealistic from
that point of view, this simple model can provide important
insights into the understanding of growth in many complex
systems [1,4–6,24]. In fact, in many situations colliding objects
undergo deformation and so, if the collision interval is long,
the above mentioned spherical structural approximation is
reasonably good. In the case of the GGM, on the other hand,
the colliding particles do not merge. There the coefficient
of normal restitution (e) lies in the range 0 < e < 1. Thus,
following every collision, the particles lose a fraction (1 − e2)
of the relative kinetic energy and move more parallel to each
other. This leads to clustering phenomena [13,15,20,25–34],
caused by shearing instability, with a stringlike pattern.
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For the BAM, Carnevale, Pomeau, and Young (CPY) [1],
via scaling arguments, predicted that

m ∼ 1

E
∼ t2d/(d+2), (1)

where t is the time. An inherent assumption in arriving at this
quantitative picture is that the particle (or cluster) momenta
are uncorrelated [26]. Even though the predictions in Eq. (1)
are in agreement with the computer simulations in d = 1,
discrepancies have been reported [4,25] for d > 1. Another
theory in this context, by Trizac and Hansen [4], predicts
the existence of a hyperscaling relation involving the time
dependence of energy and mass. If one writes

E ∼ t−θ (2)

and

m ∼ t ζ , (3)

then the (positive) power-law exponents θ and ζ are expected
to be connected to each other in d dimensions via [4]

2ζ + dθ = 2d. (4)

While Eq. (1) satisfies the hyperscaling relation in Eq. (4),
the former prediction is expected to be true, as stated above,
when cluster momenta are uncorrelated, i.e., when collision
frequency is high [24,25]. This latter picture will, thus, be valid
when the particle density is reasonably large.

There have been efforts to check the validity of Eq. (4).
Such works [4,25], however, restricted attention to d = 2. In
this work we undertake a detailed study, by considering a wide
range of density and adopting an accurate method of analysis,
to confirm the hyperscaling relation of Eq. (4) in bothd = 2 and
3. In this process we also intend to understand the convergence
with respect to the validity of Eq. (1), in the above mentioned
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dimensions. Note that a detailed discussion of the theoretical
prediction is given in the next section.

The literature related to GGM is more complex. Earlier
theoretical and computational studies reported [33,34] the
value of θ to be d/2. Soon after these works, simulations [28]
in d = 1 showed that θ = 2/3, which is in clear disagreement
with this expectation. The latter number, in contrary, matches
the CPY prediction. This led to the belief that there exists
equivalence between the GGM and BAM. In fact further
studies in d = 1, on growth and aging property [25], strengthen
such a belief. However, the morphology for the GGM in
higher dimensions is different from the BAM. Thus, there
exists a need for more comprehensive works to understand
the energy decay and cluster growth in the general dimension,
for this model. There has been, indeed, recent [25,26] interest
along this direction, to verify whether the energy exponent
θ is d/2, that can be obtained from the Burger’s equation,
or it is 2d/(d + 2), a consequence of ballistic aggregation.
Furthermore, the picture with respect to the cluster growth in d

dimensions, and its connection, if any, with the energy decay, is
rather unclear and much less attended due to technical reasons.
In this work, we undertake a detailed study with the aim of
obtaining a clearer picture with respect to both the quantities.

The objectives of this paper, thus, are to investigate the
correctness of the hyperscaling relation of Eq. (4), for the BAM
in d = 2 and 3, and check if at least an analogous picture exists
for the connection between the decay of energy and the growth
of mass in the GGM. To verify the hyperscaling relation [4]
in the BAM, as stated above, we consider different packing
fractions. We observe that the relation is valid irrespective of
the dimension and packing fraction. In the high density limit,
in addition, the prediction of Eq. (1) appears correct. This is
because of the fact, as already mentioned, that the collisions
are more random and thus velocities are uncorrelated in a high
density situation. On the other hand, the results for the GGM
does not provide any hint of the existence of a relation of this
type. In this case, even though dimension dependence of energy
decay matches the CPY picture [1,2,5], the growth of mass
appears rather insensitive to d.

Note here that in the above discussions t represents real
time. In the literature of GGM, often time has been expressed in
terms of number of collisions per particle (τ ). In the clustering
regime, linear relation between these has been reported [31,33].
In the pre-clustering regime [33], to be discussed later, τ has
a logarithmic dependence on t .

The rest of the paper is organized as follows. In Sec. II
we provide more details on the theoretical predictions for the
BAM. Models and methods are discussed in Sec. III. Results
are presented in Sec. IV. Finally, Sec. V concludes the paper
with a brief summary and outlook.

II. THEORETICAL BACKGROUND ON BAM

While originally derived from a different approach [1],
Eq. (1) can also be obtained by starting from the kinetic
equation [4,7,24–27]

dn

dt
= −“collision cross section” × vrms × n2, (5)

where n is the particle or cluster density and vrms is the
root-mean-squared velocity of the particles. The collision cross
section is proportional to �d−1, where �, for spherical particles,
can be taken to be their average diameter, which scales with the
average mass as m1/d . The particle density, given that the total
mass is conserved, scales inversely with the average mass, i.e.,

n ∝ 1

m
. (6)

Incorporation of these facts in Eq. (5) leads to

dm

dt
∼ m(d−1)/dvrms. (7)

For uncorrelated velocity one can take [4,24,26]

vrms ∼ m−1/2, (8)

to write

dm

dt
∼ m(d−2)/2d . (9)

Solution of Eq. (9) provides time dependence of mass in
Eq. (1). However, a deviation from Eq. (8) can invalidate the
predictions in Eq. (1). For vrms ∼ m−z, the growth exponent ζ

becomes [25]

ζ = d

1 + dz
. (10)

From Eq. (7), using the time dependence of energy from
Eq. (2), and that of mass from Eq. (3), after considering that
vrms ∼ E1/2, one arrives at

t ζ−1 = t (2ζd−2ζ−θd)/2d , (11)

by discarding prefactor(s). Simple power counting provides
the hyperscaling relation [4] of Eq. (4). Equation (4) in d = 1,
2, and 3 reads

θ + 2ζ = 2, (12)

θ + ζ = 2, (13)

and

3θ + 2ζ = 6, (14)

respectively. We intend to verify these equations for the BAM.
We have obtained the time dependence of mass in Eq. (1)
by considering Eq. (8). When this is used in Eq. (4), it
straightforwardly appears that mass and energy relate to each
other inversely.

III. MODELS AND METHODS

For both the models, hard spherical particles, mass being
uniformly distributed over the volume or area of the objects,
move freely between collisions [4,13]. Mass and momentum
remain conserved during the collisions. For the BAM, even
though the size of the new particle increases, its shape is kept
unchanged. For example, two initial spheres of masses and
diameters (mi,σi) and (mj,σj ), respectively, coalesce to form
a single sphere of mass

m′ = mi + mj, (15)
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with diameter [4]

σ ′ = (
σd

i + σd
j

)1/d
. (16)

In this shape retaining process, if the new sphere overlaps with
any other particle, then this event is treated as another collision
and the same method of update is applied. The position (�r ′) of
the center of mass and the velocity (�v′) of the new particle can
be obtained from the conservation equations [8]

m′�r ′ = mi�ri + mj �rj , (17)

and

m′ �v′ = mi �vi + mj �vj , (18)

where �ri and �rj are the positions and �vi and �vj are the velocities
of particles i and j , respectively, before the collision.

In the case of the GGM, the particle velocities are updated
via [8,13]

�v′
i = �vi −

(
1 + e

2

)
[n̂ · (�vi − �vj )]n̂ (19)

and

�v′
j = �vj −

(
1 + e

2

)
[n̂ · (�vj − �vi)]n̂, (20)

where �v′
i and �v′

j are the postcollisional velocities. In Eqs. (19)
and (20) n̂ represents the unit vector parallel to the relative
position of the particles i and j . In this case, since the colliding
particles do not undergo coalescence, the particle mass remains
unchanged throughout the evolution.

We perform event-driven molecular dynamics simulations
with these models [35,36], where an event is a collision. In this
method, since there is no interparticle interaction or external
potential, particles move with constant velocities till the next
collision. Time and partners for the collisions are appropriately
identified [36]. Inelastic collapse [15], a well known problem
for GGM, was avoided by assigning the value of e to unity,
whenever needed, for relative velocity of the colliding partners
less than a cutoff value for which we chose the number 10−4.

All the results are obtained from simulations in periodic
boxes of linear dimension L (equal in all directions), in units
of the starting particle diameter (see below). Quantitative
results are presented after averaging over multiple independent
initial configurations, the numbers lying between 5 and 15. We
start with random initial configurations for both positions and
velocities, with σi = 1 for all particles. The packing fractions
(φ), values of which will be mentioned later, are calculated as
φ = (N/Ld ) × x, where N is the initial number of particles in
a box, and x = 1, π/4, and π/6 in d = 1, 2, and 3, respectively.
While the values of N will be specified again in appropriate
places, here we mention that this number is 105 for the BAM in
all studied spatial dimensions, and 9830, 97 000, and 310 000
for the GGM in d = 1, 2, and 3, respectively, at least for all the
quantitative results. These numbers are large and our results,
within the presented time range, do not suffer from finite-size
effects. In the case of BAM the number of particles decreases
with time. So, for this model the specified numbers certainly
correspond to the values at the beginning of the simulations.

In both the cases, the average mass of clusters is calculated
as

m =
⎡
⎣Nc(t)∑

j=1

C(j,t)

⎤
⎦

−1⎡
⎣Nc(t)∑

j=1

jC(j,t)

⎤
⎦ , (21)

where C(j,t) is the number of clusters of size j and Nc(t) is the
size of the largest cluster, at time t . Even though the results will
primarily be presented from this definition (unless otherwise
mentioned), we have calculated m from alternative definitions
as well, which will be mentioned in the appropriate place.

While in the case of the BAM the information on the mass
of a cluster is carried by the size of the particles, for the GGM
appropriate identification of the clusters is needed. For the
latter case, it was done [25] by appropriately marking the closed
cluster boundaries within which the packing fraction is higher
than a cutoff number φc (�0.5 in d = 1, �0.31 in d = 2, and
�0.21 in d = 3). Of course, the mass of a cluster will depend
upon the choice of φc. We will later demonstrate that different
choices, nevertheless, lead to the same growth exponent.

IV. RESULTS

We divide this section into three parts. The first two
subsections contain the BAM results from d = 2 and d = 3.
The GGM results are presented in the last one.

A. BAM in d = 2

In Fig. 1 we show two snapshots, obtained during an
evolution in the two-dimensional (2D) BAM. These snapshots
are from late enough times so that the clusters are reasonably
well grown. All the droplets, particularly the smaller ones, may
not appear perfectly circular. This is because of a technical
reason—we have divided the whole space to form a discrete
lattice system and marked the sites that fall within the boundary
of one or the other droplet. It is clear from these figures that
the number of clusters is decreasing with time and thus, the
average mass of the clusters is increasing.

In Fig. 2(a) we plot the energy (normalized to unity at t = 0)
for three different packing fractions, viz., φ = 0.004, 0.08, and
0.4, versus time, on a log-log scale. Figure 2(b) shows the
log-log plots of the growth of mass for the same three values
of φ. While the trends in the long time limit are consistent

FIG. 1. Snapshots during an evolution in the two-dimensional
BAM, for the packing fraction φ = 0.08. The times are mentioned on
the top of the frames. The simulation box size is L = 1024, containing
105 particles. For both the times only parts of the original system have
been shown.
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FIG. 2. Log-log plots of (a) energy vs time and (b) mass vs time,
for different packing fractions (mentioned in the figure). The solid
and dashed lines represent power laws. Corresponding exponents are
mentioned. All results correspond to the BAM in d = 2. These and
other quantitative results for the BAM are obtained for N = 105.

with power laws, θ and ζ , the corresponding exponents for
the energy decay and growth of mass, respectively, for some
densities differ from each other, as well as from the CPY [1]
value 1 (recall that we are working in d = 2). The deviations
from the CPY value are quite significant when φ is small. The
value of ζ increases towards unity [4] with the increase of φ.
On the other hand, θ decreases from a higher value, towards
unity, for a similar change in φ. This already provides a hint
on the validity of the hyperscaling relation [4]. Here note that
a conclusion on the power-law exponent from log-log plots
or simple data fitting exercises can be misleading, particularly
when data over many decades (without being affected by the
finite size of the systems) are unavailable. This is because of
the presence of an offset before the data reach the expected
scaling regime. Thus, to accurately quantify the exponents and
confirm the validity of Eq. (4) [Eq. (13) in d = 2] we need
more accurate quantitative analysis.

For this purpose, we calculate the instantaneous exponent
θi , for the decay of E, defined as [37]

θi = −d(lnE)

d(lnt)
, (22)

accepting that a power-law behavior indeed exists. In Fig. 3(a)
we plot θi as a function of E. For the sake of clarity, here

FIG. 3. Plots of (a) θi vs E and (b) ζi vs 1/m, for two values of
the packing fraction. The results correspond to the BAM in d = 2.
Continuous lines are linear fits to the simulation data sets. The arrows
point towards the asymptotic values.

we show the plots for φ = 0.004 and 0.4 only. In both cases
linear behavior is visible, over an extended range. We extract
the asymptotic value θ from the convergence of θi in t → ∞,
i.e., the E → 0 limit. Indeed, θ exhibits density dependence.

A similar exercise has also been performed for the growth
of mass. In Fig. 3(b) we plot the instantaneous exponent ζi , for
the growth of mass, defined as [37]

ζi = d(lnm)

d(lnt)
, (23)

as a function of 1/m, for φ = 0.004 and 0.4. Here also we
obtain asymptotic values from linear extrapolations. Clearly,
the numbers vary with the change in φ. The exponents θ and
ζ , obtained from these exercises, for different values of φ, are
quoted in Table I.

CPY [1] predict that the energy decay and the growth
of mass are inversely proportional to each other, with θ =
ζ = 1. Our results show that the exponents, which have
been accurately quantified via the calculation of instantaneous
exponents [37], are nonuniversal, with strong dependence upon
the packing fraction. We observe that the CPY predictions tend
to be valid only at higher values of φ. For lower values of φ

there exist significant deviations. But the simulation results
follow the relation [4] θ + ζ = 2, to a good accuracy—see
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TABLE I. Values of θ and ζ are listed for different packing
fractions, for the 2D BAM.

φ θ ζ θ + ζ

0.004 1.13 0.86 1.99
0.08 1.08 0.91 1.99
0.24 1.07 0.94 2.01
0.31 1.03 0.97 2.00
0.4 1.01 0.98 1.99
0.44 1.01 0.99 2.00

the numbers quoted in the last column of Table I. While the
numbers in Table I provide accurate information, to get a feel
about how the convergence towards the CPY exponent occurs,
in Fig. 4(a) we show plots of θ and ζ , versus φ.

FIG. 4. (a) Exponents θ and ζ are plotted vs φ. The horizontal line
marks the CPY value. For ζ , we have also included results obtained
from Eq. (10). (b) Values of the exponent z (related to the dependence
of vrms on m) have been plotted vs φ. The dashed horizontal line
marks the value 0.5. Inset: Log-log plot of vrms vs m, for φ = 0.08.
The solid line there corresponds to a power law, the exponent for
which has been mentioned. All results are for the 2D BAM. The error
bars here and in other places are estimated as the standard deviation
in a set of asymptotic values of exponent, for a particular value of φ,
obtained via piecewise linear fits of the instantaneous exponents (by
dividing the data sets into multiple parts) such as the ones presented
in Fig. 3.

In Fig. 4(a) we have also presented data for ζ which were
estimated via Eq. (10). This data set shows a similar trend as
the one obtained via the calculation of ζi . To apply Eq. (10), we
have estimated z by calculating vrms at different times. A plot of
z as a function of φ is shown in Fig. 4(b). In the inset of Fig. 4(b)
we presented a log-log plot of vrms vs m, for φ = 0.08. The
solid line there, consistent with the simulation data, represents
a power law with exponent z = 0.63, that differs significantly
from 0.5 that is needed to validate the prediction of CPY. Here
note that z was estimated via fitting of the data in the inset to a
power-law form. From the main frame of Fig. 4(b) we notice
that z deviates from 0.5 even when φ = 0.45.

While these results of ours are consistent with previous
reports [4], such accurate analyses are new. On the other hand,
in d = 3 a simulation study to confirm the validity of the
hyperscaling relation was not performed earlier, to the best of
our knowledge. In the next subsection we present these results.

Before moving to the next subsection, we provide further
discussions on the d = 2 results which may be valid in d = 3
as well. We have accepted the linear behavior of the data sets
in Fig. 3, for energy as well as mass. Given the statistical
fluctuation in the presented results, further checks of this
assumption are necessary. Moreover, what scaling forms do
such linear trends imply?

For a linear behavior of the θi versus E data, one can use

θi = θ − AE, (24)

in the definition in Eq. (22), to write

dE

AE2 − θE
= dt

t
, (25)

where A is the slope of a θi versus E plot and AE < θ . Then
Eq. (25) provides

E = θ/A

1 + a0t θ
, (26)

where a0 is a positive constant. This implies that the value
of E at t = 0 provides a nonzero slope in Fig. 3(a) and this
ofset is also responsible for the misleading trend of E versus t

data on a double-log scale, over early decades. However, this
scaling form will be completely true if a linear behavior in
Fig. 3(a) is realized from t = 0. This, in fact, is not the case.
For E > 0.5 there exists slight bending (data not shown). This
implies a correction to the form in Eq. (26). Furthermore, had
there been no correction, the data sets in Fig. 3(a) would have
been described by

θi = θ (1 − E), (27)

implying same values for the y intercept and the slope, i.e.,

A = θ. (28)

This fact, in absence of a correction, automatically leads to the
initial condition E = 1 at t = 0. Here recall that everywhere
we have normalized E by its value at t = 0. Equation (27)
can also be checked by using Eqs. (26) and (28) in Eq. (22).
However, in reality small disagreement exists between A and
θ , when we fit the data sets in Fig. 3(a) to the form in Eq. (24).

In Fig. 5(a) we have shown a comparison between the
simulation data and fit to the mathematical form in Eq. (26),
for φ = 0.24, by fixing the corresponding value of θ to the

032902-5



SUBHAJIT PAUL AND SUBIR K. DAS PHYSICAL REVIEW E 97, 032902 (2018)

FIG. 5. (a) Energy is plotted vs time, on a log-log scale, for the
2D BAM with φ = 0.24. The solid curve corresponds to a fitting to
Eq. (26). (b) Same as (a) but for m. The solid line here represents
Eq. (29). In the inset of (b) we show comparison of m, obtained
by using Eq. (30), for p = 0, 1, and 2. The ordinates of the data
sets corresponding to p = 1 and 2 have been appropriately scaled to
superimpose them with the p = 0 one in the late time regime. (c) Plots
of ζi vs 1/t for two different values of p, mentioned in the figure, for
φ = 0.004 and 0.24. While the arrows outside the frames are located
at the values of ζ quoted in Table I, the arrowheaded lines (inside the
frames) are guides to the eye.

number mentioned in Table I and asserting that θ = A. A near
perfect agreement is observed. This substantiates the linear
assumption in Fig. 3(a), as well as confirms the absence of any
strong correction in the early time decay. This is consistent with
the fact that θ/A differs from unity by approximately 10%.
Nevertheless, we state here that while the empirical derivation
provides Eq. (26), any correction of the type (a + t)−θ cannot

be ruled out. Even though the asymptotic values of the exponent
systematically deviate from unity, for the range of density
considered in this work, the largest deviation is approximately
0.15. In such a situation the above correction cannot be
accurately separated from the form in Eq. (26).

Similarly, considering the linear trend in Fig. 3(b), one
obtains

m = m0 + B0t
ζ , (29)

where B0 is a constant amplitude and m0 is the average
initial mass. In Fig. 5(b) we show an exercise, analogous to
Fig. 5(a), by fitting simulation data for mass to Eq. (29). Here
the continuous line is obtained by fixing m0 to π/4 (which
indeed is the starting mass), ζ to the value quoted in Table I
corresponding to φ = 0.24, and using B0 as an adjustable
parameter. Once again, the agreement is nice, validating the
linear assumption and discarding any possibility of a strong
correction. Here we mention that in the literature of growth
kinetics, such linear trends in the time-dependent exponents
have been misinterpreted as strong corrections to scaling—see
Refs. [38,39] for discussion.

As mentioned earlier, while we have calculated m from the
definition in Eq. (21), we have also obtained it from [40]

m =
⎡
⎣Nc(t)∑

j=1

jpC(j,t)

⎤
⎦

−1⎡
⎣Nc(t)∑

j=1

jp+1C(j,t)

⎤
⎦, (30)

with p = 1, 2, and 3. Note that the definition in Eq. (21)
corresponds to p = 0. A comparative picture is presented in
the inset of Fig. 5(b) with p = 0, 1, and 2, for φ = 0.24.
As expected, the results for larger p are less prone to initial
bending. This fact can be further appreciated from Fig. 5(c)
where, for φ = 0.004 and 0.24, we have plotted ζi versus 1/t

for p = 0 and 3. Certainly, the data sets for p = 3 exhibit
weaker variation as a function of time. Given that data for both
the values of p essentially converge to the same asymptotic
numbers, this exercise provides additional confidence with
respect to the corresponding numbers quoted in Table I. This
consistency has been checked for various other values of φ in
both the dimensions to establish the validity of the hyperscaling
relation. Since the results in the asymptotic limit remain
unchanged, we will stick to the former definition from here
on. Another reason for choosing p = 0 is that for higher p the
data for the instantaneous exponent exhibit stronger statistical
fluctuation.

B. BAM in d = 3

Given that the context is the same and primary discussions
have been provided in the previous subsection, here we
straightaway present the results. First, in Fig. 6 we show a
snapshot for the 3D BAM evolution. Like in d = 2, here also
the lesser sphericity is visible for smaller particles. This is
because of the technical reason mentioned in the previous
subsection.

In Fig. 7(a) we plot the energy as a function of time, on
a log-log scale, for various different choices of the packing
fraction. Prediction of CPY [1] for the exponent for the energy
decay, as well as that for the growth of mass, is 6/5 in this space
dimension. The values of θ , as can be judged from Fig. 7(a), do
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FIG. 6. An evolution snapshot for the 3D BAM, from t = 100.
The packing fraction and the linear dimension of the cubic box are
0.052 and 64, respectively.

not obey this theoretical number for all values of φ, like in d =
2. In this dimension also θ seems to be decreasing from a higher
value towards 6/5 as the packing fraction increases. In Fig. 7(b)
we show log-log plots of average mass of the clusters as a
function of time, for the same choices of the packing fraction.
Unlike the energy decay, here the value of the exponent ζ

FIG. 7. Log-log plots of (a) energy vs time and (b) mass vs time,
for the 3D BAM. Results from three different packing fractions are
included. The solid and dashed lines are power laws, exponents for
which are mentioned.

FIG. 8. Plots of the instantaneous exponents (a) θi and (b) ζi , vs
E and 1/m, respectively, for the 3D BAM. The solid straight lines are
linear fits to the simulation data sets. The arrows mark the asymptotic
values. We have shown results from two values of φ.

increases towards the value 6/5 with the increase of φ. This
fact is also similar to the case of d = 2.

For more accurate quantification of the exponents, for the
energy decay as well as for the growth of mass, we calculate the
instantaneous exponents [37] θi and ζi , defined earlier, and plot
them versus E and 1/m, respectively, in Figs. 8(a) and 8(b), for
φ = 0.003 and 0.21. The asymptotic values, estimated from
these plots of instantaneous exponents, by assuming linear
behavior of the data sets, are quoted in Table II. It can be
observed that, like in d = 2, the exponents are strongly φ

dependent. However, they obey the relation [4] 3θ + 2ζ = 6,
within about 1% deviation. Again, for a visual feeling, in
Fig. 9(a) we show θ and ζ with the variation of φ.

TABLE II. Values of θ and ζ for different packing fractions. All
results are for 3D BAM.

φ θ ζ 3θ + 2ζ

0.003 1.29 1.05 5.97
0.05 1.25 1.10 5.95
0.16 1.22 1.14 5.94
0.21 1.21 1.15 5.93
0.26 1.2 1.17 5.94
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FIG. 9. (a) Exponents θ and ζ are plotted vs φ. The horizontal
line represents the CPY value. Values of ζ calculated from Eq. (10)
are also included. (b) Exponent z is plotted vs φ. Dashed horizontal
line there corresponds the value 0.5. Inset shows a log-log plot of vrms

vs m, for φ = 0.05. The solid line there corresponds to a power law,
the exponent for which is mentioned. All results correspond to the 3D
BAM.

In this dimension also, for ζ , we have shown results from
calculations via Eq. (10). Again, trends of the data sets,
obtained via convergence of ζi and from Eq. (10), are very
similar. A plot of z vs φ is shown in Fig. 9(b). The inset of this
figure demonstrates the consistency of the vrms vs m data with
the estimated exponent, for φ = 0.05.

Thus, the hyperscaling relation [Eq. (14)] is valid, to a good
accuracy, for all values of φ and the CPY exponent appears
reasonably accurate only for high packing fraction. The critical
numbers turn out to be φ � 0.45 and � 0.25, respectively, in
d = 2 and 3, by considering that 2% deviation from the CPY
value as acceptable. Here note that in d = 1, CPY and, thus, the
hyperscaling relation are observed to be valid for all previously
studied densities [1,25].

Like in the 2D case, θi vs E curves show a nice linear
trend in d = 3 also, for E � 0.5. This implies the validity of
Eq. (26) over the most part of the energy decay. A similar
conclusion applies to the case of mass. We have indeed checked
the accuracy of Eqs. (26) and (29) by comparing them with
the simulation data for E versus t and m versus t . Excellent
agreements have been observed. However, for the sake of
brevity we do not present these results.

C. The case of GGM

As stated earlier, even though the particles do not stick to
each other, inelastic collisions lead to clustering in the GGM.
However, unlike in the case of the BAM, in this case, over an
initial period of time, referred to as the homogeneous cooling
state (HCS) [13], the density in the system remains uniform.
After a certain time, the value of which depends upon the
overall density of particles and the choice of e, the system
falls unstable to fluctuations and crosses over to a clustering
regime, referred to as the inhomogeneous cooling state (ICS)
[13]. In the HCS the energy decay follows Haff’s law [41],

E = (1 + ct)−2 , (31)

where c is a dimension dependent constant. While the decay
in the HCS, apart from c, is dimension independent, it has
been established that the exponent in the ICS is strongly
dimension dependent [15,25,27,28,32–34]. On the other hand,
no appropriate conclusion has been drawn [25,29–31,42,43]
with respect to the dimension dependence of the growth of the
average mass of clusters. In this subsection, while the primary
objective is to investigate the latter issue in the GGM, we
present results for the decay of energy also. For both quantities
our focus will be on the ICS.

We start by showing a representative snapshot, in Fig. 10,
from the evolution in the GGM in d = 3, for e = 0.8 and
φ = 0.1. The snapshot shows high and low density regions, like
the phase separation during a vapor-liquid (VL) transition [11].
The morphology here is interconnected, and resembles the
ones for high overall density (close to the critical value) in the
VL transitions [11]. Nevertheless, there exist differences. The
equal-time correlation function [44], that provides quantitative
information on pattern formation, does not [29,30] exhibit
intermediate distance oscillation (around zero) in the GGM
as strong as that for the VL transition [11,45]. A reason behind
such a structural difference is that, while in the VL transition
phase separation is driven by interparticle interaction, the
clustering in the GGM is related to the velocity parallelization
due to inelastic collisions. That way, the structure, and thus, the
correlation function for the GGM, should have more similarity
with that for the active matter systems where the direction

FIG. 10. An evolution snapshot for the 3D GGM with e = 0.8.
The packing fraction is 0.1 and the linear dimension of the simulation
box is L = 120. Locations of the particles are marked.
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of motion of a particle is strongly influenced by the average
direction of motion of the neighbors, e.g., in the Vicsek model
[46,47]. In any case, given the structural difference between
the GGM and the BAM, a similarity in the dynamics is not
really expected. Below we substantiate this.

In Fig. 11(a) we show plots for the decay of energy, from
d = 1, 2, and 3, for the GGM. See the caption for choices
of parameters. Note that the axes are scaled to bring all the
plots within appropriate abscissa and ordinate ranges that can
help make the crucial features identifiable for all values of d.
Clearly, the decay rate at late time (in the ICS) is different
for different dimensions. Interestingly, the exponents are in
nice agreement with 2d/(d + 2), predicted by CPY [1]—see
the consistency of the data sets with various power-law lines.
At much later time (not shown) the decays are faster, which
can be related to finite-size effects. The presented results are
consistent with other simulation studies [15,25,28,32]. On the

FIG. 11. (a) Log-log plots of the decay of energy in the GGM in
d = 1, 2, and 3. The dashed-dotted, dashed, and solid lines correspond
to power laws, exponents for which are mentioned next to them.
The presented results correspond to φ = 0.3, 0.3, 0.1; e = 0.5, 0.9,
0.8; and L = 32 768, 512, 120 for d = 1, 2, and 3, respectively. The
corresponding numbers of particles are 9830, 97 000, and 310 000.
The data sets have been multiplied by appropriate factors to bring
them within the presented abscissa and ordinate scales. (b) Plots of
θi vs 1/t in d = 1, 2, and 3. Here we have chosen a different value
of e (0.2) for d = 3 than in (a) to access longer range of decay with
θ = 6/5. The arrowheaded lines point towards the CPY values.

other hand, from some previous studies on growth of mass
[25,31], we got a hint that this agreement of energy decay
with the prediction of CPY [1] may be accidental and should
have a different reason. To make a more concrete statement
on this aspect, below we look at the growth picture. Before
moving to that, in Fig. 11(b) we show a plot for θi from all
three dimensions. The convergence in all the cases is quite
consistent with the CPY numbers.

In Fig. 12(a) we present plots of m versus t , on a log-log
scale, for all three dimensions. We discard data affected by
the finite size of the systems. Furthermore, like in the plots

FIG. 12. (a) Log-log plots of the growth of the average mass in all
the three dimensions for the GGM. The data sets have been multiplied
by appropriate numbers to bring them onto the scales of the graph.
The solid line corresponds to a power law with an exponent 0.6.
The system sizes, coefficients of restitution, and packing fractions for
different dimensions are same as in Fig. 11(a). The discrepancy of
d = 3 data at early time is related to longer crossover time to ICS,
for the chosen coefficient of restitution and density of particles. Inset:
Plot of instantaneous exponent, ζi , vs 1/m, for the 1D GGM. The
solid line there is a guide to the eye. (b) Log-log plots of the growth
of average mass for different combinations of coefficient of restitution
and packing fraction, mentioned in the figure, in d = 2. The data set
corresponding to φ = 0.08 has been appropriately scaled to bring it
within the presented ranges of the axes. The solid line there is a power
law with an exponent 0.6. The inset in (b) shows plots of m vs t , in
d = 2, for different choices of φc, quoted in the figure, for the case
φ = 0.3 and e = 0.9 (the ordinates have been appropriately scaled to
superimpose the data sets).
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of energy decay, data from different dimensions have been
multiplied by different factors. It appears that all the data
sets exhibit power laws, at late times, with a very similar
exponent, which is close to 2/3. In this log-log plot, however,
the exponent appears a bit smaller than 2/3, approximately 0.6.
This may again be due to the offset before reaching the scaling
regime. In the inset of this figure we have shown ζi as a function
of 1/m, for d = 1. The convergence appears closer to 2/3. For
the sake of clarity, we avoided showing similar results from
d = 2 and 3, which show a similar trend in the direct plot (at
late time). We mention here that because of strong finite-size
effects [31] and difficulty in dealing with very large systems,
the scaling regime is relatively small for d = 3.

This weak dependence of growth of mass on dimension
not only invalidates equivalence between the GGM and the
BAM in d > 1, it also suggests the absence of any hyperscaling
relation of the type obeyed by the BAM results. We mention
here that the GGM results do not depend upon the choices of
different e or overall density, unlike in the BAM case. This fact
we have demonstrated in Fig. 12(b) for the d = 2 case. There
the results for different e and φ values exhibit similar power-
law growth. These results are consistent with the finite-size
scaling estimate of exponent (�0.3) for the growth of average
domain length [31].

As mentioned earlier, for the GGM, values of m will
depend upon the choice of φc, the cutoff packing fraction
to identify clusters. This indeed is the case. In the inset of
Fig. 12(b) we show representative plots for different choices of
φc. These results are from d = 2, with φ = 0.3 and e = 0.9. To
superimpose the data sets different multiplicative factors were
needed for the ordinate. However, they all lead to the same
growth exponent.

The need for a φc in the GGM is due to the fact that the clus-
ters here are essentially regions with a high density of particles.
True clusters can be realized by adding attractive potential in
the model, if the kinetic energy is less than a threshold value. In
this model energy can decay exponentially fast. Such works,
in fact, have recently been reported [17,48]. In this case the
role of fractality in the growth process can also be probed,
as was recently done in kinetics of vapor-solid transition (via
time-step driven molecular dynamics simulations) [7].

V. CONCLUSION

Via event-driven molecular dynamics simulations we have
studied nonequilibrium dynamics in ballistic aggregation

(BAM) [1,4] and granular gas (GGM) [13] models. We
have presented accurate results on the energy decay and the
growth of mass. These results are compared with the available
theoretical predictions [1,4,33].

We observe that for both the models the above mentioned
quantities exhibit power-law behavior as a function of time.
For the BAM, the corresponding exponents exhibit density
dependence. Nevertheless, these exponents satisfy a hyper-
scaling relation [4]. With the increase of density, the energy
and mass get inversely related to each other, the exponent
being strongly dimension dependent. This latter observation is
consistent with the prediction of CPY [1]. As a physical reason
behind the difference between the exponents for energy decay
and cluster growth in the low packing fraction scenario, Trizac
and Krapivsky [24] showed that, in this limit, the particles
with kinetic energy larger than the mean undergo very frequent
collisions, which enhances the dissipation.

For the GGM, from accurate analysis we show that the
energy decay satisfies the prediction of CPY in all dimensions
[1]. However, this is not always inversely related with the
growth of mass. In fact the latter exhibits very weak dimension
dependence. For this model we have presented results for
different densities and coefficients of restitution as well. The
results appear to be independent of these parameters. All these
facts are in denial of an equivalence between the GGM and
BAM, except for d = 1. Furthermore, the growth exponent in
GGM does not match any known value for coarsening related to
conserved order parameter dynamics [44], with [49] or without
[50] hydrodynamics [51].

In the context of BAM, further interesting studies are related
to aggregation and fragmentation [16,18,23]. Incorporation
of fragmentation indeed can provide information on a more
realistic scenario. In the future we intend to undertake com-
prehensive studies by including this fact.
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