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Force-chain evolution in a two-dimensional granular packing compacted by vertical tappings
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We experimentally study the statistics of force-chain evolution in a vertically-tapped two-dimensional granular
packing by using photoelastic disks. In this experiment, the tapped granular packing is gradually compacted.
During the compaction, the isotropy of grain configurations is quantified by measuring the deviator anisotropy
derived from fabric tensor, and then the evolution of force-chain structure is quantified by measuring the
interparticle forces and force-chain orientational order parameter. As packing fraction increases, the interparticle
force increases and finally saturates to an asymptotic value. Moreover, the grain configurations and force-chain
structures become isotropically random as the tapping-induced compaction proceeds. In contrast, the total length
of force chains remains unchanged. From the correlations of those parameters, we find two relations: (i) a positive
correlation between the isotropy of grain configurations and the disordering of force-chain orientations, and (ii) a
negative correlation between the increasing of interparticle forces and the disordering of force-chain orientations.
These relations are universally held regardless of the mode of particle motions with or without convection.
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I. INTRODUCTION

Granular materials consist of discrete solid particles such as
food grains or sand and show fluidlike and/or solidlike complex
behavior due to the particle’s discreteness and dissipative
nature [1]. The packing fraction of granular materials φ

is a relevant parameter for characterizing its structure and
mechanical properties. In particular, granular states vary from
fluidlike to solidlike around a packing fraction φRCP [2,3],
called the random close packed state; φRCP = 0.84 in a two-
dimensional (2D) frictionless granular packing. According to
previous studies [4,5], interparticle forces diverge near φRCP

when a granular material is isotropically compressed. Other
studies have indicated that the granular state depends not
only on the packing fraction but also on the internal force
conditions [6–8]. In granular materials, dissipative force trans-
mits through the medium via contacting particles. This force
transmission constructs the inhomogeneous stress distribution
in a granular packing, called a “force chain” [9,10]. When a
granular material is deformed under anisotropic loading such
as shearing, a certain direction dominates the structure of
the force chain. Then the force-chain structure becomes very
anisotropic. In this case, interparticle forces diverge below
φRCP . Thus, granular states deeply relate to the force-chain
structure and its directional ordering. To reveal the relation
between the granular state and force-chain structure in detail,
recent studies have investigated the force-chain properties by
varying the type of loadings and boundary conditions [11,12].

Here we focus on a different experimental setup: the
force-chain structure in a granular packing subject to vertical
tappings, which is different from isotropic compaction and
shear deformation. In this study, we simply add a series of taps
(one period of sinusoidal waveform) to the granular packing.
In general, the tapped granular packing is gradually compacted
[13]. Several studies have revealed that the compaction slowly
proceeds up to the maximum packing fraction depending on

the tapping property [14,15]. This type of granular compaction
occurs when the maximum tapping acceleration exceeds the
magnitude of gravitational acceleration. In this condition,
each particle can experience free fall, i.e., they are released
from the gravitational constraint. Then, particles could form
collective motions, such as granular convection, due to the
existence of a free surface [16]. In the granular convective
state, force chains are repeatedly reconstructed by the series
of tappings. Although various external-loading dependences
of the force-chain structure have been investigated [17], little
is known about the relation between force-chain evolution and
grain rearrangements caused by convective motion in vertically
tapped granular packing.

Therefore, the main focus of this study is the evolution of
force-chain structure in the granular compaction induced by
tapping with and without convection. We perform experiments
with 2D granular packing using photoelastic disks subject to
vertical tapping. In a previous study, we developed a method
to measure the interparticle force per disk Fd and force-chain
segment length l by using bright- and dark-field images of
photoelastic disks [18]. The force-chain orientational order
parameter σ has also been introduced to quantify force-chain
structure [19]. Using these quantities, the detailed structural
properties of granular force chains in compaction and/or
convection are characterized in this study.

II. METHOD

A. Experiment

The experimental system consists of a 2D experimental
chamber constructed with acrylic plates [Fig. 1(a)]. The cham-
ber dimensions are 0.30 × 0.30 × 0.011 m in height, width,
and thickness, respectively. The chamber is attached to an
electromagnetic shaker (EMIC Corp., model 513-B/A) which
is connected to a multifunction generator (nf Corp., model

2470-0045/2018/97(3)/032901(10) 032901-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.032901&domain=pdf&date_stamp=2018-03-26
https://doi.org/10.1103/PhysRevE.97.032901


NAOKI IIKAWA, M. M. BANDI, AND HIROAKI KATSURAGI PHYSICAL REVIEW E 97, 032901 (2018)

FIG. 1. (a) Schematic of the experimental setup. A chamber is
filled with photoelastic disks. The chamber with an accelerometer
is vertically mounted on an electromagnetic shaker connected to an
amplifier and a multifunction generator. (b) Schematic of the optical
system. Bright- and dark-field images are acquired by changing
the optical setup (without or with a second polarizer). (c) Actual
acceleration signals (� = 5.0 and f = 50 Hz) measured by the
accelerometer. 1000 data sets are superimposed in the plot. The
positive direction of the acceleration α is opposite to the direction
of gravitational acceleration.

WF1974) through an amplifier (EMIC Corp., model 374A/G).
An accelerometer (EMIC Corp., model 710-C) is mounted on
a chamber to monitor its instantaneous acceleration induced
by tapping. To avoid crystallization [19], we fill the chamber
with a bidisperse set of 200 large (diameter 0.015 m) and
400 small (diameter 0.010 m) photoelastic disks of 0.010 m
thickness (Vishay Micro Measurements, PSM-4). A circular
polariscope setup is used for the optical system [Fig. 1(b)].
The chamber is vertically placed between a circular polarized
light-emitting diode (LED) light source and a complementary
metal oxide semiconductor (CMOS) camera (Nikon D7100)
which acquires two types of images with 3000 × 4496 pixels in
size. Spacial resolution of the acquired images is 1.04 × 10−4

m/pixel. The camera is placed 1 m in front of the experimental
chamber. We acquire bright-field [Fig. 1(a), bright] and dark-
field [Fig. 1(a), dark] images of the granular packing by taking
pictures without and with a second circular polarizer in front
of the camera via cross-polarization mode, respectively. We
carry out the experiment in a dark room to minimize ambient
noise from extraneous illumination.

Each experimental run consists of the initial state fol-
lowed by 1000 vertical tappings. The index of tappings τ

is defined as τ = Nt + 1, where Nt is the actual tapping
number. Namely, the initial condition corresponds to τ = 1,
and the state after one tapping is τ = 2, etc. This index-
ing is used merely for convenience in the logarithmic data
plot. The interval time between successive tappings is set
to be longer than 2 s since the force-chain structure does
not depend on the interval time when it is longer than 2
s. Bright-field images are acquired with every tapping, and
dark-field images are taken with logarithmic intervals (i.e.,τ =
1,2,3, . . . ,11,21,31, . . . ,101,201,301, . . . ,1001). As a result,
1001 bright-field images and 29 dark-field images are obtained
per experimental run. We conduct three experimental runs
under identical experimental conditions to check the repro-
ducibility of the result.

We systematically control the tapping property using the
multifunction generator and the amplifier. To simply represent
the ratio of the maximum tapping acceleration αmax to the grav-
itational acceleration g = |g| = 9.8 m/s2, � = αmax

g
= A(2πf )2

g

is used, where f is the tapping frequency and A is the tapping
amplitude which can be measured by the sinusoidal-wave
fitting to the measured acceleration data, as shown in Fig. 1(c).
Each particle is sufficiently released from the gravitational
constraint when a chamber is shaken by � > 2.0 [20]. Thus,
we vary the value of � roughly as � = 2.5,5.0,10,20 to focus
on the situation in which the particles surely experience free
fall. In such situations, force-chain structure can be reorga-
nized following each tapping. We also vary f approximately
as f = 50,100,200 Hz using the multifunction generator.
Figure 1(c) shows actual acceleration signals captured by the
accelerometer in the case of � = 5.0 and f = 50 Hz. Due to
the instrumental limitations, data with � = 20 and f = 50 Hz
cannot be obtained. Accordingly, we perform experiments with
4 × 3 − 1 = 11 experimental conditions. In this study, we also
use the normalized tapping strength S to consider the velocity
balance rather than the acceleration balance between tapping
amplitude and gravity. S is defined as S = (2πAf )2

gd
= � A

d
=

�2g

(2πf )2d
[21], where d (=10 mm) is the characteristic particle

diameter. By using S, various behaviors occurring in shaken
granular layers can be better classified than by using � [22,23].
Therefore, in this study, we also use S to characterize the
tapping strength. Figure 2 shows the relation between S and �

in this study. The variation range of S is S = 0.004–0.867.

B. Force calibration

Force applied to a photoelastic disk can be estimated from its
intensity gradient 〈G2〉 in dark-field images. 〈G2〉 denotes the
mean squared intensity gradient over all pixels on the surface
of a disk, and it is defined as 〈G2〉 ≡ 〈|∇I |2〉 = 〈(∇Ih)2 +
(∇Iv)2〉, where ∇Ih and ∇Iv are the horizontal and vertical
gradients, respectively. We employ two calibration methods to
compute the sum of the interparticle force per disk Fd .

The first method is the calibration with a load cell (Kyowa
Electronic Instruments, LMB-A-10N) and a micrometer (Ni-
igataseiki, MCD130-25) (Fig. 3 inset). A photoelastic disk is
diametrically compressed by the micrometer. The load cell
is mounted on the contact point between the disk and the
micrometer. Then the photoelastic image and applied force
Fd are simultaneously measured by a camera and the load
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FIG. 2. Relation between S and �. Colors and symbols repre-
sent 50 Hz (blue circles), 100 Hz (green squares), and 200 Hz
(red triangles), respectively, as shown in the legend. Error bars
represent the variation over three runs under identical experimental
conditions. Dashed lines are drawn in accordance with S = �2g

(2πf )2d
.

cell, respectively, under the optical setup identical to the actual
data taking [Fig. 1(b)]. Upon computing 〈G2〉 through image
analysis, we obtain the relation between Fd and 〈G2〉 as shown
in Fig. 3. Quadratic fits to both large and small disk data provide
the calibration curves just like previous studies [24,25]. Using
these calibration curves, we can estimate the force exerted on
each disk by the image analysis of dark-field images.

The next calibration method concerns the detectable lower
limit of Fd . The lower limit is determined by using a vertical
one-dimensional (1D) chain of the same-size photoelastic disks
[18]. Interparticle force per disk in the vertical 1D chain Fd (k)
can be estimated from the relation Fd (k) = k × Mg, where k

is the position of the disk from the top in the 1D chain, and

FIG. 3. Relation between Fd and 〈G2〉 for large (red circles)
and small (blue squares) photoelastic disks. Solid lines through the
calibration data are quadratic fits. (Inset) Schematic of the calibration
setup. A photoelastic disk is sandwiched by the micrometer. A
load cell is mounted on the contact point between the disk and the
micrometer.

M is the mass per disk (M = 1.8 × 10−3 kg for large and
M = 0.80 × 10−3 kg for small disks, respectively). From the
calibration, 〈G2〉 does not vary up to k = 2 for large or k = 3
for small disks [18]. Therefore, the detectable lower limit of
Fd is determined as 3.6 × 10−2 N for large and 2.4 × 10−2 N
for small disks.

III. RESULTS

A. Packing fraction

We define the packing fraction φ as φ = Ad/(Ad + Av),
where Ad is the total area of the photoelastic disks, and Av is
the total void area between disks. The 2D packing fraction is
usually calculated from the ratio between the area occupied by
granular particles and the total chamber area. This definition
is reasonable when the granular packing is enclosed on all
sides. However, an accurate estimate of the total area of the
chamber is difficult when the granular packing has a free
surface. Therefore we employ the above-mentioned definition
of φ. Figure 4(a) shows the variations of φ with τ for all
experimental conditions. Similar to previous studies [14,15],
φ increases with the number of tappings. The increasing
rate and its asymptotic value clearly depend on the tapping
strength S.

B. Deviator anisotropy

We evaluate the anisotropy of grain configurations in a
compacting granular packing by using the fabric tensor and
its eigenvalues. According to the previous studies [7,26], the
fabric tensor R̂ in two-dimensional grain contact is defined as
follows:

R̂ = 1

Np

Np∑
i �=j

r ij

|r ij | ⊗ r ij

|r ij | , (1)

where Np is the number of granular particles with two or
more contact points, r ij is a vector heading from the center
coordinate of the ith particle to the contact point with the
j th particle, |r ij | is the segment length, and ⊗ expresses a
vector outer product. By using the number of contact points
Nc, and the x component (nx) and y component (ny) of the
unit direction vector r ij

|r ij | , each component of R̂ is represented
by the following equation:

R̂ =
(

�xx �xy

�yx �yy

)

= 1

Nc

(∑Nc

k=1 nx
knx

k
∑Nc

k=1 nx
kny

k

∑Nc

k=1 ny
knx

k
∑Nc

k=1 ny
kny

k

)
. (2)

Moreover, the two eigenvalues �1 and �2 of R̂ (in other words,
�1 and �2 are the maximum and the minimum principal fabric
components in a two-dimensional system, respectively) are
calculated from the following equation:(

�1

�2

)
= 1

2
(�xx + �yy) ±

√
1

4
(�xx − �yy)2 + �xy

2. (3)

The anisotropy of grain contacts can generally be evaluated
by the deviator of two eigenvalues �1 − �2 [26]. Deviator
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FIG. 4. Variations of (a) packing fraction φ, (b) deviator
anisotropy �1 − �2, (c) total force Ftot , and (d) force-chain orien-
tational order parameter σ with τ in linear-log scale. The data are
averaged over three runs of the identical S and are specified by colors
and symbols. Error bars are omitted to clearly show the data trend.

anisotropy �1 − �2 indicates the degree of anisotropy of the
grain configuration. When grain contacts obey the completely
isotropic configuration, �1 − �2 becomes 0. Figure 4(b)
exhibits the relationship between �1 − �2 and tapping number
τ in our experiment. �1 − �2 decreases by tappings and
approaches 0. In addition, it seems that the decreasing rate
depends on the tapping strength S. These results suggest that

grain configurations are evolving towards an isotropic state as
tapping proceeds.

C. Interparticle force

We compute Fd in the compacted granular packing to
characterize the interparticle-force behavior. In the previous
work [18], we have already reported that the cumulative
number distribution of Fd can be approximated by the expo-
nential [9,10], Ncum(Fd ) = CF exp (−Fd

F0
), where Ncum(Fd ) is

the number of disks on which the applied force is equal to or
greater than Fd . In this form, CF and F0 are fitting parameters.
Actually, the characteristic force value F0 varies depending on
the tapping number as it approaches the asymptotic value in a
few tappings [18]. However, the specific value ofF0 depends on
the fitting range. Thus, in this study, we rather use the integrated
value to evaluate the magnitude of internal force. Concretely,
total interparticle force (Ftot) defined as Ftot = ∑Nch

i=1 Fd (i) is
used, where Nch is the number of disks composing force chains.
Note that disks composing force chains are identified by the
detectable limit of the photoelastic signal (Sec II B). The
measured force per disk must be greater than the detectable
lower limit value to form the force chain. Figure 4(c) shows
the variations of Ftot as a function of τ for all experimental
realizations. Obviously,Ftot increases with tapping number and
approaches the asymptotic values. The asymptotic values seem
to depend on the tapping strength S.

Furthermore, we also examine the force distribution per
depth in the experimental chamber. In general, hydrostatic
pressure determines the depth-dependent force distribution in
a static fluid layer. If this simple hydrostatic nature can also
be applied to the granular layer, the magnitude of contact
forces should be proportional to the depth. To ascertain the
hydrostatic nature determining the internal force distribution
in the granular packing, we compare the sum of interparticle
forces at each depth in the chamber Fbin and the theoretically
computed hydrostatic force FH . First, we divide the chamber
into 25 horizontal slices of vertical width 	z = 0.01 m. In each
slice, the sum of Fd is computed, Fbin(j ) = ∑Nj

i=1 Fd (i), where
Nj is the number of disks in the j th slice. The corresponding
depth of each slice z(j ) is defined as z(j ) = j	z. Here, j = 0
corresponds to the top surface of the granular layer. The
corresponding hydrostatic force FH is computed as FH (z) =
ρ ′gAz, where ρ ′ = 920 kg m−3 is the bulk density of the layer
of photoelastic disks (in this study, we calculate ρ ′ = ρφ′t ′,
where the product of the true density of the photoelastic disk is
ρ = 1.27 × 103 kg m−3, the typical packing fraction φ′ = 0.8,
and the thickness ratio of the disk and chamber t ′ = 10/11),
and A = 3.3 × 10−3 m2 is the sectional area of the chamber.
The product of ρ ′, g, and A is calculated as ρ ′gA = 26.9 N/m.

Figure 5 exhibits the comparison of FH (z) and Fbin(j ) for
all experimental realizations at (a) initial configuration (τ =
1) and (b) final configuration (τ = 1001). Fbin(j ) at τ = 1
agrees well with theoretically calculated FH (z), as shown in
Fig. 5(a). This result indicates that interparticle forces in a
granular packing before tappings are basically governed by
the hydrostatic force. However, the behaviors of Fbin(j ) at τ =
1001 vary depending on S, as shown in Fig. 5(b). In the cases of
S = 0.004 and 0.030, Fbin(j ) still roughly obeys FH (z) even
after 1000 tappings. In the case of S � 0.057, on the other
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FIG. 5. Variations in Fbin per depth z for all experimental real-
izations at (a) initial configuration (τ = 1) and (b) final configuration
(τ = 1001). The data are averaged over three runs of the identical
S and are specified by colors and symbols. Error bars are omitted
to clearly show the data trend. The black solid line indicates the
hydrostatic force FH per depth z.

hand, Fbin(j ) clearly increases by tappings, particularly in the
deep (large z) region.

To directly observe the increase of Fbin(j ), the two examples
of actual force-chain variations by tappings at S = 0.867 and
S = 0.004 are shown in Fig. 6. In the case of S = 0.004, the
principal force-chain structure remains unchanged during the
series of tappings as shown in Figs. 6(a)–6(d). By contrast,
in the case of S = 0.867 [Figs. 6(e)–6(h)], one can confirm
the reorganization of force-chain structure by tappings. In
addition, the thickness of bright zones with force chains seems
to become thicker as tapping proceeds. The significant differ-
ence between initial and after-tapping configurations with S =
0.867 [Figs. 6(e)–6(h)] is the development of horizontal force-
chain segments. This horizontal force-chain development is
a possible reason for the increase of Fbin(j ) in the relatively
deep region. The development of s horizontal force chain could
originate from the particle-wall friction. Such an additional
constraint is necessary to understand the increase of Fbin(j ) in
the deep region. In this study, it is difficult to decompose the
contact force into vertical and horizontal directions because
we only use 〈G2〉 to measure the contact force. Therefore,
another method to qualify the anisotropy of the force-chain
structure is necessary to discuss the tapping-induced structural
variations in a force chain. To characterize the anisotropy of
the force-chain structure, the order parameter of force-chain
orientations could be useful.

D. Force-chain orientational order parameter

We introduce an orientational order parameter σ of the
force-chain structure. Here, we define σ by using the force-
chain segment length and its angle relative to the gravitational
director ( ĝ ≡ g/|g|). Specifically, σ is defined as [19]

σ =
⎛
⎝ 2

L

Nsg∑
i=1

licos2(θi − θr )

⎞
⎠ − 1, (4)

where Nsg is the total number of force-chain segments, li and

θi are length and angle of the ith segment, and L = ∑Nsg

i=1 li
is the total length of force-chain segments. θr in Eq. (4) is a
reference angle. By definition, the reference axis is the same as
the gravitational axis when θr = 0◦, and it is perpendicular to
the gravitational director in the case of θr = 90◦. To measure
the length of force-chain segments, the force-chain images are
first thinned, and the force-chain network is divided into a
collection of force-chain segments. Details of image analysis
to extract the force-chain segments can be found in [18]. σ can
characterize the orientational order of the force-chain structure.
In the limiting cases, Eq. (4) yields σ = +1 for θi − θr = 0◦
(all the force chains are parallel to the reference axis) and σ =
−1 for θi − θr = 90◦ (all the force chains are perpendicular
to the reference axis). In the case of σ = 0, force-chain
orientations are random (isotropic orientation) or perfectly
lined up along the direction θi − θr = 45◦. Obviously, we
can visually distinguish the difference between the isotropic
random situation and perfect alignment to θi − θr = 45◦ for
σ = 0.

In addition, we examine the behavior of σ by changing
the reference axis θr in order to confirm that force chains
are not perfectly aligned to the direction θi − θr = 45◦ for
σ = 0. Figure 7 exhibits the tapping-induced variations of
order parameter σ with various reference angles θr at (a)
S = 0.004 and (b) S = 0.867. In Fig. 7(a), although the value
of σ depends on θr , it does not vary on τ . On the other hand, σ
in Fig. 7(b) decreases or increases depending on τ , and finally
approaches to 0. Only the initial value depends on θr . If force-
chain orientations are perfectly lined up along the direction
θi − θr = 45◦, σ indicates 1 in the case of θr = 45◦. However,
the data in Fig. 7 do not show such a trend. Thus, these
results suggest that force chains are not perfectly aligned to the
direction θi − θr = 45◦ in the case of σ = 0. These results also
indicate that the reference axis must be selected appropriately.
In this study, the reference axis should be taken to be parallel
or perpendicular to the initially dominant direction since the
crucial direction (gravity director) is obvious in the current
experimental system. If we use inappropriate θr (e.g., θr = 45◦
in the current system), σ is always around 0. In this case, τ -
dependent σ variation cannot be detected. When the principal
direction of the system is not very obvious, θr dependence of
σ has to be checked to clearly see the orientational ordering.

Figure 4(d) shows the variations ofσ as a function of τ for all
experimental realizations with θr = 0◦. As tapping proceeds,
σ decreases in all cases. Moreover, the decreasing rate clearly
depends on the tapping strength S. The decreasing tendency
of σ can qualitatively be confirmed by comparing the raw
photoelastic images (Fig. 6) again. In the initial configurations
[Figs. 6(a) and 6(e)], the vertical structure of force chains can
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FIG. 6. Force-chain structures in various tapped configurations at (a)–(d) S = 0.004 and (e)–(h) S = 0.867.

clearly be observed. However, the way of structural evolution
of force chains depends on experimental conditions. In the
case of S = 0.004, the force chain roughly keeps the original
structure even after the sufficient tappings [Figs. 6(b)–6(d)]. In
contrast, the force chains in the case ofS = 0.867 become more
random and isotropic due to the reorganization of force-chain
structures caused by strong tappings [Figs. 6(f)–6(h)]. These

FIG. 7. Variation of order parameter σ (τ ) at (a) S = 0.004 and
(b) S = 0.867 on various reference angles θr in linear-log scale. The
data are averaged over three runs of the identical S and are specified
by colors. Error bars are omitted to clearly show the data trend.

tendencies of the evolution of the force-chain structure are
consistent with σ behaviors.

IV. ANALYSIS AND DISCUSSION

A. Force increase mechanism

The experimental results exhibit that the increase of Ftot

and the decrease of σ and �1 − �2 simultaneously occur
as φ increases by tappings. There are two possible ways to
increase Ftot. One is to increase the force per particle (force-
chain strengthening) and the other is to increase the number
of particles composing force chains (force-chain elongation).
Using the data obtained so far, we can discuss the contribution
of the strengthening and elongation of the force chains.

First, Ftot is written by the average interparticle force Favg

and the total number of disks composing force chains n (=Nch)
as

Ftot(τ ) = Favg(τ ) n(τ ). (5)

Note that this relation is satisfied in every tapping stage τ . The
relation between Ftot and Favg for various S and τ is shown in
Fig. 8(a). From Fig. 8(a), we can clearly confirm that Ftot has
a linear relation with Favg. In this plot, the slope corresponds
to the number of disks composing force chains. From the least
squares fit which crosses through the origin of the coordinate
axes, n = 349 ± 1 is obtained. The black line in Fig. 8(a) is
the corresponding fit. This proportional relation means that the
number of disks composing force chains are almost constant
independent of S and τ . Since we use 600 disks in total,
approximately 58% disks always construct the force-chain
structure. On the other hand, the remaining 42% disks do
not contribute to the force-chain formation, being “rattlers.”
It should be noted that, however, this value could depend on
the detectable lower limit of photoelasticity. According to this
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FIG. 8. (a) Relation between Ftot and Favg. The data are averaged
over three experimental runs with identical S, as specified by colors
and symbols. Error bars are omitted to clearly show the data trend. The
black solid line indicates the linear fitting to all data. (Inset) data and
the fit line are displayed including the origin of the coordinate axes.
(b) Variations of 	n∗

	F ∗
avg

as a function of S. The data points are obtained
by averaging all τ data. Error bars represent the standard deviation.
The vertical red dashed line indicates S = 0.057 above which the
convective motion can be observed. (c) Initial (hollow symbol) and
after-tapped (black filled symbol) values of Favg as a function of S.
Error bars represent the standard deviation. Blue solid line is the
average of the initial values under all experimental conditions. Red
dotted and solid lines are the averages of the after-tapped values at
S � 0.030 and S � 0.057, respectively.

result, the principal effect increasing Ftot must be the increase
of Favg rather than the elongation of force chains because n,
the number of particles belonging to the force chains, seems
to be constant.

To confirm this, we proceed with quantitative characteri-
zation of the increment of Ftot in the following. In order to
evaluate the contribution of Favg and n to the increment of
Ftot, we have to normalize them since they have different
dimensions. These quantities are normalized to their initial
values as, 	F ∗

avg(τ ) = Favg(τ )−Favg(1)
Favg(1) , and 	n∗(τ ) = n(τ )−n(1)

n(1) .

The normalized increment of Ftot can also be represented by
the same form as 	F ∗

tot(τ ) = Ftot (τ )−Ftot (1)
Ftot (1) . Equation (5) can be

rewritten by using their initial values and the differences from
the initial value [	Ftot(τ ) = Ftot(τ ) − Ftot(1),	Favg(τ ) =
Favg(τ ) − Favg(1), and 	n(τ ) = n(τ ) − n(1)] as

	Ftot(τ ) = Favg(1)	n(τ ) + n(1)	Favg(τ )

+	Favg(τ )	n(τ ). (6)

Furthermore, by dividing both sides of Eq. (6) by Ftot(1), we
obtain the relation among 	F ∗

tot,	F ∗
avg, and 	n∗:

	F ∗
tot = 	n∗ + 	F ∗

avg + 	F ∗
avg	n∗. (7)

All the values of 	F ∗
avg and 	n∗ obtained in this study are

less than unity. Therefore we neglect the higher-order terms
	F ∗

avg	n∗. Then, the simple relation among 	F ∗
tot,	F ∗

avg, and
	n∗ can be obtained from Eq. (7) as

	F ∗
tot ≈

(
1 + 	n∗

	F ∗
avg

)
	F ∗

avg, (8)

where 	n∗
	F ∗

avg
indicates the relative contribution of the increment

of n compared with the contribution of the Favg increment.
Thus, we can evaluate the contribution of Favg and n to the
increment of Ftot by examining the specific value of 	n∗

	F ∗
avg

.

Here, we investigate S dependence of 	n∗
	F ∗

avg
since the

tapping strength S would influence the force-chain structure
as mentioned in Sec. III D. The computed S dependence
of 	n∗

	F ∗
avg

is shown in Fig. 8(b). In the very small S regime

(S = 0.004–0.030), we can confirm 	n∗
	F ∗

avg
� 0.2–0.4. In this

parameter range, the variations of φ, Ftot, and σ by tappings
are quite small (Fig. 4). In other words, it is not easy to
compact the granular packing by such weak tapping. By
contrast, the contribution of force-chain elongation in this
regime is relatively greater than that in the larger S regime
(S � 0.057). In the relatively large S regime, 	n∗

	F ∗
avg

becomes

about 0.1. The difference of 	n∗
	F ∗

avg
depending on S can be

interpreted by Figs. 8(a) and 8(c). Figure 8(a) indicates that
the number of disks constituting the force chains does not
substantially depend on S. In fact, the value of 	n∗ shows
approximately 0.08 almost independent of S. On the other
hand, interparticle force increases depending on S. To focus
on the amount of increase in Favg from the initial value, we
indicate the difference between the initial and after-tapped
values of Favg on Fig. 8(c). As after-tapped values of Favg,
we use the average values of Favg during all the tapping states
other than the initial value. The initial average value of Favg

for all experimental conditions is 0.27 N [Fig. 8(c)]. In the
after-tapped states, the average value of Favg in the small S

regime (S = 0.004–0.030) is about 0.32 N, while Favg in the
large S regime (S � 0.057) is approximately 0.41 N. From
these results, 	F ∗

avg is 0.19 in the small S regime and 0.52 in
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FIG. 9. Relations among φ, �1 − �2, Ftot , and σ : (a) Ftot vs φ, (b) σ vs φ, (c) �1 − �2 vs σ , and (d) Ftot vs σ . The data are averaged over
three experimental runs of the same S, as specified by colors and symbols. Error bars are omitted to clearly show the data trend. The black
solid lines in (c) and (d) indicate the linear fittings. R = 0.85 in (c) and R = −0.89 in (d) denote the correlation coefficients for the relations
�1 − �2 vs σ and Ftot vs σ , respectively.

the large S regime. For all experimental conditions, the average
value of 	n∗ is approximately 0.08, so that 	n∗

	F ∗
avg

indicates 0.42

in small S and 0.15 in large S regimes. These values almost
agree with the values of the respective regions in Fig. 8(b).
Altogether, in the tapping processes, the force-chain elongation
effect could be almost negligible, although interparticle force
increases depending on tapping strength S.

Actually, the increase of Ftot can also be observed for the
force-chain evolution in an isotropic compression and shear
[6,24]. Moreover, the length of the force chain does not change
under an isotropic compression and shear [27,28]. Thus, the
observed result in the tapped granular packing is basically
similar to other loading cases, at least in the largeS (S � 0.057)
regime.

B. Relations among four parameters

We next investigate the relations among φ, �1 − �2, Ftot,
and σ . The relations among these quantities are shown in Fig. 9.
Figure 9(a) clearly indicates that Ftot increases as φ increases
and finally saturates at the asymptotic value around Ftot �
150 N. This saturation tendency has not been observed in an
isotropic compression and shear loading [4,5]. We consider
that this saturation tendency results from the steady particle
motions. When a granular packing is vertically shaken by
tapping, each particle could move and form the convective
motion [16]. Then, particle motions cause the decrease of
interparticle forces (loosening) even near φRCP [11]. In this
state, the particle motions and compaction are balanced to form
the steady state in terms of Ftot variation.

In order to check the actual particle motions in the current
experiment, we track the particle traces. Figure 10 shows the
traces of actual particle motions during 100 tappings from

τ = 901 to τ = 1001 at (a) S = 0.030 and (b) S = 0.613.
Figure 10(b) exhibits that the particle motions clearly form
a pair of convective rolls, while particles are almost at rest
in the case of small S [Fig. 10(a)]. We observe that the
particle motions drastically change beyond S = 0.057. This
threshold for the onset of convective motion corresponds to
that for the drastic change of 	n∗

	F ∗
avg

[Fig. 8(b), red dashed line].

This S threshold also distinguishes the qualitative behavior
of φ, �1 − �2, Ftot, and σ : very slow compaction or rapid
compaction followed by saturation (Fig. 4). In the convective
(large S) regime, this behavior could be natural since the
particle configurations are actively reorganized by convection.
In the small S (S � 0.03) regime, Ftot basically shows the
gradual increase by tapping since the convective motions
cannot be observed.

FIG. 10. Particle-motion traces at (a) S = 0.030 and (b) S =
0.613 during 100 tappings from τ = 901 to τ = 1001: (a) particles
are almost at rest and (b) particle collective motions form a pair of
convective rolls.
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In this study, we do not report on the further quantitative
characterization of the convective motion. In addition, the
physical meaning of the threshold value S = 0.057 has not
been revealed in this study. The detailed analysis of convective
motions observed in this experimental system and a compar-
ison of the result with the three-dimensional case (e.g., [29])
will be presented elsewhere.

With respect to the relation between σ and φ, Fig. 9(b)
exhibits that σ approaches 0 as φ increases. This tendency can
robustly be observed in the convection state. The convective
roll structure does not affect the force-chain structure. Even
in the small S regime, the force-chain structure gradually
becomes isotropic without significant reconfiguration. Only
the reorganization of the contact network can also produce
isotropic force-chain structure. This result agrees with our pre-
vious study in which the force-chain structure monotonically
approaches an isotropic state by tappings [19].

Next, we compare �1 − �2 and σ . �1 − �2 indicates the
isotropy of grain configuration in granular packing, and σ

characterizes the orientational order of the force-chain struc-
ture. The relation between grain configurations and force-chain
structures does not necessarily correspond with each other
since about 40% of disks are rattlers and do not contribute
to the force-chain formation.

Figure 9(c) exhibits the relation between �1 − �2 and
σ . The least squares fitting is used to obtain the correlation
coefficient R. The fitting result is shown as the black solid line
in Fig. 9(c). The computed correlation coefficient R = 0.85
shows that �1 − �2 has a positive correlation with σ . This
correlation could mean that the isotropy of the orientational
order of the force-chain structure comes from the isotropy of
grain configuration. That is, the disordering of grains contact
and force-chain structure occur simultaneously.

Finally, we investigate the relation between Ftot and σ

[Fig. 9(d)]. The black solid line in Fig. 9(d) shows the
fitting result. The computed correlation coefficient R = −0.89
indicates that σ has a clear negative correlation with Ftot. This
clear negative correlation indicates that the linear relationship
universally holds in the wide range of S regardless of particle
motions with or without convection.

A recent study has reported that the force-chain structure
becomes homogeneous when the three-dimensional (3D) gran-
ular packing is compressed by an uniaxial loading [12]. This
experiment has shown that the force distribution under the

uniaxial external loading becomes homogeneous even when
particles are not able to form convective motion. Although the
relation between the force-chain orientational order in a 2D
system and force homogeneity in a 3D system is still unclear,
they might have a certain relation with each other. Further
studies with various loading conditions under various spatial
dimensions are important future issues to be investigated.

V. CONCLUSIONS

In this study, we have experimentally investigated the
evolution of a 2D force-chain structure in a compacted granular
packing by adding vertical tappings. We have measured the
fabric tensor, interparticle forces, and force-chain orientational
order parameter. The tapping-induced granular compaction is
also measured by the packing fraction. The experimental re-
sults demonstrate that the interparticle force increases, whereas
the deviator anisotropy derived from the fabric tensor and
the orientational order parameter of force chains decreases as
the packing fraction increases due to the compaction. In con-
trast, the total length of force-chain segments remains almost
constant during compaction. A positive correlation has been
observed between the deviator anisotropy and orientational
order of the force-chain structure. This relation claims that
origins of isotropy of force-chain orientational order and grain
configurations could be identical. Both quantities can similarly
characterize the isotropy in a granular packing. Moreover,
a clear negative correlation is universally observed in any
tapping strength between interparticle force and orientational
order of the force-chain structure. This result indicates that
large interparticle forces and isotropic force-chain structure
are simultaneously realized in the compacted granular packing
near the random close packing state.
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