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While magnetic nanoparticles suspended in Newtonian solvents (ferrofluids) have been intensively studied in
recent years, the effects of viscoelasticity of the surrounding medium on the nanoparticle dynamics are much
less understood. Here we investigate a mesoscopic model for the orientational dynamics of isolated magnetic
nanoparticles subject to external fields, viscous and viscoelastic friction, as well as the corresponding random
torques. We solve the model analytically in the overdamped limit for weak viscoelasticity. By comparison to
Brownian dynamics simulations we establish the limits of validity of the analytical solution. We find that
viscoelasticity not only slows down the magnetization relaxation, shifts the peak of the imaginary magnetic
susceptibility χ ′′ to lower frequencies, and increases the magnetoviscosity but also leads to nonexponential
relaxation and a broadening of χ ′′. The model we study also allows us to test a recent proposal for using magnetic
susceptibility measurements as a nanorheological tool using a variant of the Germant-DiMarzio-Bishop relation.
We find for the present model and certain parameter ranges that the relation of the magnetic susceptibility to the
shear modulus is satisfied to a good approximation.
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I. INTRODUCTION

Magnetic nanoparticles suspended in Newtonian solvents
are known as ferrofluids [1]. Since their conception in the
1960s, they have attracted considerable attention, due to
their interesting properties, most notably the magnetoviscous
effect [2], and the breadth of applications [3]. Ferrofluids are
reasonably well understood today, at least for not-too-strong
interactions [4,5]. More recently, new magnetic materials like
soft magnetic elastomers and ferrogels have been synthesized
[6–10]. These new materials combine properties of both
traditional elastomers and ferrofluids, because the suspending
medium is neither a purely elastic solid nor a Newtonian liquid.
Magnetic nanoparticles are also used more and more often
in a number of biomedical applications such as drug delivery
and magnetic hyperthermia [11,12], magnetorelaxometry [13],
and biosensors [14]. In these instances, magnetic nanoparticles
are embedded in more complex, non-Newtonian environments.
Magnetorelaxometry is an example of a powerful biomedical
application, where analyzing the rotational diffusion of mag-
netic nanoparticles is used as a diagnostic tool [13]. Another ex-
ample is the rotational microrheology of magnetic endosomes
that has been employed to study the local viscoelasticity in
cells [15]. However, for an accurate interpretation of all these
experimental data a detailed knowledge of the magnetization
dynamics in a complex environment is needed.

The need for a better understanding of viscoelastic effects on
the dynamics of magnetic colloids has prompted a number of
experimental and theoretical investigations. Barrera et al. [16]
were one of the first to measure the dynamic susceptibility
of magnetic nanoparticles suspended in fluids of varying
viscoelasticity, which was tuned via progressive gelation of
a gelatin solution. Recent experiments along similar lines
have been performed and analyzed in terms of different,

mostly phenomenological, models [17]. While these models
are found to fit the experimental results on the imaginary part
of the dynamic susceptibility reasonably well, they lead to
different conclusions about an effective shear modulus. Sim-
ilarly, experimental results on magneto-optical transmission
on nickel nanorods suspended in different viscoelastic liquids
were interpreted within the Kelvin-Voigt and Maxwell models,
which, however, resulted in calculated shear moduli different
from the macroscopic measured ones [18]. A careful study
on dynamic susceptibility measurements has shown that for
various polymeric solvents a variant of the Germant-DiMarzio-
Bishop (GDB) model can be used to infer the complex shear
modulus [19]. Such nanorheological measurements are of great
practical use as well as theoretical interest. However, their
theoretical foundation in the present context remains unclear.

Despite a number of recent efforts, the dynamics of
magnetic nanocolloids in viscoelastic environments remains
considerably less well studied than ferrofluids. Macroscopic
approachs in terms of nonequilibrium thermodynamics es-
tablished the hydrodynamic equation of ferrogels [20,21].
Some first steps in coarse graining a molecular model of
polymer chains permanently attached to magnetic particles are
presented in Ref. [22]. Mesoscopic models for the rotational
dynamics of single-domain magnetic nanocolloids have been
investigated for some time (see Refs. [23–25] and references
therein), where viscoelasticity effects are modeled in terms
of non-Markovian Langevin or Brownian dynamics. More
recently, the need for modeling the viscoelastic medium by
a generalized Maxwell model [26] together with a proper
three-dimensional treatment of rotations has been recognized
[27].

Here we study the same model for the three-dimensional
rotational dynamics of single-domain magnetic nanoparticles
in a generalized Maxwell fluid as proposed in Ref. [27]. We

2470-0045/2018/97(3)/032610(11) 032610-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.032610&domain=pdf&date_stamp=2018-03-30
https://doi.org/10.1103/PhysRevE.97.032610


PATRICK ILG AND APOSTOLOS E. A. S. EVANGELOPOULOS PHYSICAL REVIEW E 97, 032610 (2018)

solve the model analytically in case of weak viscoelasticity.
Brownian dynamics simulations establish the range of validity
of the analytical result and provide numerical results for the
full range of viscoelasticity effects. Our results show that
the Germant-DiMarzio-Bishop model works surprisingly well
for certain parameter ranges, which provides a theoretical
justification for the nanorheological measurements advocated
in Ref. [19].

The paper is organized as follows. The model that we study
here is presented in Sec. II, including the overdamped limit as
well as a description of its numerical solution via Brownian
dynamics simulations. The analytical as well as numerical
results are presented in Sec. III. Finally, some conclusions are
offered in Sec. IV.

II. KINETIC MODEL OF MAGNETIC NANOPARTICLES
IN VISCOUS AND VISCOELASTIC MEDIA

Consider an ensemble of statistically independent, nonin-
teracting colloidal magnetic nanoparticles (i.e., the ultradilute
limit). Let the orientation of the particle be described by the
three-dimensional unit vector u (u2 = 1). For given angular
velocity ω, the orientational motion is given by u̇ = ω × u. The
equation of motion is given by the angular-momentum balance
I ω̇ = T, where I is the moment of inertia of the particle and
T the sum of all torques acting on the particle.

Here we want to consider torques exerted by an external
magnetic field H as well as torques exerted by the surrounding
viscous and viscoelastic medium. In particular, we make the
following assumptions: (i) rigid dipole approximation; i.e.,
the dipole moment remains always parallel to the particle
orientation, m = mu, where m denotes the magnetic moment
of a single colloidal particle. With this assumption we neglect
internal Néel relaxation, so we are restricted to large-enough
particles and not-too-high frequencies [1]. Under this assump-
tion, the torque due to an external magnetic field H is given by
TH = −L� = mu × H, where � = −mu · H is the Zeeman
potential energy andL = u × ∂/∂u the rotational operator. We
also assume (ii) that we can model the torque due to the viscous
solvent by rotational friction ξ = 8πηsa

3 and corresponding
white noise with thermal energy kBT , where ηs is the solvent
viscosity and a the hydrodynamic radius of the particle. (iii)
Furthermore, we assume that we can model the viscoelastic
contribution by the retarded friction ζ (t) and corresponding
random torque R. (iv) Finally, we assume dilute conditions
such that interparticle interactions are negligible. Also effects
due to hydrodynamic memory are assumed to be irrelevant,
since we will later consider long-enough time scales.

Under these assumptions we arrive at the generalized
Langevin equation for the rotational motion,

I ω̇(t) = mu(t) × H(t) − ξ [ω(t) − �(t)]

−
∫ t

0
dt ′ ζ (t − t ′)[ω(t ′) − �(t ′)]

+
√

2kBT ξ Ẇt + R(t). (1)

The torque due to friction is only experienced if the particle’s
angular velocity ω differs from the angular velocity � of the
surrounding medium. White noise associated with the viscous
solvent is modeled by the three-dimensional Wiener process

Wt . The viscoelastic contribution exerts not only a friction
torque described by the retarded rotational friction ζ (t) but also
a random torque R with 〈R〉 = 0. The fluctuation-dissipation
theorem (FDT) requires that these torques are related by
〈R(t)R(t ′)〉 = kBT Iζ (t − t ′) with I the three-dimensional unit
matrix [28].

In the following, we consider the viscoelastic contribution
as a single-mode Maxwell model where the memory kernel
can be expressed as ζ (t) = (ζ0/τM )e−t/τM , where τM is the
relaxation time and ζ0 the rotational friction coefficient of
the particle in the viscoelastic medium. In this case, we
conclude from FDT that R is exponentially correlated, i.e., a
three-dimensional Ornstein-Uhlenbeck process, 〈R(t)R(t ′)〉 =
kBT ζ0/τM exp [−(t − t ′)/τM ]I, i.e., R obeys the stochastic
differential equation

dR(t) = − 1

τM

R(t)dt + BRdWR
t , (2)

with BR = √
2kT ζ0/τM . Here WR

t is another three-
dimensional Wiener process, statistically independent of Wt .
In the limit τM → 0, we obtain ζ (t) = ζ0δ(t), i.e., a Newtonian
bath, and the system reduces to the corresponding model of
ferrofluids [5] with an effective rotational friction coefficient
ξ + ζ0. The Maxwell model has frequently been employed to
model the effect of viscoelastic media on colloid dynamics
[24]. For polymer solutions, however, it has been argued that a
generalized Maxwell (also termed Jeffrey’s) model that we
employ here is more appropriate to properly describe the
high-frequency behavior [26,29].

A. Extended variable formalism

The stochastic integrodifferential equation (1) with (2) can
be converted into a system of stochastic differential equations
by introducing the auxiliary variable

z(t) = −
∫ t

0
dt ′ζ (t − t ′)[ω(t ′) − �(t ′)] + R(t), (3)

which can be interpreted as the effective torque due to friction
and noise of the viscoelastic environment.

For the exponential memory kernel, the time derivative is
particularly simple and we arrive at the following system of
stochastic differential equations:

du = dω × u, (4)

Idω = [−L� − ξ (ω − �) + z]dt +
√

2kBT ξ dW, (5)

dz = − 1

τM

[z + ζ0(ω − �)]dt + BR dWR. (6)

Define the probability density F (u,ω,z; t). Then F obeys
the Fokker-Planck equation corresponding to the stochastic
differential equations (4)–(6),

∂

∂t
F = −L · (ωF ) − 1

I

∂

∂ω
· [(−L� − ξ (ω − �) + z)F ]

+ kBT ξ

I 2

∂2

∂ω2
F − ∂

∂z
·
{[

− 1

τM

z − ζ0

τM

(ω − �)

]
F

}

+ kBT ζ0

τ 2
M

∂2

∂z2
F. (7)
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In the absence of flow, � = 0, the stationary solution to
Eq. (7) is given by the Boltzmann distribution

F0(u,ω,z) = Z−1 exp

[
− β�(u) − 1

2
βIω2 − z2

2z2
eq

]
, (8)

with normalization constant Z, β = 1/(kBT ), and z2
eq =

ζ0/(βτM ). The equilibrium probability density factorizes and
therefore the equilibrium magnetization is given by the
Langevin function and is independent of the (retarded) friction,
as it should. Furthermore, the equilibrium Gaussian fluctua-
tions of the angular velocity ω and torques z are specified by
〈ωαωβ〉0 = (βI )−1δαβ and 〈zαzβ〉0 = z2

eqδαβ .

B. Overdamped limit

By construction, the model presented above exhibits three
relaxation times: the inertial relaxation time τI = I/ξ , the
Brownian relaxation time of rotational diffusion due to the
viscous solvent τD = ξ/(2kBT ), and the relaxation time of
the viscoelastic contribution τM .

For colloidal particles in general and magnetic nanopar-
ticles in particular, the usual condition τI � τD,τM holds
[30]. Therefore, we consider in the following the overdamped
limit τI → 0, i.e., Eq. (1) for I ω̇ → 0. Note, however, that
measurements of the magnetic susceptibility have shown the
influence of inertia effects at sufficiently high frequencies [31].
In the overdamped limit, we can eliminate the angular velocity
ω from Eq. (5) as independent variable and arrive at the reduced
set of stochastic differential equations,

du =
[
� − 1

ξ
L� + 1

ξ
z
]

× u dt + BdW × u, (9)

dz =
[

− 1 + q

τM

z + q

τM

L�

]
dt + BR(dWR − √

qdW),

(10)

where B = √
2kBT /ξ and q = ζ0/ξ the ratio of the friction

coefficients. Note that taking the overdamped limit leads to the
appearance of correlated noise in the auxiliary variable z. The
Fokker-Planck equation for the reduced probability density
f (u,z; t) corresponding to Eqs. (9) and (10) reads [32]

∂

∂t
f = −L ·

[(
� − 1

ξ
L� + 1

ξ
z
)

f

]
+ kT

ξ
L2f

− ∂

∂z
·
[(

−1 + q

τM

z + q

τM

L�

)
f

]

+ kBT ζ0

τ 2
M

(1 + q)
∂2

∂z2
f − q

2kBT

τM

∂

∂z
· Lf. (11)

Equation (11) agrees with the corresponding Fokker-Planck
equation in Ref. [27]. We note that in the limit q → 0, we
recover the kinetic model for (noninteracting) ferrofluids [5]. In
the absence of flow, � = 0, we find the equilibrium Boltzmann
distribution

f0(u,z) = Z−1
1 exp

[ − β�(u) − z2
/(

2z2
eq

)]
(12)

as stationary solution to Eq. (11). Note that f0 can also be
obtained from F0, Eq. (8), when integrated over ω, as it should
be and Z1 is the corresponding normalization constant. We
emphasize that stationary properties should not be affected
by taking the overdamped limit. However, this is not the

necessarily the case in some earlier works where only a
viscoelastic bath is present and additional manipulations need
to be invoked [24].

For later use, we introduce the Fokker-Planck operator
L from Eq. (11) via ∂f/∂t = Lf . Separating the effects of
internal dynamics L0, the external field Lh, and external flow L�

allows the decomposition L = L0 + Lh + L�. Furthermore, we
define the adjoint operators L† by

∫
dudzALf = ∫

dudzf L†A
for an arbitrary function A = A(u,z). Using integration by
parts we derive from (11) the explicit form of the adjoint
operators,

τDL
†
0A = 1

2
L2A − 1 + q

τ ∗
M

z∗ · ∂

∂z∗ A + εz∗ · LA

+ 1 + q

τ ∗
M

∂2

∂z∗2 A − 2ε
∂

∂z∗ · LA, (13)

τDL
†
h(t)A = (u × h(t)) ·

[
1

2
LA − ε

∂

∂z∗ A

]
, (14)

τDL
†
�(t)A = �∗(t) · LA, (15)

where we introduced the dimensionless quantities z∗ =
z/zeq,�

∗ = τD�, the ratio of relaxation times τ ∗
M = τM/τD ,

h = mH/(kBT ), and ε = √
q/(2τ ∗

M ) = τDzeq/ξ . Note that
the parameter β = 4ε2 was used in Ref. [27] and interpreted
as “springiness.”

C. Brownian dynamics simulations

For comparison to analytical results, we also perform Brow-
nian dynamics simulations of the model equations. Thereby we
avoid certain assumptions detailed below that we employ for
the analytical calculations.

We have implemented the stochastic differential equations
(9) and (10) using a first-order Euler scheme as well as a
second-order Heun scheme [32]. For the current purpose, both
schemes give identical results for small-enough time steps. For
simplicity, we here only describe the Euler scheme.

Using the dimensionless quantities introduced above with
t∗ = t/τD , we define the dimensionless increment of the
angular velocity �ω∗ = τD�ω by

�ω∗ = ( − 1
2 u × h + εz∗)�t∗ + �W∗, (16)

where �W∗ denotes a dimensionless three-dimensional
Wiener increment, i.e., a three-dimensional Gaussian random
variable with zero mean and variance �t∗. With the help of
�ω∗, the increments of the variables u and z∗ over a short time
step �t∗ are given by

�u = (�∗�t∗ + �ω∗) × u, (17)

�z∗ = − 1

τ ∗
M

z∗�t∗ − 2ε�ω∗ + √
2/τ ∗

M�W∗∗, (18)

where �W∗∗ is another three-dimensional Gaussian random
variable with zero mean and variance �t∗, statistically inde-
pendent of �W∗.

We found �t∗ = 10−3 to be small enough to obtain identical
results to the corresponding Heun scheme for the observables
of interest. An ensemble of N = 5 × 105 independent realiza-
tions of u and z∗ was usually used in order to obtain reliable
estimates for mean values.
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III. RESULTS

A. Short-time rotational diffusion

Since the orientation u is restricted to the three-dimensional
unit sphere, rotational diffusion is defined for short times only
from the relation

〈(u(t) − u(0))2〉0 = 4Dt, t � 1/(2D) (19)

with the rotational diffusion coefficient D. Averages 〈•〉0 are
taken with respect to the equilibrium initial ensemble f0,
Eq. (12). In terms of the autocorrelation function C(t) = 〈u(t) ·
u(0)〉0, the mean-squared orientational displacement can be
expressed as 〈[u(t) − u(0)]2〉0 = 2[1 − C(t)]. The short-time
behavior of C(t) can be computed from the Taylor series
C(t) = 1 + Ċ(0)t + 1

2 C̈(0)t2 + O(t3), where we used the fact
that C(0) = 〈u2〉0 = 1. The first- and second-order terms are
calculated from Ċ(0) = 〈[L†u] · u〉0 and C̈(0) = 〈[(L†)2u] ·
u〉0, respectively. Some details of the calculation can be
found in Appendix A. In the absence of external flow we
find

〈(u(t) − u(0))2〉0

= 2t

τD

−
[

1 + 2ε2 + 1

2
hL1(h)

](
t

τD

)2

+ O(t3), (20)

where L1(h) = coth(h) − 1/h denotes the Langevin function.
Interestingly, the first-order term is independent of the vis-
coelastic bath and external magnetic field that both contribute
only from the second order onward. Thus, in view of the
definition (19), we conclude that D = 1/(2τD) is identical to
the viscous diffusion on short time scales t � τD .

B. Magnetization relaxation

In magnetorelaxometry, the relaxation of the magnetization
is analyzed after a strong ordering field is switched off [13].
The present treatment does not include internal Néel relaxation
that is important for a proper interpretation of the corre-
sponding experimental results. Nevertheless, we here provide a
detailed analysis of the effect of medium viscoelasticity on the
magnetization relaxation for magnetically hard nanoparticles.
Our results would therefore be useful for separating out
viscoelasticity effects due to the biological environment from
the magnetization relaxation signal.

Assume that � = 0 and a strong ordering magnetic field
has been applied along the z direction for a sufficiently long
time so that the Boltzmann equilibrium (12) is established. At
time t = 0, the external field is switched off instantaneously.
Then the reduced magnetization M/Msat = 〈uz〉 obeys the
ordinary differential equation d

dt
〈uz〉 = 〈L†0uz〉 with initial

condition 〈uz〉(0) = 1. Define a0 = 〈uz〉,a1 = 〈oz〉,a2 = 〈qz〉
with oα = −εαβγ uβz∗

γ , qα = εαβγ εμβλuλz
∗
γ z∗

μ. With these
quantities, the first members of the moment hierarchy
read

τDȧ0 = −a0 + εa1, (21)

τDȧ1 = −λ1a1 + εa2 + 4εa0, (22)

τDȧ2 = −λ2a2 + εa3 + 6εa1 − 4

τ ∗
M

a0 − 8ε2a0, (23)

0 2 4 6 8
10 -3

10 -2

10 -1

10 0

FIG. 1. Magnetization relaxation M(t)/Msat = 〈uz〉(t) after
switching off a strong ordering field. Parameters are chosen as q = 0.2
and τ ∗

M varying from τ ∗
M = 0.5 to 5 as indicated in the legend. Symbols

and solid lines correspond to simulation and analytical results from
Eq. (25), respectively. For comparison, the solid line is the Debye law
exp [−t/τD].

where λn = 1 + n/τ ∗
M + 2nε2. Note that only in the limit ε →

0, i.e., in the absence of viscoelastic contributions, the moment
system truncates at the first order. In general, we are faced with
an infinite hierarchy for which an exact solution is unknown.

To make further progress analytically, we look for solutions
as power series in ε,

ak(t) =
∞∑

n=0

εna
(n)
k (t). (24)

Inserting the expansion (24) into Eqs. (21)–(23) and matching
equal orders of ε, we find for O(ε0) a single-exponential
decay, a

(0)
0 (t) = e−t/τD , corresponding to the purely viscous

limit of the model. Matching also next orders in ε we find (see
Appendix B for some details of the calculations)

〈uz〉(t) = e−t/τD

{
1 + q

[
t

τD

+ τ ∗
M (−1 + e−t/τM )

]}
+ O(ε3).

(25)
It is interesting to note that the magnetization relaxation

from Eq. (25) is not simply given by a superposition of two
exponentials. In other words, the viscous and viscoelastic con-
tributions to the relaxation cannot be considered independent.
Figures 1 and 2 show the magnetization relaxation 〈uz〉(t)
on a semilogarithmic scale. The analytical formula (25) is
compared with results from Brownian dynamics simulations of
the model. Deviations from the single-exponential behavior of
the purely viscous model are obvious. Increasing viscoelastic
contributions slows down the magnetization relaxation more
and more. The approximate formula (25) provides an accurate
description for the whole relaxation process when q � 0.2,
whereas for larger values of q only the early stages of the
relaxation are captured correctly by Eq. (25) while for late
stages the magnetization is underestimated.
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FIG. 2. Magnetization relaxation M(t)/Msat = 〈uz〉(t) as in Fig. 1 but for parameters τ ∗
M = 1 and q = 0.2,0.4,1 from bottom to top. Panels

(a) and (b) show the same data but on different axis scales.

C. Magnetic susceptibility

We are interested in the linear response of the system to
an externally applied weak magnetic field H(t). When the
dimensionless magnetic field h(t) = mH(t)/(kBT ) is small,
a first-order perturbation expansion gives

f (t) = feq + 1

τD

∫ t

0
dt ′ e(t−t ′)L0

(
u + τD

ξ
u × z

)

·h(t ′)feq + O(h2), (26)

where we assumed that the system was initially in equilib-
rium, f (0) = feq, i.e., by Eq. (12) for � = 0. For simplicity
of notation, we here suppress the arguments (u,z) of the
probability density f and feq. The induced magnetization
M(t) = nm

∫
dudz uf (t) is therefore linearly related to the

applied field when h is small enough, Mα(t) = ∫ t

0 dt ′χαβ(t −
t ′)Hβ(t ′) with χαβ(t) = nm2

kBT τD
〈uα etL0 (u + τ

ξ
u × z)β〉eq. With

the help of the adjoint operator L†0 defined in Eq. (13) and with
u̇ = L†0u, the susceptibility tensor can be written as χαβ(t) =
− nm2

kBT τD

d
dt

〈uα(t)uβ(0)〉eq. Since the system is isotropic in
the absence of an external field, χαβ(t) = χ (t)δαβ . With
the one-sided Fourier-transform, χ̃(ω) = ∫ ∞

0 dt ′ χ (t)e−iωt , the
frequency-dependent complex susceptibility takes the usual
form [28]

χ̃ (ω) = χ0 − χ0iω

∫ ∞

0
dt 〈u(t) · u(0)〉eqe

−iωt , (27)

where χ0 = nm2/(3kBT ) is the static (zero-frequency) suscep-
tibility.

For small q, we find that C(t) = 〈u(t) · u(0)〉eq obeys the
same differential equation (21)–(23) with the same initial
condition and therefore C(t) is also given by Eq. (25). Note that
this is a special case of the general fluctuation-dissipation re-
lation between relaxation and correlation functions [28]. From
the Laplace transform C̃(s) = ∫ ∞

0 dt C(t)e−st the complex
susceptibility can be obtained via χ̃ (ω) = χ0[1 − iωC̃(iω)]
as

χ̃ (ω)/χ0 = 1 + iqτMω

1 + iτDω
− iqτ ∗

Mτ1ω

1 + iτ1ω
− iqτDω

(1 + iτDω)2
, (28)

where 1/τ1 = 1/τD + 1/τM is the effective relaxation time of
the combined viscous and viscoelastic effect. Introducing real
and imaginary part, χ̃ = χ ′ − iχ ′′, we find

χ ′(ω)/χ0 = 1 + qτ ∗
M (τDω)2

1 + (τDω)2
− qτ ∗

M (τ1ω)2

1 + (τ1ω)2
− 2q(τDω)2

[1 + (τDω)2]2

(29)

and

χ ′′(ω)/χ0 = τDω(1 − qτ ∗
M )

1 + (τDω)2
+ qτ ∗

M (τ1ω)

1 + (τ1ω)2

+ qτDω(1 − (τDω)2)
[1 + (τDω)2]2

. (30)

From Eq. (30) we find that the imaginary part χ ′′ is no
longer given by a single Lorentzian as in the Debye model. In
qualitative agreement with experimental observations [17,19],
the location of the loss peak moves towards lower frequencies
as the influence of viscoelasticity increases. At the same time,
the height of the peak decreases and the width increases. All
these features are seen in the experiments [17,19] and are
described by Eq. (30). The same conclusions have been reached
in Ref. [27] with the help of an effective field approximation
and numerical solutions of the moment system (21)–(23). We
compare the analytical formula in Eqs. (29) and (30) to results
of Brownian dynamics simulations shown in Fig. 3. We find
that results are relatively insensitive to the precise value of τ ∗

M

between 0.5 and 2.0, whereas corresponding variation in the
value of q leads to significant changes in the susceptibilities.
The analytical formulas (29) and (30) we find to be accurate
for q � 0.5.

D. Magnetic nanorheology

In Ref. [19], Roeben et al. suggest to transfer the GDB
model for the dielectric permittivity to the magnetic sus-
ceptibility, thereby relating the magnetic to the mechanical
response,

χ̃ (ω) − χ∞
χ0 − χ∞

= 1

1 + iωτ̃eff (ω)
= 1

1 + KG̃(ω)
. (31)
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FIG. 3. Real and imaginary part of the complex susceptibility as a function of dimensionless frequency τDω of the applied magnetic field.
Left panel shows results for q = 0.5 and different values of τM , whereas in the right panel the value τ ∗

M = 1.0 was fixed and different values for
the parameter q were chosen. Symbols and dashed lines correspond to simulation and analytical results from Eqs. (29) and (30), respectively.
For comparison, the solid black line shows the Debye susceptibility.

In the last equation, we introduced the complex shear modulus
G̃ from G̃(ω) = iωη̃(ω) and related the complex viscosity η̃

to the effective relaxation time via τ̃eff (ω) = ξ̃ (ω)/(2kBT ) =
Kη̃(ω), where K = 4πa3/(kBT ).

The idea of magnetic nanorheology proposed in Ref. [19] in
this context is to use measurements of the magnetic susceptibil-
ities χ̃ = χ ′ − iχ ′′ in order to infer information on mechanical
properties of the environment where the nanoparticles perform
their rotational relaxation. Reformulating Eq. (31), we find
KG̃(ω) = 1

χ∗(ω) − 1, where χ∗ = χ̃(ω)−χ∞
χ0−χ∞

= χ ′
N − iχ ′′

N and
χ ′

N = (χ ′ − χ∞)/(χ0 − χ∞) and χ ′′
N = χ ′′/(χ0 − χ∞). Defin-

ing the storage (G′) and loss modulus (G′′), G̃ = G′ + iG′′, we
arrive at

G′
GDB(ω) = 1

K

[
χ ′

N

(χ ′
N )2 + (χ ′′

N )2
− 1

]
, (32)

G′′
GDB(ω) = 1

K

χ ′′
N

(χ ′
N )2 + (χ ′′

N )2
. (33)

Note that Eqs. (32) and (33) correct typos in the corresponding
Eqs. (8) and (9) of Ref. [19]. In the Debye limit, χ ′

N = χ ′/χ0 =
1/[1 + (τDω)2] and χ ′′

N = χ ′′/χ0 = τDω/[1 + (τDω)2], we
find from Eqs. (32) and (33) the known result G′ = 0 and
G′′ = τDω/K = ηsω of a Newtonian fluid.

For the model we study here, we worked out the magnetic
susceptibilities in Eqs. (29) and (30) to leading order in the
ratio of friction coefficients q. Inserting these expressions into
(32) and (33), noting that χ∞ = 0, we arrive at the GDB model
for the storage and loss modulus,

G′
GDB(ω) = ηsω

qτMω

(1 + τM )2 + (τMω)2
+ O(q2), (34)

G′′
GDB(ω) = ηsω

[
1 + q

1 + τ ∗
M

(1 + τ ∗
M )2 + (τMω)2

]
+ O(q2).

(35)

On the other hand, we can directly test Eqs. (34) and (35) by
comparing them to the true mechanical modulus corresponding
to the model under study. Since we assumed two independent

frictional torques for the viscous and viscoelastic contribu-
tion, we have ξ̃eff (ω) = ξ + ζ̃ (ω). The retarded friction of
the viscoelastic contribution was taken to be of the form
ζ (t) = (ζ0/τM )e−t/τM which leads to ζ̃ (ω) = ζ0/[1 + iωτM ]
and therefore the effective relaxation time

τ̃eff (ω) = ξ̃ (ω)

2kT
= τD

[
1 + q

1 + iτMω

]
. (36)

Using the above definition of the complex modulus G̃(ω) =
iωτ̃eff (ω)/K , we find that the effective storage and loss mod-
ulus of the environment is given by

G′(ω) = ηsω
qτMω

1 + (τMω)2
, (37)

G′′(ω) = ηsω

[
1 + q

1 + (τMω)2

]
. (38)

These expressions for the generalized Maxwell (sometimes
called Jeffrey’s) model are similar but different from Eqs. (34)
and (35). We note that viscoelasticity effects vanish for τM →
0, and we recover from both expressions the results for a
Newtonian solvent with and additional factor 1 + q to account
for the increased friction. For a general viscoelastic contri-
bution, both expressions converge in the high-frequency limit
to those of a Newtonian fluid as limω→∞ G′′(ω) = G∞[1 +
c/(τMω)2], where G∞ = ηsω is the infinite-frequency shear
modulus and c = 1 + q and c = q(1 + τ ∗

M ) for the present
model and the GDB assumption, respectively. Viscoelasticity
leads to a nonzero value of the high-frequency storage modulus
limω→∞ G′(ω) = q/(Kτ ∗

M ). Higher-order terms in q appear in
the GDB expression but not in Eq. (37). For low frequencies
we find limω→0 G′′(ω) = ηsω[1 + bq] → 0, where b = 1 and
b = 1/(1 + τ ∗

M ) for the present model and the GDB assump-
tion, respectively. The storage modulus vanishes quadratically
for low frequencies, limω→0 G′(ω) = (q/K)τ ∗

Mb2(τDω)2. For
low values of q for which Eqs. (34) and (35) apply, good
agreement is found between the two expressions. This is espe-
cially true for the loss modulus, whereas the storage modulus
shows a somewhat larger discrepancy (not shown). Figure 4
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FIG. 4. Left and right panels show the dimensionless loss modulus G′′(ω)τD/ηs as a function of τDω for the same conditions as in Fig. 3.
Symbols are results for the GDB assumption, Eq. (35), using the numerical results for the susceptibilites. Lines correspond to the generalized
Maxwell model, Eq. (38).

shows a comparison of G′′(ω) as given by Eqs. (38) and (35)
for larger values of q. Due to the relative insensitivity of the
susceptibilites on τ ∗

M for intermediate values ofq, also the value
of G′′ is only weakly affected and can be reliably estimated
from the GDB model in this regime [see Fig. 4(a)]. We
find, however, some discrepancies for intermediate frequencies
when the parameter q increases. But, overall, we find that the
GDB model estimates the loss modulus for the present range
of parameters quite well.

E. Magnetoviscosity

The magnetoviscous effect, i.e., the change of apparent
viscosity due to an externally applied magnetic field, is not
only of great theoretical interest but plays also an important
role for various applications [5]. How is the magnetoviscous
effect altered when the carrier medium is viscoelastic?

To address this question, consider the situation where the
system is exposed to a constant magnetic field H. In addition,
a steady shear flow V = γ̇ yex is applied, so that the vorticity
is constant and � = −(γ̇ /2)ez. The nonequilibrium stationary
state attained under the action of a constant magnetic field and
� is not known in general. For weak flow, |τD�| = τDγ̇ /2 �
1, we make the following ansatz:

f (u,z) = f0(u,z)[1 + (u − 〈u〉0) · a + z · b + O(γ̇ 2)], (39)

where f0(u,z) is the equilibrium probability density (12)
in the presence of a magnetic field but in the absence of
flow. The ansatz (39) satisfies the normalization condition∫
dudz f (u,z) = 1. The unknown vectors a,b are independent

of u and z and are assumed to be first order in the flow
rate and therefore small. Otherwise, positivity of f is not
guaranteed. As similar procedure has been used successfully
for structure-forming ferrofluids [33].

With the ansatz (39), we can calculate arbitrary moments in
terms of a,b, e.g.,

〈u〉 = L1ĥ + (
L2 − L2

1

)
ĥĥ · a + L1

h
a, (40)

where h = hĥ with h2 = h2 and ĥ the unit vector in the direc-
tion of the external field. Here we use Lj (h) = 〈Pj (u · ĥ)〉0,
with L1(h) = coth(h) − 1/h the Langevin function introduced
above and L2(h) = 1 − 3L1(h)/h. We also find 〈z〉 = z2

eqb and

〈o〉 = −L1zeqĥ × b.
From the Fokker-Planck equation, we can derive the follow-

ing time evolution equations for the lowest order moments:

τD

d

dt
〈u〉 = −〈u〉 + 1

2
(h − 〈uu〉 · h) + ε〈o〉 + τD� × 〈u〉,

(41)

τM

d

dt
〈z〉 = −(1 + q)〈z〉 − qkBT 〈u〉 × h. (42)

In the stationary state, the left-hand side is zero. Expressing
the moments with the help of the ansatz (39), we arrive at an
algebraic system of equations for the unknown a and b. Solving
this system of equations (see Appendix C) and inserting the
result into (40), we find the steady-state orientation due to an
external field and weak flow as

〈u〉 = L1ĥ + L2
1

h
2

( 2+L2
3 − qL2

1
1+p

)τD� × ĥ. (43)

For q → 0, Eq. (43) reduces to the known result of Shliomis
model of ferrofluids [5]. The magnetization component per-
pendicular to the field direction leads to a viscous torque that
manifests itself in the rotational viscosity [1,5]

ηrot = M⊥H

2γ̇
= MsatkBT τD

2m

〈u⊥〉h
τDγ̇

= (1/2)nkBT τD

〈u⊥〉h
τDγ̇

.

(44)

Using τD = ξ/(2kT ) we find nkBT τD = nξ/2 = 4nπηsa
3 =

3φηs with φ = n(4/3)πa3 the volume fraction. With these
relations we arrive at the following expression for the rotational
viscosity:

ηrot = 3

2
ηsφ

3L2
1

2 + L2

[
1 − 3qL2

1

(1 + q)(2 + L2)

]−1

. (45)
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FIG. 5. Scaled rotational viscosity ηrot/(3ηsφ/2) as a function of the Langevin parameter h. Symbols denote the results of Brownian
dynamics simulations and dashed lines are the analytical results (45). The solid black line is the result for vanishing viscoelasticity. (a) Fixed
value q = 0.2 and τ ∗

M varying from 0.5 up to 5. (b) From bottom to top q = 0.2,0.4,1.0 with τ ∗
M = 1.0.

Therefore, we find that to first order in q and in the flow rate
the magnetoviscosity is independent of τM and depends only
on q. The maximum viscosity contribution is

η∞
rot = lim

h→∞
ηrot = 3

2ηsφ(1 + q). (46)

Thus, the maximum viscosity increase due to a viscoelastic
bath is larger by a factor 1 + q than the pure viscous case
simply by the increased rotational friction that the colloid
experiences.

For vanishing magnetic field we find ηrot(h = 0) = 0, i.e.,
no viscous contribution in the absence of a magnetic field.
For weak fields h � 1, we find that the rotational viscosity
increases as

ηrot = 3

2
ηsφ

[
h2

6
− h4

36(1 + q)
+ O(h6)

]
. (47)

Figure 5 shows the rotational viscosity as a function of
the dimensionless applied magnetic field h. We find that the

2 4 6 8 10 12 14
0

0.5

1
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2

FIG. 6. Same as right panel of Fig. 5 but for q = 1.

rotational viscosity increases proportionally to the additional
viscoelastic friction. The value of τ ∗

M , on the contrary, has little
effect on the steady-state rotational viscosity in this parameter
range. For comparison, we also performed Brownian dynamics
simulations of Eqs. (17) and (18) with τDγ̇ = 0.1. We verified
that identical results are obtained for lower values of τDγ̇ .
The numerical results from Brownian dynamics simulations
are in good agreement with Eq. (45) for small values of q.
For larger values of q, the analytical result (45) significantly
underestimates the true value of the rotational viscosity. Also
the dependence of ηrot on the viscoelastic relaxation time τM

is not captured by Eq. (45). From Fig. 6, we clearly see that
increasing τ ∗

M leads to a corresponding decrease of ηrot. The
same qualitative trend was found in Ref. [25] where only
two-dimensional rotations in a purely viscoelastic bath were
considered.

IV. CONCLUSIONS

In the present contribution, we study a microscopic model
of the non-Markovian dynamics of magnetic nanocolloids in
a viscoelastic environment that can be described by the com-
bination of a Newtonian and viscoelastic medium proposed in
Ref. [27]. When viewed as an extension of the basic model of
ferrofluid dynamics, the additional viscoelasticity effects are
described in this model by two dimensionless parameters: (i)
the ratio q = ζ0/ξ of friction coefficients of the nanocolloid
in the viscoelastic and in the viscous component and (ii) the
corresponding ratio τ ∗

M = τM/τD of relaxation times. Due
to the inherent nonlinearity of three-dimensional rotational
motion, we are only able to find analytical solutions of the
model for weak viscoelasticity, i.e., small values of q. We
also test the analytical results against Brownian dynamics
simulations.

We find that viscoelasticity leads to a slowing down of
the magnetization relaxation compared to the purely viscous
case, showing a nonexponential decay that is mainly controlled
by the ratio q of friction coefficients and is rather insensitive to
the precise value of scaled relaxation times τ ∗

M . Consequently,
the magnetic susceptibility deviates from the Debye law,
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where the peak of χ ′′ moves towards lower frequencies, while
broadening and the amplitude decreasing as viscoelastic effects
increase. These findings are in qualitative agreement with
experimental results [17,19]. We also test a recent proposal
put forward in Ref. [19] to use measurements of the magnetic
susceptibilities χ ′ and χ ′′ to infer mechanical properties of
the surrounding medium via the Germant-DiMarzio-Bishop
relation. For the present model, we find that the GDB relation
is satisfied to a good approximation, at least for the parameter
range investigated here. Finally, we work out the influence of
viscoelasticity on the magnetoviscous effect. The increase of
rotational friction due to the viscoelastic contribution leads to
a corresponding increase in the maximum rotational viscosity.
Besides this, increasing the relaxation time of the viscoelastic
component relative to the viscous one leads to a decrease of the
rotational viscosity. A similar reduction of the magnetoviscos-
ity with increasing τ ∗

M was found in Ref. [25] for a simplified
model.

It will be interesting to compare the present model more
quantitatively with experimental results on magnetic suscepti-
bility, nanorheology and magnetoviscosity. Such comparisons
would on the one hand allow for more reliable interpretation
of the experimental results and on the other hand stimulate
improvements over the current model formulation.
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APPENDIX A: SHORT-TIME DYNAMICS

The time derivative of the correlation function C(t) =
〈u(t) · u(0)〉0 can be expressed as Ċ(t) = 〈[L†u(t)] · u(0)〉0. We
find from the definition (13) and (14) of the adjoint operator
that

τDL
†u = −u + εo + 1

2 (h − uu · h) + � × u, (A1)

where oα = −εαβγ uβz∗
γ . Therefore, in the absence of external

flow, τDĊ(0) = −C(0) + ε〈o · u〉0 = −1 since averages are
taken with respect to the equilibrium state (12) for which
〈o · u〉0 = 0.

The next order term is found from C̈(t) = 〈[(L†)2u(t)] ·
u(0)〉0. Applying L† to Eq. (A1), we need

τDL
†
0o = −τD

τ1
o + εq + 4εu

τDL
†
ho = 1

2
(z∗ · u)u × h − 1

2
z∗ · (u × h) − ε(h − uu · h)

τDL
†uu · h = −2uu · h + ε(u(o · h) + o(u · h))

+ 1

2
[uh2 − 2u(u · h)2 + h(u · h)],

where qα = εαβγ εμβλuλz
∗
γ z∗

μ. Inserting these expressions into
C̈ and taking equilibrium averages for which 〈q · u〉0 = −2,
we arrive at Eq. (20).

APPENDIX B: MOMENT EQUATIONS FOR
RELAXATIONAL DYNAMICS

We start with the moment system (21)–(23) and insert the
moment expansion (24). Matching equal orders of ε we find
for O(ε0):

τDȧ
(0)
0 = −a

(0)
0 , (B1)

τDȧ
(0)
1 = −λ1a

(0)
1 , (B2)

τDȧ
(0)
2 = −λ2a

(0)
2 − 4

τ ∗
M

a
(0)
0 . (B3)

From Eq. (B1) we find

a
(0)
0 (t) = a

(0)
0 (0)e−t/τD = e−t/τD (B4)

due to the initial condition a
(0)
0 (0) = 〈uz〉(0) = 1. This is the

familiar case where viscoelastic effects are absent, q = 0.
Furthermore, a

(0)
1 (t) = 0 if we start with the equilibrium for a

strong field and Gaussian in z, a
(0)
1 (0) = 0. Inserting a

(0)
0 (t) =

e−t/τD in Eq. (B3), we find

a
(0)
2 (t) = −2e−t/τD + (qz(0) + 2)e−t/τ2 = −2e−t/τD , (B5)

where we used

a
(0)
2 (0) = 〈qz〉(0) = 〈z∗

3(z∗ · u)〉0 − 〈u(z∗)2〉0

= 〈(z∗
3)2〉0 − 〈(z∗)2〉0 = −2

from equilibrium Gaussian averages with Eq. (12).
Now look at the first-order terms:

τDȧ
(1)
0 = −a

(1)
0 + a

(0)
1 , (B6)

τDȧ
(1)
1 = −λ1a

(1)
1 + a

(0)
2 + 4a

(0)
0 . (B7)

Since a
(0)
1 = 0 we have also a

(1)
0 = 0 and therefore no cor-

rection to the magnetization dynamics to first order in ε. The
solution to a

(1)
1 reads

a
(1)
1 (t) = 2τ ∗

M [e−t/τD − e−t/τ1 ], (B8)

where a
(1)
1 (0) = 0.

Now, finally, we can compute the correction to the simple
exponential magnetization decay from

τDȧ
(2)
0 = −a

(2)
0 + a

(1)
1 (B9)

and find the relaxation to second order in ε given by Eq. (25).

APPENDIX C: FLOW-INDUCED DEVIATION
OF ORIENTATION

With the ansatz (39), we can calculate arbitrary moments in
terms of a,b, e.g.,

〈u〉 = 〈u〉0 + (〈uu〉0 − 〈u〉0〈u〉0) · a + 〈uz〉0 · b, (C1)
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where h = hĥ with ĥ the unit vector in the direction of the
external field. The first and second moments of the orientations
are calculated from

〈uu〉 = 〈uu〉0 + (〈uuu〉0 − 〈uu〉0〈u〉0) · a + 〈uuz〉0 · b

〈uu〉0 = L2ĥĥ + L1

h
I

〈uuu〉0 = L3ĥĥĥ + L2

h
(ĥI)sym

⇒ 〈uu〉 = L2ĥĥ + L1

h
I + (L3 − L2L1)(ĥ · a)ĥĥ

+ L2 − L2
1

h
(ĥ · a)I + L2

h
(aĥ + ĥa),

where L1,L2 have been introduced in the main text and
L3(h) = L1(h) − 5L2(h)/h.

For later use, we also provide

〈uu〉 · ĥ = (L2 + L1/h)ĥ

+
(

L3 − L2L1 + 2L2 − L2
1

h

)
a‖ĥ + L2

h
a,

where we defined a‖ = a · ĥ.
From Eq. (42), we find

0 = −(1 + q)z2
eqb − qkBT L1a × ĥ, (C2)

⇒ b = − qkBT L1

(1 + q)z2
eq

a × ĥ, (C3)

⇒ 〈o〉 = qkBT L2
1

(1 + q)zeq
ĥ × (a × ĥ). (C4)

Inserting these results into (41) we find the condition for
the stationary state to be

0 = −L1ĥ − (
L2 − L2

1

)
a‖ĥ − L1

h
a

+ h

2

{
[1 − L2 − L1/h] −

(
L3 − L2L1 + 2L2 − L2

1

h

)
a‖

}

× ĥ − L2

2
a + ε

qkBT L2
1

(1 + q)zeq
ĥ × (a × ĥ) + τDL1� × ĥ.

(C5)

Note that ĥ × (a × ĥ) = a − a‖ĥ. Scalar multiplication of the
above equation by ĥ yields a linear equation for a‖:

0 =
[
−

(
L2 − L2

1 + L1

h

)
− h

2

(
L3 − L2L1 + 3L2 − L2

1

h

)]
a‖

(C6)

and therefore a‖ = 0 since 1 − L2 − L1/h = 2L1/h and
therefore −L1 + h

2 [1 − L2 − L1/h] = 0.
Thus, we know that a = a‖ĥ + a⊥ = a⊥ with a⊥ · ĥ = 0.

Applying the orthogonal projector I − ĥĥ to Eq. (C5) we arrive
at

0 = − L1

h
a⊥ − L2

2
a⊥ + ε

qkBT L2
1

(1 + q)zeq
a⊥ + τDL1� × ĥ

=
[
−2 + L2

6
+ ε

qkBT L2
1

(1 + q)zeq

]
a⊥ + τDL1� × ĥ

⇒ a⊥ = L1

2+L2
6 − ε

qkBT L2
1

(1+q)zeq

τD� × ĥ.

Inserting this result into (40) we find the mean orientation due
to field and weak flow as given in Eq. (43).
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