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Filamentary structures that self-organize due to adhesion
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We study the self-organization of random collections of elastic filaments that interact adhesively. The evolution
from an initial fully random quasi-two-dimensional state is controlled by filament elasticity, adhesion and
interfilament friction, and excluded volume. Three outcomes are possible: the system may remain locked in
the initial state, may organize into isolated fiber bundles, or may form a stable, connected network of bundles.
The range of system parameters leading to each of these states is identified. The network of bundles is subisostatic
and is stabilized by prestressed triangular features forming at bundle-to-bundle nodes, similar to the situation in
foams. Interfiber friction promotes locking and expands the parametric range of nonevolving systems.
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I. INTRODUCTION

Fibrous materials are ubiquitous in biology and the non-
living world. Examples of athermal networks (whose fiber
mechanics is independent of thermal fluctuations) include the
extracellular matrix, connective tissue, paper, and nonwovens.
The mechanics of such networks was studied extensively
(e.g., see Refs. [1,2]). Network models were also used to
represent the behavior of granular materials [3], open cell
cellular structures [4], and glasses [5].

Most studies to date refer to cross-linked (e.g., see
Refs. [1,2,6]) and non-cross-linked (e.g., see Refs. [7,8])
networks whose mechanics is controlled by the fiber properties
(fiber bending, Ef If , and axial, Ef Af , rigidities), network
density, ρ, and the mean coordination number, z̄. In this work
we study non-cross-linked networks in which filaments interact
adhesively. Their behavior is qualitatively different from that
of other non-cross-linked structures since adhesion reorganizes
the network.

This problem is relevant for a broad range of systems.
Colloidal interactions produce aggregation in particle suspen-
sions [9]. Suspensions of filaments, whether rigid or flexible,
undergo flocculation as the concentration increases and/or the
temperature decreases. The formation of filament bundles,
followed by organization into a network of bundles was
observed in dense suspensions of actin [10] and collagen [11],
and was discussed theoretically in Ref. [12].

Carbon nanotubes (CNT) interact adhesively and form
bundles, which further self-organize into networks of bundles
[13,14]. Buckypaper [14] is entirely stabilized by inter-CNT
adhesion. The structure of CNT assemblies depends on the
bending stiffness of filaments [15], the CNT length [16], and,
in single-wall CNTs, on bending buckling of CNTs [17].
Buckypaper can be stretched to produce CNT yarns, which
may replace carbon fiber in structural composites [18]. The
viscoelastic behavior of such CNT structures is temperature
independent, which demonstrates their athermal nature [19].
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Fibrils can be brought together into bundles [20] and larger
structures [21,22] by surface forces which are longer ranged
than adhesion, such as capillary forces. Elastocapillarity con-
trols the interaction of liquid-air and liquid-liquid interfaces
with elastic structures and produces self-organization effects
similar to those associated with adhesion and discussed here
[23,24].

In this work we study the effect of adhesion on the structure
of noncrosslinked networks of filaments which are free to move
relative to each other. We observe that adhesion drives fiber
bundling. We investigate the types of structures that result
upon filament bundling and the dependence of the resulting
configurations on network parameters. We also study the effect
of interfiber friction on the onset of the self-organization
process. The results indicate the range of controllable network
parameters that lead to each of the various types of self-
organized structures observed both in presence and in absence
of interfiber friction.

II. MODELS AND METHODS

To study the effect of adhesion on non-crosslinked fibrous
assemblies, we use the bead-spring model of polymer physics
[15,16,20]. The axial and bending stiffness of filaments are
represented by harmonic potentials defined by their respective
constants, ka = Ef Af /s0 and kb = Ef If /s0, where s0 is the
distance between consecutive beads along the filament, and
Ef ,Af ,If are the fiber elastic modulus, cross-section area, and
moment of inertia. Fibers have zero torsional stiffness. This is
not a limitation since it is known that very little strain energy is
stored in the torsional mode of fibers in random fiber networks
[1]. In addition, curling would be observed in simulations if
the system would store energy in the torsion mode. All fibers
in the model have the same length, L0, same diameter, d0, and
Ef . All fibers have circular cross-section.

Nonbonded interactions are represented with a Lennard-
Jones potential of characteristic length σ and energy parameter
ε0. The potential imposes the excluded volume constraint and
models the interfiber adhesion. The work of adhesion, γ ,
results as the interaction energy per unit length of contact
between two parallel, straight fibers in equilibrium.
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Some level of interfiber friction is caused by the roughness
of filaments associated with the discrete nature of the bead-
spring representation. To minimize this effect, we increase the
density of beads along each filament to four beads per fiber
segment of aspect ratio 1, i.e., s0 = d0/4. It was determined
using pairs of parallel filaments in adhesive contact forced
to slide against each other axially that, with this axial bead
density, the fluctuation of the adhesive energy per unit length
of filament is only 0.01% of the mean value.

The three fiber parameters, γ , d0, and Ef , are uniquely
defined by the model parameters σ , ε0, and ka . Parameter d0 is
the equilibrium distance of a bead from the axis of an infinite
straight fiber and, for the potentials used, it is d0 = 1.063σ .
Parameter γ is given by γ = 7.11ε0/σ . The effective fiber
modulus is defined by ka as Ef = 0.3ka/σ .

The initial, “as-deposited” configuration of the model is
generated by depositing fibers of length L0 on a nonfrictional
support plane, in an area of size L x L, with L > 2L0 in all
cases such to avoid spurious effects introduced by the periodic
boundary conditions. Newly deposited fibers lay on top of the
previously deposited ones without interpenetration, forming
a quasi-two-dimensional mat structure. Adhesive interactions
at contacts insure that the mat retains integrity during fiber
deposition. Periodic boundary conditions are imposed in the
plane of the mat during deposition, while traction free (vacuum
padding) conditions are applied in the direction perpendicular
to the mat.

The as-deposited structures of fibers have random orien-
tations and random positions of their centers of mass. It is
convenient to describe the initial structure in projection on
the support plane, projection in which the network resembles
a Mikado structure [2,6] characterized by its density (total
fiber length per unit area), ρ, and the fiber length, L0. The
density has units of 1/length and is related to the mean segment
length of the network (segment between two contacts) by the
Kallmes-Corte relation lc = π/2ρ [25]. We note that the quasi-
two-dimensional assumption is valid if the mat is sufficiently
thin and fibers are sufficiently flexible for the newly deposited
fibers to make contact with all previously deposited fibers
on top of which they fall. A conceptual perspective on this
issue is discussed in Ref. [26]. Once the mat is deposited,
the support plane is removed and the structure is relaxed at
fixed L, by imposing periodic boundary conditions in the plane
of the mat and zero tractions in the direction perpendicular
to the mat. The system does not disintegrate by diffusion in
the out-of-plane direction due to the adhesion between fibers.
Further, the system is evolved with molecular dynamics under
the same boundary conditions, which represent a system of
infinite in-plane extent and of constant density.

In separate simulations we study the effect of static fric-
tion between filaments on the onset of adhesion-driven self-
organization. To this end, an additional attractive potential
of well depth εf is introduced between beads belonging to
different fibers, at contacts between filaments in the initial
network configuration. In absence of this interaction the
relative sliding of fibers is frictionless since the adhesion
energy remains constant. These “stickers” introduce resistance
to the onset of sliding and an effective maximum unbinding
force proportional to εf /d0. This model does not represent
dissipative Coulomb friction, rather it is designed to model

FIG. 1. Evolution of a network due to fiber adhesion from an
initial structure (a) into a cellular network of bundles (b). Bundles
may merge to form larger bundles (c), may pass each other without
interacting (d), or may interact forming triangular features (e), such
as that in (f).

static friction between fibers in contact in the as-deposited
state. It is used only to determine whether adhesion is strong
enough to initiate fiber rearrangement for given εf .

III. RESULTS AND DISCUSSION

A. Structural evolution and stabilization of cellular
networks of bundles

In general, the as-deposited system of filaments may be
locked in the initial configuration or may evolve due to the
adhesive forces. Evolving systems self-organize into cellular
structures of filament bundles or disintegrate forming largely
disconnected filament bundles. Figures 1(a) and 1(b) show
the initial and final stages of an evolution that transforms
a Mikado-like initial structure, into a cellular structure of
filament bundles. A movie showing this evolution is presented
in the Supplemental Material [27]. The movie shows the view
perpendicular to the plane of the as-deposited mat, similar to
Fig. 1.

A cellular structure of filament bundles [Fig. 1(b)] is a quali-
tatively different stochastic network which has not been studied
so far. In the 2D projection it resembles a Voronoi tessellation
and all nodes have coordination z = 3. All network segments
are bundles stabilized by the adhesive interaction of filaments.
Bundles split into two sub-bundles at a node. Nodes can move
along a segment by bundling or unbundling. Figure 1(c) shows
three bundles forming two nodes. Bundles b1 and b2 are shown
moving in the same direction; they may eventually merge into
a larger bundle. If b1 and b2 move in opposite directions,
they can pass each other without interaction [Fig. 1(d)] or
interact [Fig. 1(e)], forming a triangular feature [Fig. 1(f)].
These triangles are stabilized by the adhesion between bundles
and store strain energy.
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FIG. 2. Systems without interfiber friction considered in simula-
tions shown in the space of nondimensional system parameters. The
frame log10(�)-log10(ξ2) used to represent the data in Fig. 3 is shown
schematically in red.

To study the effect of network parameters on the self-
organized network structure, systems with multiple values
of these parameters are considered and are evolved. The
relevant system parameters are γ , Ef , L0, d0, and ρ. Consider
first that the interfilament friction vanishes. The Buckingham
π analysis indicates that three independent nondimensional
groups can be formed from this set: e.g., ξ1 = γ /Ef d2

0 , ξ2 =
ρL0, and ξ3 = L0/d0. We consider 24 combinations of these
parameters and simulate all corresponding systems. Figure 2
shows the points corresponding to these configurations in the
ξ1,ξ2,ξ3 space. We observe three types of structures which

are represented in Fig. 2 by the three types of symbols.
The crosses correspond to configurations that do not evolve
and remain in the as-deposited state. Filled squares indicate
configurations that evolve into stable cellular structures sim-
ilar to that shown in Fig. 1(b). The open circles indicate
networks which disintegrate and hence lose connectivity.
The plane shown in Fig. 2 separates the nonevolving from
the evolving structures and is defined by ξ1ξ

2
3 = a′ξ 2

2 . The
functional form of this surface is motivated by considerations
presented below. This representation suggests that the relevant
physics can be described in a space with two dimensions in
which this separation plane is viewed edge-on and appears
as a line (Fig. 3). The parameters of this space of reduced
dimensionality are log10(ξ2) and log10(�) = log10(ξ1) +
2log10(ξ3), i.e., � = ξ1ξ

2
3 = γL2

0/Ef d4
0 ∼ γL2

0/Ef If . The
log10(ξ2) axis, log10(�) axis (which is perpendicular to
log10(ξ2)), and the normal to the separation plane are coplanar.
The log10(�)-log10(ξ2) frame is shown schematically in Fig. 2.

Parameter � can be rewritten as � = L2
0/L

2
EC , where

LEC is the elastocapillarity length introduced in Ref. [23].
It captures the physics of bending-dominated elasticity in
presence of adhesive forces [28] and was used in Refs. [16,20]
to analyze CNT structures. � shows that strong adhesion
effects result by increasing γ and by decreasing the filament
diameter. Since If ∼ d4

0 , decreasing d0 has a stronger effect
than increasing γ , which explains why adhesion effects are
generally observed with nanofibers [20].

Figure 3 presents the results in the frame
log10(�)-log10(ρL0) parametric space. For ρL0 � 5.71,
the initial state is not a percolated network [29] and hence the

FIG. 3. Map of three possible network states in the plane of nondimensional parameters � = γL2
0/Ef If and ρL0. For ρL0 < 5.71, the

initial network is below the percolation threshold. The small � domain labeled “locked” corresponds to structures that do not evolve from the
initial state and hence do not bundle. This domain is bounded above by the red line of equation � ∼ (ρL0)2, which is a particular form of
Eq. (2) corresponding to the no interfiber friction case. In presence of friction (quantified by parameter εf ) this boundary moves up, as shown
by the set of dashed red lines [Eq. (2)]. For larger � values, systems self-organize in networks of fiber bundles [Fig. 1(b)], which are stabilized
by triangular features forming at network nodes [Fig. 1(f)]. At low ρL0 these structures loose connectivity and the network disintegrates. The
crosses, open circles, and filled squares indicate cases simulated that lead to locked, disintegrated, and cellular structures, respectively. The side
panels show examples of the three types of structures described.
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present problem is not defined. This threshold corresponds
to the sol-gel transition observed in thermal suspensions of
nanorods [12].

For ρL0 > 5.71 and small �, systems do not evolve from
the as-deposited state and no bundles develop. To understand
this situation, consider the initial stage of relaxation at the
scale of two crossed filaments forming an angle α in the
initial state. To enable adhesion (short range interaction),
the filaments have to bend towards each other by α/2 at the
crossing point. The energy gained isγy, wherey is the length of
the resulting segment in contact. The strain energy stored in the
deforming filaments and the work done against the background
friction (if any) are the energy expenditures. The rotation and
sticking of filaments in the vicinity of the contact point must be
accommodated either by their axial deformation or by sliding
along their contour, which happens against the friction forces
acting at all contacts of the respective filament with other
filaments. To evaluate the bending energy, consider a filament
segment of length lc (lc = π/2ρ [25]) which rotates by α/2
at both ends, allowing adhesion with contacting filaments at
both ends. The bending energy stored is ub = Ef If α2/2lc.
The work performed against friction at contact points along
the filament is the fiction force, Ff , assumed to be identical
at all contacts, times the number of contacts, ∼L0/2lc, and
times the relative sliding distance of the two filaments required
by the rotation at contact points: wf ∼ L0Ff α2. Therefore,
the average of the sum of the bending energy and work per
filament is

ūb + w̄f = Ef If

L0
[a(ρL0)2 + bρL0�f ]α2, (1)

where a and b are coefficients of order unity and �f =
Ff L2

0/Ef If represents the contribution of inter-filament fric-
tion. For bundling to proceed, the energy gain per filament
γL0y/L0 must be larger than the energy stored and dissipated.
Treating the normalized mean sticking length per filament,
y/L0, as a constant smaller than 1, the condition for the onset
of system self-organization becomes

� > a′(ρL0)2 + b′ρL0�f . (2)

The relation � ∼ (ρL0)2 corresponding to the no friction
case (�f = 0) is shown in Fig. 3 as the red line bounding
above the domain labeled “locked” and in Fig. 2 as the surface
separating locked and evolving structures. The crosses shown
in Figs. 2 and 3 represent simulated configurations that remain
locked in the initial, “as-deposited” state (�f = 0).

The upper region of the map in Fig. 3 corresponds to
evolving structures. At low ρL0 the network disintegrates,
while self-organized networks of bundles form at larger ρL0.
The boundary between these two regimes cannot be predicted
analytically and is defined approximately based on simulation
results. Models with �f = 0 and various sets of parameters
are considered and are evolved until stabilization or disinte-
gration. These cases are shown in Figs. 2 and 3 with symbols
indicating the final state of the system: open circles and filled
squares correspond to disintegrating and cellular structures,
respectively. The side panels of Fig. 3 show examples of each
structure type.

Increasing the fiber length L0 moves any point in the
map parallel to the boundary between locked and evolving

structures, into the cellular range. Increasing the density ρ at
constant L0 moves the point to the right. Therefore, cellular
structures can be obtained at given γ by working with filaments
of smaller diameter and larger length, while keeping friction
to a minimum.

The results in Fig. 3 apply to a number of nanofiber systems
in which adhesion is important. The vertical axis parameter �

refers to the fiber properties, while the horizontal axis param-
eter ρL0 refers to the network. Keeping ρ and L0 arbitrary, it
is only possible to compare material systems based on their
LEC; note that � ∼ L−2

EC and LEC = √
Ef If /γ . Parameter γ

was measured [30] for pairs of double wall carbon nanotubes
of 2.2 nm diameter to the 1.7 nN. Estimates for hydroxyl
functionalized CNTs and for carbonyl functionalized CNTs are
0.13 nN and 0.24 nN, respectively [30]. The bending rigidity
of CNTs does not depend strongly on chirality, but varies
significantly with the nanotube diameter. For a diameter of
2.2 nm, Ef If ≈ 880 nN nm2, while for single wall nanotubes
of 0.4 nm diameter, which are circular in cross-section,Ef If ≈
160 nN nm2 [31]. These values lead to LEC in the range 20 to
40 nm. This very small value of LEC indicates strong adhesion,
which is expected for CNT-CNT interaction. Another example
is provided by microtubules for which the intertube adhesion
was measured function of the ionic strength of the solution
to be in the range 2 × 10−5 to 17 × 10−5 nN [32]. With
Ef If = 2 × 104 nN nm2 [33], LEC results in the range 10 to
30 μm.

We observe that cellular structures stop evolving once
triangles of fiber bundles form at all cell nodes [Figs. 1(b)
and 1(f)]. These resemble the Plateau triangles known in the
physics of foams [34]. Plateau triangles form at each junction of
three cell walls in the foam, have curvilinear triangular section
and insure the stability of the foam. While Plateau triangles are
stabilized by surface tension, the triangular features discussed
here are stabilized by the interplay of adhesion and bending.

Consider the triangular structure shown in Fig. 4(a) which
represents the node connecting filament bundles AA′, BB′,
and CC′, belonging to a larger network. The structure is
characterized by the number of filaments in each incoming
bundle, n1, n2, and n3, and the three angles, α1, α2, and α3. This
structure stores adhesion and bending energy. The axial energy
of the filaments vanishes since these are free to relax in the axial
direction. The bending energy is stored only in segments AC,
AB, and BC. All segments store adhesion energy.

The adhesion energy in a bundle of n filaments per unit
length of the bundle is given by Ea = γ nc(n), where nc is the
number of binary contacts in the bundle. Harborth [35] has
shown that the maximum number of contacts in a packing of
n congruent circles is nc(n) = 3n − √

12n − 3. The bending
rigidity of a bundle of n filaments is nEf If , since fibers are
free to slide axially.

Several observations can be made by inspection. Bundles
AB, BC, and AC forming the triangle are loaded in pure
bending and hence are arcs of circle. Since these circles must
be tangent to each other at A, B and C, segments OA, OB and
OC are also of equal length. If bundles AA′, BB′, and CC′ are
straight, the bending moments loading the three edges of the
triangle are equal.

This is a prestressed, self-equilibrated structure which can
be perturbed only by bending moments applied at A′, B′, and
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FIG. 4. (a) Triangular structure forming the node connecting bun-
dles AA′, BB′, and CC′ of a larger network. (b) Structure containing
two triangles isolated from a larger cellular network.

C′. If segments AA′, BB′, and CC′ are straight, no driving force
for the evolution of the triangle exists. In all cellular structures
simulated to full relaxation the cell walls become straight
[Fig. 1(b)]. Hence, the network stores strain energy only in
triangles. Figure 4(b) shows a pair of such triangles isolated
from one of the cellular structures. To demonstrate its stability,
this structure was fully relaxed while applying no tractions
at the free ends of bundles, and its configuration remained
essentially unchanged. This can be understood considering that
the structure in Fig. 4(b) is not loaded by the rest of the network
when connected to the structure to which it belongs.

Another possible evolution mode is fiber diffusion along
its contour. Reptation is driven here only by the difference
in chemical potential between the filament ends. Consider
a filament diffusing from B′ to C′, which would lead to
the variation of n2 and n3 and hence to the change of the
triangle shape. The filament has to bend in region BC, which
represents a significant energetic barrier for reptation. Further-
more, mechanically forcing two triangles against each other
leads to mutual distortion which requires substantial energy
expenditure. We conclude that cellular networks are stabilized
by such triangles and, once the cell walls become straight, the
entire network stops evolving.

B. Effect of interfiber friction

Interfiber friction has a marked effect on the boundary
separating locked and evolving structures. This boundary is
defined by simulations in which the initial stages of system
evolution are observed. The as-deposited structure is allowed
to evolve under the action of adhesion, and the angles between
crossing fibers are monitored. If the relative position of fibers
at contact points does not change, the system is considered
“locked.” The boundary shown by the continuous red line in

FIG. 5. Data points defining the position of the boundary between
locked and evolving structures for cases with interfiber friction. For
each of the three indicated values of ρL0, the three columns of
data correspond to three values of (εf + ε0)/ε0, and each defines a
boundary shown by the dashed lines. The blue square data point at
the upper end of each column shows an evolving structure.

Fig. 3 corresponds to the case with no friction, �f = 0, i.e.,
εf = 0. The crosses in Fig. 3 indicate cases with εf = 0, which
were simulated and correspond to locked configurations.

For cases with �f > 0, i.e., εf > 0, the boundary moves
up; these boundaries are shown with dashed lines in Fig. 3
for several values of εf . Figure 5 shows the simulation data
points defining the position of the dashed lines in Fig. 3.
Three columns of data points are shown for each of three ρL0

values. These correspond to (εf + ε0)/ε0 = 1.7, 2.5, 3.9 and
define the blue, red, and green dashed boundaries in Fig. 5,
respectively. The columns labeled with the same ρL0 value
are shifted horizontally for clarity. The blue square data point
at the top of each column represents an evolving structure
corresponding to the respective ρL0 and (εf + ε0)/ε0. Hence,
the dashed lines are positioned between the uppermost cross
and the corresponding square data point of each column.

For �f > 0, the boundary is represented by Eq. (2): � =
a′(ρL0)2 + b′ρL0�f . Rewriting this expression by using the
definition of �f , leads to

log10� = log10a
′ + 2log10ρL0 + log10

[
1 + c′ εf

ε0

�

ρL0

]
,

(3)

with c′ being a numerical coefficient. The last term in
Eq. (3), D = log10[1 + c′ εf

ε0

�
ρL0

], represents the deviation of
the dashed lines in Fig. 5 from the continuous red line (repre-
senting �f = 0) for cases with εf > 0. For small deviations,
D ≈ c′ εf

ε0

�
ρL0

≈ a′c′ εf

ε0
ρL0, which indicates that D ∼ εf /ε0

and D ∼ ρL0, which agrees with the numerical results shown
in Fig. 5.

The analysis indicated that interfilament friction restricts
the onset of system evolution. Since �f ∼ L2

0, increasing the
filament length at constant Ff (or εf ) moves this boundary
up. This effect is strong and may effectively lock realistic
structures in the as-deposited state even at small Ff values.

032506-5



A. SENGAB AND R. C. PICU PHYSICAL REVIEW E 97, 032506 (2018)

IV. CONCLUSIONS

Similar to elastocapillarity, adhesion drives the self-
organization of filamentary structures. In this work we study
the structures that result from this process and the effect of
interfiber friction on self-organization. We observe that if
adhesion is weak or/and the bending rigidity of fibers is large
(large elastocapillarity length), the fibrous structure remains
locked in the initial configuration. Strong adhesion and/or
small fiber bending rigidity promote system evolution. The
boundary between locked and evolving structures is defined
in terms of a parameter quantifying the inter-fiber friction.
Friction expands the parametric domain of locked structures.
Evolving structures either disintegrate or stabilize in the form

of cellular networks of fiber bundles. This new type of network
is subisostatic and is stabilized by triangular features that form
at all network nodes. This stabilization mechanism is purely
adhesive in nature and does not require interfiber friction.
These results provide a broad physical picture relevant for
a large number of fibrous materials ranging from carbon
nanotube networks to biological structures.
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