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Star polymers as unit cells for coarse-graining cross-linked networks
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Reducing the complexity of cross-linked polymer networks by preserving their main macroscale properties is
key to understanding them, and a crucial issue is to relate individual properties of the polymer constituents to
those of the reduced network. Here we study polymer networks in a good solvent, by considering star polymers
as their unit elements, and first quantify the interaction between their centers of masses. We then reduce the
complexity of a network by replacing sets of its bridged star polymers by equivalent effective soft particles with
dense cores. Our coarse graining allows us to approximate complex polymer networks by much simpler ones,
keeping their relevant mechanical properties, as illustrated in computer experiments.
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I. INTRODUCTION

One of the most difficult hurdles in the computer in-
vestigation of cross-linked polymer networks, i.e., gels, is,
understandably, the prohibitively long simulation time due
to a large amount of particles (monomers) in the system.
Explicit simulations are currently limited by nanogels with
low degree of polymerization (N � 15) [1,2]. Larger systems,
even microgels, represent a challenge or become impossible
to deal with. A promising way to attack this problem is to
coarse-grain the complex network by mapping it into a simpler
one, i.e., to reduce the number of particles while preserving
macroscale properties. However, general principles of such a
coarse-graining have not yet been established. Some of the
existing methods are currently capable to simulate only a part
of a network in a periodic box [3–6]. Others do not relate
the collective response of large-scale networks to individual
properties of their polymer constituents [7].

The cross-linked network represents an aggregate of low-
branched star polymers (SPs) connected by bridges, so that the
pair interaction of network SPs could potentially be used to
construct a coarse-graining scheme. The interaction between
SPs has been studied by several groups. Most of this work
focused on highly branched stars with large “dense” central
core. It has been found that at short separations the potential
of mean force shows a logarithmic decay and scales with func-
tionality as f 3/2 [8]. Later, a potential of mean force between
two SPs that combines a short range logarithmic repulsion
with a soft Yukawa-type tail has been proposed and extensively
tested [9]. The body of work investigating low-branched SPs
remains rather scarce. A few authors made important remarks
that properties of low-branched SPs could differ from those of
highly branched [10–12]. Thus, when f � 10 the monomer
density around the central bead is no longer described by the
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blob model, and the Yukawa-type repulsion is not observed
[10,13]. We should note that contrary to interacting linear
chains, where coordinates associated with the centers of mass
are normally employed [14–17], previous studies of SPs have
commonly used coordinates related to central beads [9,10].
Although some investigations of low-branched stars [13,18]
have used the center of mass approach, they did not attempt
to predict star interaction energies. Finally, we note that prior
work concerned an interaction of SPs in solutions only and not
attempted to calculate it for SPs, constituting the network.

In this paper we propose a procedure to coarse-grain poly-
mer networks in a good solvent, based on the idea of mapping
their low-branched SPs to effective particles. Our concept is
based on the analysis of interactions between two network SPs,
by using their centers of mass as effective coordinates (see
Fig. 1). We obtain expressions for potentials of mean force,
which define a coarse-grained model, and validate them by
explicit (monomer-resolved) simulations. Finally, we study a
mechanical deformation of the reduced polymer networks and
show that the coarse-graining provides a highly representative
approximation of the initial network, by dramatically reducing
an amount of particles in simulations.

Our paper is organized as follows: Section II describes and
validates our theory for ideal networks composed of identical
SPs, which have received much attention in recent years
[19,20]. The power of our approach is illustrated in Sec. III,
where we study an isotropic extension and compression of
ideal networks. In Sec. IV we discuss the extension of our
coarse-grained model to random networks composed of SPs of
different functionalities, and consider their uniaxial extension
and compression. We conclude in Sec. V with a discussion
of our results and their possible extensions to more complex
systems. Appendix A contains the derivation of the equation
that determines root mean-squared deviation of the central bead
from the SP’s center of mass. The details of explicit Monte
Carlo (MC) simulations employed to measure the potential of
mean force are given in Appendix B. In Appendix C we derive
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FIG. 1. Sketch of interacting star polymers of Rg separated
by distance d . Explicit bead-spring models are shown at the top,
and coarse-grained models—at the bottom. Gray and white circles
indicate central beads, centers of mass, and “dense” cores.

the equation, that determines the probability of collision of
SP’s dense cores. Appendix D describes explicit and coarse-
grained molecular dynamics (MD) simulations of cross-linked
networks.

II. INTERACTIONS OF IDENTICAL STAR POLYMERS

To show the basic principles of the approach in compact
terms we consider two interacting identical SPs of fixed (to
arbitrary values) f and N in a good solvent. Although the SPs
are normally defined for f � 3, we also consider a special
case of f = 2, which corresponds to a linear polymer chain of
a degree of polymerisation 2N .

A. The choice of effective coordinates

We first justify the choice of our effective coordinates.
Note that the time average location of the center of mass of
an SP does of course coincide with that of the central bead,
but its instantaneous position deviates from the central bead
location (see Appendix A). This can be illustrated by explicit
(with monomers of size σ ) MC simulations of single SPs with
different f and N (see Appendix B for details). The simulation
data plotted in Fig. 2 shows discernible deviations of a central
bead from the center of mass, which, however, tend to decrease
with f . A corollary from this is that the mean-squared distance
�2 between the center of mass and the core is finite. Indeed,

FIG. 2. Simulation snapshots of star polymers with N = 33 and
f = 2,4,6,8. Large beads indicate the centers of mass. White beads
are the central cores.
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FIG. 3. Radii of gyration obtained in MC simulations for star
polymers of N = 17 (circles), 32 (squares), and 49 (triangles).
Symbols from left to right show data for f from 2 to 8. Dashed line
corresponds to the scaling relationship Rg ∝ N 3/5f 1/5.

one can show using mean-field arguments that � scales with
f as

� = Af −7/10Rg, (1)

which indicates that � could be comparable with the radii
of gyration, Rg . To prove this we have first measured Rg

in simulations and plotted it in Fig. 3. One can see that our
data agrees well with the scaling law, Rg ∝ Nνf 1/5 (with the
Flory exponent ν � 3/5), suggested earlier for SPs in a good
solvent [21]. We have then obtained the values of � (see Fig. 4)
and fitted the simulation data to Eq. (1), taking A as a fitting
parameter. The theoretical curve is included in Fig. 4 and the
value A = 1.07 has been obtained from fitting. This is close to
A = 2−2/5√11/5 � 1.12 predicted by our mean-field theory
(see Appendix A). These results demonstrate that the central
bead fluctuates around the center of mass, which is especially
pronounced at low f , so that below we use the centers of mass
as effective coordinates.

B. Interaction of star polymers in solutions

Let us now investigate the effect of functionality on the
value of the interaction free energy F1 of two SPs as a function
of separation d between their centers of mass. This has been
calculated by using the histogram method with a bias potential
to ensure efficient sampling of configuration space [22,23] as
described in Appendix B. In Fig. 5 we plot simulation results
obtained at fixed N = 17 and f varying from 2 to 8. The data
show that the two SPs always repel each other, and that the
value of F1 increases with f . Remarkably, it remains finite at
zero separation, i.e., when centers of mass overlap, and there is
no manifestation of logarithmic divergence at d = 0 predicted
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FIG. 4. Root mean-squared distance between the center of mass
and the central bead of a star polymer of functionality f = 2–8 ob-
tained in MC simulations. Circles show simulation data for N = 17;
squares for N = 32; and triangles for N = 49. Dashed line plots
predictions of Eq. (1).
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FIG. 5. Interaction potentials F1 between star polymers of N =
17 obtained in simulations (symbols). From top to bottom f = 8, 6,
4, 2. Dashed curves show F ss predicted by Eq. (3), solid curves are
fits to Eq. (6).

when central beads are chosen as effective coordinates [24].
We note that the repulsion of SPs in our case resembles that of
linear chains [16].

To interpret the simulation data we first consider the long-
range or “soft-sphere” part of interaction, which is attributed to
SP’s coronas. In the case of linear chains, f = 2, the interaction
free energy can be represented by a Gaussian function, F1 =
F ss = F0 exp (−3d2/4R2

g) [25], with a range of the order of
Rg [15,16] and F0 � 1.53kBT found theoretically [17]. Note,
however, that some simulations have deduced F0 � 1.9kBT

[14,16]. The scaling expression for F0 in the case of SPs
can be estimated using average number of contacts between
monomers, corrected for their correlations, as [26,27]

F0

kBT
∝ ρV (ρa3)1/(3ν−1) � f 9/4N9/4

R
15/4
g

, (2)

where we have used V � R3
g for the overlap volume and

ρ ∝ f N/R3
g for monomer density. By substituting scaling

expressions for Rg into Eq. (2) we obtain F0 ∝ f 3/2 and the
“soft-sphere” interaction free energy becomes similar to known
for interacting linear polymers:

F ss = F0 exp

(
− 3d2

4R2
g

)
, (3)

but includes F0, which depends on f . Note, however, that F0

does not depend on N , which is similar to results for linear
polymers [16,27].

Calculations made using Eq. (3) with F0 taken as adjustable
parameters for the long-range tails are included in Fig. 5. We
see that simulation data at large d are indeed well described by a
Gaussian repulsion with Rg found above (see Fig. 3). To verify
the scaling relationship for F0 = F ss(0) we now plot it in Fig. 6
as a function of f 3/2. Also included are additional simulation
data for N = 25 and 49. These data allows us to deduce the
universal value of F0 = (0.48 ± 0.03)f 3/2kBT , which is valid
for all f and does not depend on N . Figure 6 also includes
the SPs interaction free energy, F1, obtained from simulation
data at d = 0. One can conclude that for all N deviations of
F (0) from F0 are negligibly small when f = 2 and 3, but they
become discernible at larger functionalities, and their values
increase with f . The discrepancy is always in the direction of
larger potential than F0.

We remark that deviations of F1 from F ss given by Eq. (3)
are observed only at small d as seen yet in Fig. 5. An
explanation can be obtained if we invoke the short-range
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FIG. 6. Amplitude of the “soft-sphere” (open symbols) and total
(closed symbols) potential as a function of f 3/2 for N = 17 (circles),
25 (squares), and 49 (triangles). Solid and dashed lines are added to
guide the eye.

repulsion emerging when SPs strongly overlap, so that the
effective interaction between their “dense” cores becomes
important. For simplicity we model the entropic short-range
logarithmic interaction of the cores [8] by describing them as
“hard spheres” of an effective radius σc.

Then each “dense” core may be seen as a Brownian particle
of diffusion coefficient D fluctuating around the center of mass
with zero mean, but finite variance, �2, see Eq. (4). The in-
teraction free energy is then given by F hs = −kBT ln(1 − P ),
where P (t,d) is the probability for a collision of two dense
cores, initially separated by distance d, to occur after time t

given by 6Dt = �2. Thereby, in F hs we exclude configurations
where cores approach closer than 2σc. The solution for P may
be found by considering properties of diffusing particles (see
Appendix C for details of derivation):

P = 1

2
erf(y−) − 1

2
erf(y+) +

√
�2

3πd2

(
e−y2

+ − e−y2
−
)
, (4)

where y± =
√

3
d ± 2σc

2�
. For small f or for σc/� � 1 the

interaction free energy of “dense” cores reduces to a Gaussian
function:

F hs = kBT
4
√

3√
π

exp

(
− 3d2

4�2

)(
σc

�

)3

. (5)

We remark that although the cores are represented by “hard
spheres,” their interaction free energy may still be finite at
d = 0. In our simulations we found that σc/� � Bf , so it
is independent on N . Here B is constant for all f,N which
was found to be equal to � 0.16 ± 0.02. This implies that σc

scales as f 1/2, which is in agreement with prior work [21]. We
also note that with our parameters for f = 2 we have σc/� �
0.3, so that at d = 0 this gives F hs � 0.1kBT , which is much
smaller thanF0 and can safely be neglected. Equation (5) can be
used to describe SPs up to f = 4. Finally, in the limit of large f

our Eq. (4) reduces to the “hard-sphere” interaction potential.
We should like to stress that unlike logarithmic repulsion, F hs

vanishes at large d, so that we do not need to adjust the cut-
off distance for a short-range interaction as it has been done
before [9].

Now combining both soft-sphere and hard-sphere repul-
sions we can propose the repulsive potential of mean force for
two SPs

F1 = F ss + F hs (6)
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FIG. 7. Interaction potential of two SPs connected by a bridge
of 2N = 34 (symbols). From top to bottom f = 8,6, and 4. Solid
curve shows calculations with Eq. (7). Dashed curves plots bridging
attraction given by Eq. (8).

with F ss and F hs defined by Eqs.(3) and (5). Theoretical curves
calculated with Eq. (6) are included in Fig. 5. We see that our
model is in excellent agreement with simulation data for all d.

C. Interaction of star polymers in networks

We finally turn to two SPs as a network segment. The
important difference from the solutions is the bridging of SPs,
which should give rise to an additional attraction between them.
This bridging attraction, Fb, should be added to Eq. (6) to give

F2 = F ss + F hs + Fb. (7)

As long as d � 2Nσ , Fb can be can be estimated as the free
energy of stretching of a linear chain

Fb = kd2

2
, (8)

where k = 3kBT /R2
F with RF � (2N )νσ [28,29], but note that

for very large d � Rg one has to define Fb differently [30,31].
We also stress that since the bridging attraction is long-range,
d � �. Therefore, this contribution does not depend on the
choice of coordinates.

To verify the model we have simulated the potentials of
mean force between two SPs off varying from 2 to 8 connected
via a bridge of fixed 2N = 34. The values of F obtained
in simulations are plotted in Fig. 7. This plot also includes
theoretical curves calculated with Eq. (7). The calculations are
made using Rg shown in Fig. 3 and the ratio R2

g/R
2
F � 0.157

[32] leading to k � 1.22N−6/5kBT /σ 2. In other words, there
are no adjustable parameters in the theoretical curves. We see
that the fits are very good for all d, which confirms the validity
of our model. Another important conclusion from Fig. 7 is that
F2 has a minimum at d0 � 2Rg

√
ln(3F0/2kR2

g)/
√

3, which
corresponds to the equilibrium position of two SPs. Therefore,
they may be seen as an effective spring of a constant keff �
2k ln(3F0/2kR2

g). To verify the model for k we have made
simulations for SPs of f = 2 and 4, and N varying from 17 to
49, and found that results fully confirm our theory (see Fig. 8).

III. COARSE-GRAINING OF IDEAL
POLYMER NETWORKS

Altogether the above results suggest that a polymer network
segments (SPs) can be effectively represented by soft Gaussian
spheres with “hard” cores connected by springs. To prove that
interaction potentials of two SPs indeed define an efficient
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FIG. 8. Effective stiffness of a bridge as a function of N (varied
from 17 to 49) obtained in simulations. Circles show results for f = 4;
triangles for f = 2. Dashed line plots predictions of Eq. (8) in the
main text.

coarse-grained model, below we compare elastic properties
of an explicit SP network with that of an ideal coarse-grained
network. MD simulations of a deformed ideal cross-linked net-
work is performed using an open-source package ESPResSo
[33]. Below we will only present our main results, and the
details of explicit and coarse-grained simulation models can
be found in Appendix D.

Specifically, we study an isotropic deformation of a cubic
network constituted of SPs with f = 6 connected by bridges
of 2N = 34 as shown in Fig. 9(a). We measure an excess
pressure, �, due to compression and extension as a function of
the size of the unit cell L. We also perform the coarse-grained
simulations, where we replace the network SPs by effective
spheres interacting with each other with potential F2, which
reduces the number of particles in f N times and therefore
significantly accelerates calculations. The detailed comparison
between the explicit simulation results and the coarse-graining
approach is then shown in Fig. 10. A general conclusion
from this plot is that the coarse-graining data are in excellent
agreement with explicit simulation results. Note that one can
also roughly evaluate pressure theoretically as

� = −f

2
dF2/dV, (9)

i.e., by neglecting interactions of SPs, which are not connected
by bridges. Here f/2 is the number of bridges in volume
V = L3. These estimates are also included in Fig. 10, and
show that this simple theory agrees well with simulation data
for L/d0 = O(1) and larger, i.e., for stretching. However, F1

cannot be ignored in the case of compression, i.e., small L/d0.

FIG. 9. Simulation snapshots of an ideal cubic polymer network
with f = 6 (a) and of a random network with f varying from 3
to 7 (b). In both cases 2N = 34. Arrows indicate the direction of
deformation: An ideal network is subjected to an isotropic strain and
a random network is deformed along the z axis.
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FIG. 10. Excess pressure of the ideal cubic network (N = 17,
f = 6, d0 � 12.1σ ) under an isotropic deformation as a function of
L/d0. Triangles plot the results of the coarse-grained model, solid
curve is a polynomial fit shown as a guide for the eye. Circles show
the results of explicit simulations. Dashed curve shows predictions
of Eq. (9).

IV. TOWARD THE DESCRIPTION AND
COARSE-GRAINING OF POLYDISPERSE NETWORKS

In the preceding sections, we have proposed and validated
an efficient procedure to coarse-grain polymer networks. How-
ever, its general principles have been formulated assuming
an ideal network composed of identical SPs and by studying
its isotropic deformations. Although further extensions of our
model to various complex situations is beyond the scope of the
present paper, we illustrate how such extensions could be made
by discussing the case of a random network constituted of SPs
of a fixed N , but various f . In other words, we assume that
two, ith and j th, interacting network SPs have functionalities
fi �= fj . We will also assume that fi and fj are of the same
order of magnitude, which is the case of typical polymer gels.

To account for different functionalities of two interacting
SPs in such a random network, some expressions for compo-
nents of the coarse-grained potential, F2, described by Eq. (7),
have to be modified. We first recall that Fb depends on N only,
so that it remains the same for our polydisperse network of
fixed N . In contrast, F1 of our polydisperse network should
now become functions of fi and fj . Provided fi/fj = O(1),
one can generalize Eq. (2) to

F0

kBT
∝ ρiVi(ρja

3)1/(3ν−1) + ρjVj (ρia
3)1/(3ν−1)

2
,

which immediately leads to

F0

kBT
∝ fif

1/2
j + fjf

1/2
i

2
� (fifj )3/4. (10)

This value of F0 should be used in Eq. (3), which defines
F ss. Besides, R−2

g in Eq. (3) should be substituted by (R−2
g,i +

R−2
g,j )/2, which can be easily argued by considering a convolu-

tion of two Gaussian density profiles of different SPs. Finally,
in Eq. (5), which describes F hs, �2 should be substituted by
(�2

i + �2
j )/2, and σc should be replaced by (σc,i + σc,j )/2.

To assess the validity of the above coarse-grained model
for a polydisperse network, we now perform simulations of an
anisotropic uniaxial compression and extension [as illustrated
in Fig. 9(b)]. We study networks constituted of SPs with
functionalities, which can take any value in the interval from 3
to 7 (see Appendix D). We first bring the system to a stress-free
state, and then stretch or compress the simulation box along
the z axis, while compressing or stretching it along x and y
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FIG. 11. Uniaxial extension and compression: zz component of
the pressure tensor as a function of Lz/d0 for a random network
composed of SPs with N = 17 and f in the interval between 3 and
7. Triangles are results of the coarse-grained model. Solid curve is a
polynomial fit added to guide the eye. Circles show results obtained
in explicit simulations.

axes to conserve the volume of the system. Figure 11 shows
the zz component of the pressure tensor �zz as a function of
the relative deformation Lz/d0 obtained by using explicit and
coarse-grained simulations. Altogether the results of explicit
and coarse-grained simulations agree very well, confirming the
validity of our model.

V. CONCLUSION

In this paper we have calculated the free interaction energy
of two identical SPs by using their centers of mass as effective
coordinates. Our analysis has led to explicit expressions for
interaction potentials of SPs of any f and N , and in the limiting
case of f = 2 recovers known results for linear polymers.
We have checked the validity of our theory by explicit MC
simulations. These potentials have provided a framework for a
coarse-graining approach, allowing one to reduce the number
of particles in simulations in f N times. The advantages of our
coarse-graining method have been illustrated by considering
an isotropic compression and extension of an ideal polymer
network.

Our approach can be extended to a more complex situation
of a network with random topology. We have illustrated a
strategy of such an extension by calculating the free interaction
energy of two SPs of the same N , but different f , which
defines a modified coarse-grained model, applicable for some
random networks. We have demonstrated that the scaling
expressions proposed for identical SPs constituting ideal
networks may indeed be applied equally to SPs of different
functionalities. In other words, interactions between SPs in
random networks obey similar scaling laws, but, according
to our analysis, some parameters in the interaction potentials
should be substituted for their effective values. The extension
of our model to a situation of a non-ideal polydisperse network
composed of SPs of different N is currently under progress
and will be published elsewhere.

Another fruitful direction could be to generalize our model
to the case of weakly charged polyelectrolyte networks, and
to employ it to study their mechanical properties. Finally, we
mention that our approach can be immediately applied to study
various properties of microgel particles.
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APPENDIX A: DEVIATIONS OF THE CENTRAL
BEAD FROM THE CENTER OF MASS

The mean-squared distance between the center of mass of
a star and its central bead is defined as

�2 = 〈rc · rc〉, (A1)

where rc is the instantaneous position of the center of mass
relative to the central bead. This choice of the reference point
implies that 〈rc〉 = 0.

We can express rc using the positions of the SP’s arms’
centers of mass, rc,i,

rc = 1

f N

f∑
j=1

N∑
i=1

rij =
f∑

j=1

rc,j

f
. (A2)

Note that f N is the total number of monomers in a star. By
substituting Eq. (A2) into Eq. (A1) and taking the statistical
average we find

�2 � 1

f 2

f∑
j=0

〈rc,j · rc,j〉. (A3)

Here we have assumed that rc,j do not correlate with each other
so that terms 〈rc,jrc,i〉 vanish. Terms 〈rc,j · rc,j〉 corresponding
to different arms are statistically equivalent so that the sum
over j can be evaluated as

�2 � 1

f
〈rc,j · rc,j〉. (A4)

Here we have related � to statistical properties of an individual
arm, i.e., a linear polymer N monomers long. From scaling
arguments we may conclude that 〈rc,j · rc,j〉 ∝ R2

g,j , where
Rg,j is the radius of gyration of j th arm. Below we obtain
the exact relation between the gyration radius of a star and �.

By definition, the radius of gyration of j th arm is related to
the position of its center of mass as

R2
g,j = 1

N

N∑
i=1

〈(rij − rc,j)
2〉 (A5)

= −〈rc,j · rc,j 〉 + 1

N

N∑
i=1

〈rij · rij 〉. (A6)

We note that 〈rij · rij〉 = σ 2i2ν and convert the sum in Eq. (A6)
into an integral:

1

N

N∑
i=1

〈rij · rij 〉 = 1

N

∫ N

i=0
σ 2i6/5di = 5

11
σ 2N6/5. (A7)

The relation between the mean-squared end-to-end distance,
σ 2N6/5, and the radius of gyration of a linear polymer can
be calculated using R2

g,j = 1
2N2

∑
ik(rij − rkj )2 and replacing

the sum by an integral as well. This gives R2
g,j = 25

176σ 2N6/5,

which is close to values obtained earlier in MC simulations
[32,34],

R2
g,j = (0.157 ± 0.02)σ 2N6/5. (A8)

Now we get 〈rc,arm · rc,arm〉 = 11
5 R2

g,j and substitute this ex-
pression into Eq. (A4) to obtain

�2 = 11

5f
Rg,j . (A9)

We can now divide this by the radius of gyration of a star
Rg = Rg,j (2)3/5(f/2)1/5, where Rg,j is the gyration radius of
a single arm, to get

�/Rg =
√

11

5
2−2/5f −7/10 � 1.12f −7/10. (A10)

Note that similar analysis using Eq. (A8) leads to

�/Rg � 1.044f −7/10. (A11)

APPENDIX B: MC SIMULATIONS

We use explicit (monomer-resolved) model of SPs with f

arms. Each arm is made ofN Lennard-Jones beads (monomers)
subsequently connected by simple harmonic springs:

Usp = ksp(r − r0)2

2
. (B1)

One end of each arm is connected to the central bead
while the other remains free. Nonbonded interactions between
monomers are implemented via the Lennard-Jones potential:

ULJ(r) =
{

4εLJ
[(

σ
r

)12 − (
σ
r

)6]
, r < 3σ,

0, r � 3σ.
(B2)

We set ksp = 2.0kBT /σ 2, εLJ = 0.05kBT , r0 = 1.0σ and
vary N from 17 to 49. These parameters correspond to the good
solvent regime.

The initial conformations of SP’s arms are generated by
performing f random walks that consist of N steps, the length
of each step is 1.12σ . Each random walk is started from the
central bead and at each step a monomer is placed. The initial
conformation is followed by at least 300 × f N equilibration
steps. Physical properties of the system are measured after
such equilibration and then averaged over at least 50 000
independent conformations. We employ two types of nonlocal
moves (each with probability 5%) to accelerate the sampling
of the configuration space: we either pivot a randomly chosen
arm around a bead or displace a SP as a whole by 1.0σ in
random direction. In all other cases we perform single-bead
local moves with 0.5σ . We follow Metropolis algorithm with
step acceptance probability given by min(1,e−�U/kBT ), where
�U is the change in the potential energy of the system after a
trial move. For the free-energy measurements the total potential
energy of the system was modified to include the bias potential
U → U − UB(d), which ensures efficient sampling of the
configuration space.
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The interaction free energy of two SPs is found using the
histogram method [22,23]. During the simulation we calculate
average radial distribution function (rdf) for the centers of mass
for two stars, g(d). The (unbiased) interaction free energy is
then given by Boltzmann inversion as

F (d) = −kBT ln g′(d) + Ub(d), (B3)

where g′(d) is the biased rdf and UB(d) is the bias potential.
For calculating F1 we chose

Ub(d) = − ln 4πd2 + F0f
3/2 exp

(
− 3d2

4R2
g

)
. (B4)

A histogram is sampled in the range d = 0–35σ with a
resolution of 0.2–0.35σ per bin. To obtain F2 we perform the
same simulations as described above, but connect two SPs via
two of their outermost beads. The bias potential in this case
was chosen to be

UB(d) = − ln 4πd2 + F0f
3/2 exp

(
− 3d2

4R2
g

)
+ 1

2
kd2. (B5)

We verify the model for the bridge potential, Eq. (8), by
calculating the effective potential F2 between centers of mass
of two bridged stars of f = 4 and N varying from 17 to 49.
We then obtain values of k by employing Eq. (7) and taking
k as the only adjustable parameter. The results are shown in
Fig. 8. We also calculated the effective potential between the
ends of a linear chain of 2N monomers, which corresponds
to Fb alone. The deduced values of stiffness of linear chains
agree well with the stiffness of a bridge between two stars and
confirm the model described by Eq. (8).

APPENDIX C: PROBABILITY OF COLLISION
OF HARD-SPHERE BROWNIAN PARTICLES

A short-range contribution to the free energy of interaction
between two SPs is given by F hs = −kBT ln Z(d)/Z(∞),
where Z(d) is the number of allowed configurations of two
dense cores in a situation when centers of mass of SPs are
separated by d. To estimate Z(d), we exclude from Z(∞)
all the forbidden configurations, i.e., those that lead to an
overlap of two cores, Z(d) = Z(∞) − Zoverlap(d). Thus, the
free energy can be written as F hs = −kBT ln(1 − P ), where
P = Zoverlap/Z(∞) is the probability that two cores overlap,
i.e., the distance between them is less than 2σc. We can now
find P as a function of d and �.

Due to the statistical properties of SPs’ dense cores de-
scribed in Appendix A, we treat them as Brownian particles
where �2 defines a characteristic time scale, hence we may
reduce the task of finding P to a single-particle diffusion
problem. To achieve that, we note that the probability of two
Brownian particles of radius σc overlapping after the time t

is equal to that of a pointlike Brownian particle overlapping
with a stationary one of radius 2σc after a time 2t . To calculate
P , we locate the stationary particle at a point {0,0,d} and the
pointlike Brownian particle at {0,0,0}. The probability density
of a pointlike Brownian particle being at {x,y,z} after a time

f

0.0

0.5

1.0

1.5

σ
c/

Δ

FIG. 12. The ratio of the effective core size to � as a function of
f obtained in simulations (symbols) by using N = 17 (circles), 25
(squares), and 49 (triangles). Dashed line shows σc/� = 0.16f .

interval of 2t is given by [35]

p(x,y,z,2t) = exp
( − x2+y2+z2

8Dt

)
(8πDt)3/2

. (C1)

The probability of overlap, P (t,d), is the probability that the
pointlike Brownian particle will be at

√
x2 + y2 + (z − d)2 �

2σc at time 2t :

P (t,d) =
∫∫∫

√
x2+y2+(z−d)2�2σc

dxdydzp(x,y,z,2t). (C2)

After shifting the variable z → z + d and rewriting this ex-
pression in spherical coordinates it becomes

P (t,d) =
∫ R

0
dr

∫ π

0
dθ

2πr2 sin θ

(8πDt)3/2
e− r2+2rd cos θ+d2

8Dt . (C3)

We can evaluate the integral and substitute 6Dt for �2 to obtain

P = 1

2
erf(y−) − 1

2
erf(y+) +

√
�2

3πd2

(
e−y2

+ − e−y2
−
)
, (C4)

where y± =
√

3
2

d±2σc

�
. Note that this task is different from a

commonly considered case of diffusion limited aggregation
[36,37] or first passage problems [38,39] because we evaluate
whether the particles overlap after a certain time 2t , while any
collisions before 2t are allowed to take place.

To prove the dependence of the effective core size σc on
f and N , we fit the free energies of interaction of two SPs,
F (d), using Eq. (6) with two adjustable parameters F0 and σc.
In Fig. 12 we plot the ratio σc/� as a function of f for N =
17, 25, 49 and f = 2–8. We find that the simulation data agrees
well with the scaling σc/� = Bf , where we find B = 0.16 ±
0.02. This single value of B is chosen for all calculations of
the free energies of interaction and is not further used as an
adjustable parameter.

APPENDIX D: EXPLICIT AND COARSE-GRAINED
MD SIMULATIONS OF POLYMER NETWORKS

We measure the pressure in a polymer network upon its
deformation in coarse-grained and explicit MD computer
simulations. In the case of an infinite explicit network we
simulate 23 SPs of f = 6 connected by bridges of 2N = 34.
SPs are connected in a cubic lattice with the corresponding
periodic images. The volume of the network is varied by
equally changing each side of the simulation cell: L → λL.
Particles’ coordinates are also rescaled in accordance with
xi → λxi,yi → λyi,zi → λzi .
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Initially, the network is set up in a stretched state with the
box size L/d0 = 3.0, which is then sequentially reduced to
L/d0 = 0.75 in 100 volume reduction steps. After each volume
reduction step the system is equilibrated for at least 3×104 MD
steps. The MD time step is set as �t = 0.001

√
mσ 2/kBT ,

where m is the monomer mass.
The random networks are prepared using the following

sequence: we randomly place 64 junction beads in a box of
size L/d0 = 3.0 and randomly designate a functionality fi ,
varied from 3 to 7, to ith bead. After that, for each bead
we choose fi closest neighbors (including virtual images)
and connect them via bridges of 2N = 34 monomers. Due
to inherent randomness this algorithm can produce networks
that are too loose, with periodicity preserved only by a few
subchains, hence some selection technique is in order. For
the sake of simplicity we view each generated network as
a non-periodic graph and select only those configurations,
that are k-connected with k = 3, and have minimal radius, to
ensure that our networks are as branched as possible. Using
these criteria, we select approximately 300 configurations out
of the initial 4000, and consequently choose three networks
at random for the simulation of anisotropic compression and
extension. These networks are initially equilibrated and then
brought to a stress-free state by rescaling the size of the
simulation box. Then the box is stretched along z axis to the
value of Lz/d0 = 2.5 at a constant volume (meaning that Lx

and Ly are rescaled accordingly) and gradually compressed
along z up to Lz/d0 = 0.2, again, keeping the volume the same.

The pressure tensor is calculated using the virial theorem
where we take into account pairwise interactions between
monomers:

�kl =
〈

�imiv
(k)
i v

(l)
i

V
+ 1

V

∑
i<j

f
(k)
ij r

(l)
ij

〉
t

. (D1)

Here V is volume of the simulation box, f
(k)
ij is the kth

component of the force on particle i exerted by particle

j . It is calculated using the interatomic potentials given by
Eqs. (B1)–(B2):

fij = rij

rij

∂

∂rij

[ULJ (rij ) + Usp(rij )], (D2)

where rij = rj − ri is a vector starting at the position of
particle i, rij is the distance between particles i and j , mi

and vi are the mass and velocity of particle i correspondingly.
〈...〉t denotes time average over at least 100 independent
configurations. Isotropic excess pressure is then given by
(�xx + �yy + �zz)/3.

We perform the simulation of a coarse-grained network by
replacing each star with a coarse-grained particle that interacts
with its bridged neighbours with via potential F2 and with
the rest of the particles via potential F1. The cutoff radius for
the latter interaction was chosen as rcut = 40σ . The MD time
step is set as �t = 0.001

√
Mσ 2/kBT , where M = f Nm is

the SP’s mass. The pressure tensor of a coarse-grained system
is calculated using the virial theorem theorem where pairwise
interactions between coarse-grained particles are taken into
account:

�kl = NSPkBT

V
+

〈
1

3V

∑
i<j

f (k)
ij r(l)

ij

〉
t

. (D3)

Here NSP is the number of stars in the simulation box. The
forces fij between coarse-grained particles are calculated using
potentials F1,2:

fij = rij

rij

∂

∂rij

[F1(rij ) + F2(rij )].

The number of coarse-grained particles in the unit cell is varied
in the range 23–203. Pressure is found to be independent on the
number of cubic unit cells.
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