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Polyelectrolyte brush bilayers in weak interpenetration regime: Scaling theory
and molecular dynamics simulations
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We employ molecular dynamics (MD) simulations and develop scaling theories to quantify the equilibrium
behavior of polyelectrolyte (PE) brush bilayers (BBLs) in the weakly interpenetrated regime, which is
characterized by d0 < dg < 2d0, where dg is the gap between the opposing plates where the PE brushes are
grafted and d0 is the unperturbed height of a PE brush grafted at a single plate. Scaling predictions establish that,
for the weakly interpenetrated osmotic PE BBLs δ ∼ N1/2(2 − dg/d0)1/2 (where δ is the interpenetration length
and N is the number of Kuhn segments in PE brush). MD simulations excellently recover this dependence of
δ on N and the extent of interpenetration (quantified by dg/d0). These predictions, unlike the existing studies,
establish a finite interpenetration for all values of dg/d0 as long as dg < 2d0. Finally, we quantify the monomer
and counterion concentration distributions and point out that these two distributions may quantitatively deviate
from each other at locations very close to the channel centerline, where the interpenetration-induced monomer
concentration can be significantly low.
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I. INTRODUCTION

Decorating solid-liquid interfaces by grafting them with
polymer and polyelectrolyte (PE) brushes has seen massive
applications in a myriad of disciplines ranging from nanoscale
transport and sensing to drug delivery and oil recovery [1–14].
In the brush-like configuration, the polymer and PE molecules
extend vertically away from the grafting surface attaining a
height d0 that is larger than the radius of gyration of the
polymer-PE molecule. The major focus has been studying the
behavior of these brushes grafted to a single solid-liquid inter-
face [15–21]. Intermolecular and intramolecular electrostatic
repulsions ensure a swelling of the PE brushes grafted to a
single interface—concentration of counterions and added salt
ions dictate the extent of this swelling [22–29]. An important
variant of the brush problem is the problem of polymer-PE
brush bilayers (BBLs), where the polymer-PE brushes are
grafted to two opposing surfaces having a separation of dg , such
that dg < 2d0 [30] (here d0 is the unperturbed brush height).
The main interest in studying the polymer-PE BBLs is the large
lubricity witnessed in this regime [31], embracing applications
associated with friction reduction [31–39], development of
lubricating coatings [40], and fabrication of artificial hip and
knee joints [41,42].

Domains of interest for polymer-PE BBLs are either (a)
the weak interpenetration (IP) regime (d0 < dg < 2d0) or (b)
the intermediate IP regime (where dg < d0, i.e., there is a
physical compression) [30]. Theoretical [18,43–57], numerical
[35–39,43–47,47–51,58–63], and experimental [32–34,64–
69] investigations have primarily probed the intermediate IP
regime because the BBL behavior in this regime is best suited
to understand the brush-induced lubrication behavior of human
joints, thereby motivating the development of artificial hip
and knee joints. Kreer in a recent review article wonderfully
summarizes the findings of several of these papers [30]. On

the other hand, in a recent paper we employed molecular
dynamics (MD) simulations and scaling theory to elucidate the
behavior of polymer BBLs in the weak IP regime—we report
distinctly different interpenetration and compressive behavior
as compared with those for the intermediate IP regime [70].
Unlike the polymer BBLs, as has been pointed out by Kreer
[30], much less is known about the PE BBLs. A relevant
theoretical study on the topic is by Zhulina and Rubinstein
[71], who developed scaling laws to pinpoint the configuration
of PE BBLs and the resulting lubrication behavior under
different conditions of IP. However, in this theoretical model
[71], as well as in other similar theoretical models on PE
BBLs, the focus has been primarily on intermediate and strong
IP domains and the analyses mostly neglect the excluded
volume interactions [71–73]. The neglect of the excluded
volume interactions becomes problematic either for very weak
Bjerrum length �B [i.e., �B → 0, where �B = e2/(ε0εrkBT ),
e is the electronic charge, kBT is the thermal energy, ε0

is the permittivity of free space, and εr is the relative per-
mittivity of the vacuum] representing quasineutral brushes
or for highly charged brushes (i.e., where �B > �crit

B ) [74].
Another important related study is by Kumar and Seidel [75],
who carried out MD simulations to probe the interaction of
the PE BBLs under different extent of IP—however, their
analysis could only provide a “phenomenological” scaling
match (and not a free-energy-derived scaling match) to the
MD simulation results for the IP length. Analyses have also
been conducted to quantify the compressive force for the PE
BBLs in the intermediate IP regime—the results demonstrate a
relatively acceptable match of scaling calculation results with
the experimental data for large salt concentration, while for
weak salt concentration the match is completely off [76]. On
the other hand, one witnesses distinct deviation between the
theoretical [72] and MD simulation [74,77] prediction of the
compressive forces for the PE BBLs. Furthermore, theoretical
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calculations, MD simulations, and experiments have been
carried out to quantify the shear forces for the PE BBLs in the
intermediate IP regime—issues that have been considered are
linear and nonlinear responses to small and large applied shear
(quantified in terms of the corresponding Weissenberg number)
and the resultant shear force, kinetic friction coefficient, and
the shear viscosity and their dependence on �B [67,74,77,78].

The aim of this present paper is to provide the first complete
quantitative understanding of the PE BBLs in the weak IP
regime. For this purpose, we conduct extensive MD simula-
tions and develop a scaling theory. Our theory establishes that,
for the weakly interpenetrating osmotic PE BBLs, the interpen-
etration length δ [44] is expressed as δ ∼ N1/2(2 − dg/d0)1/2.
Our MD simulation results match excellently with this scaling
prediction, elucidating this dependence of δ on N and the
degree of IP (dg/d0). Our analysis, therefore, establishes that
a finite δ is possible for all values of dg/d0 in the weak IP
regime (i.e., d0 < dg < 2d0). This is the central finding of this
paper. This result contradicts the analysis of the existing studies
on PE BBLs in weakly interpenetrated regime [71,75]—these
studies suggest that in the weak IP regime, the interpenetration
may not be at all possible [71] or possible only if dg is very
close to d0 [75]. While Zhulina and Rubinstein [71] did not
carry out any MD simulation to validate their scaling result,
Kumar and Seidel [75] merely used a “phenomenological”
theory (without any rigorous free-energy basis) to match their
MD results. On the other hand, in this paper, we conduct MD
simulations and match the results with a scaling theory that
has been rigorously derived from free-energy considerations.
Second, we obtain the distribution of the monomer and the
counterion concentrations. We consider a grafting density that
is large enough to ensure that the brushes are osmotic brushes.
Therefore, one would expect that the counterions would remain
tightly bound to the PE brushes, enforcing a very similar
monomer and counterion concentration distributions across
the channel. While such similarities are indeed witnessed for
the majority of locations across the channel, at locations very
close to the channel centerline one may witness a quantitative
deviation between the counterion and monomer distribution.
We anticipate that our detailed analysis involving MD simula-
tions and rigorous free-energy-based scaling calculations will
provide an important fundamental basis for quantifying the
properties of PE BBLs of specified degree of interpenetration.

II. SCALING LAWS

The purpose of this section is to derive the scaling laws
for the weakly interpenetrated PE BBLs. The calculations
will require knowledge of the scaling laws for a single PE
chain as well as a single noninterpenetrated PE brush under
different conditions of the PE charge. These results are well
known in the literature [22,71]. We briefly review them here in
Secs. II A–II C for the sake of continuity.

A. Scaling laws for a single polyelectrolyte chain

Here we first revisit the scaling expression for a single
PE chain in a salt-free solution. The energy of the chain
(F ) is a sum of the elastic energy Fels and the electrostatic

energy Felec [71]:

F = Fels + Felec, (1)

where

Fels ≈ kBT

(
Le

aNν

) 1
1−ν

, (2)

Felec ≈ kBT �B

(f N)2

Le

. (3)

In the above equations, Le is the end-to-end distance of the PE
chain, kBT is the thermal energy, �B = e2/(ε0εrkBT ) is the
Bjerrum length, N is the total number of Kuhn segments of
length a in the PE chain, f is the fraction of charged Kuhn
segments, and ν is the exponent, which is approximately equal
to 3/5 for a good solvent.

The equilibrium value of Le is obtained by minimizing
Eq. (1) with respect to Le, yielding:

Le ∼ aN (uf 2)
1−ν
2−ν , (4)

where

u = �B

a
= e2

aε0εrkBT
. (5)

A single PE chain can be visualized as a string of N/ge number
of blobs, wherege is the number of Kuhn segments in each blob.
Inside each blob, the PE chain segment takes the conformation
of the parent PE chain. Therefore, the end-to-end distance for
this blob-encased PE segment (this end-to-end distance is also
the diameter of the blob) is

ξe ∼ age(uf 2)
1−ν
2−ν . (6)

On the other hand, the local chain statistics (important for
length scales smaller than ξe) leads to [71]

ξe ∼ agν
e . (7)

Using Eqs. (6) and (7), we eventually obtain [71]

ξe ∼ a(uf 2)−
ν

2−ν , (8)

ge ∼ (uf 2)−
1

2−ν . (9)

We can also express ξe in terms of the monomer concentration
c (having units of 1/m3) within each blob, where

c ∼ ge

ξ 3
e

. (10)

Using Eq. (10) to replace ge in Eq. (8), we eventually obtain

ξe ∼ (ac)−1/2(uf 2)−
1−ν

4−2ν . (11)

B. Scaling laws for a single polyelectrolyte brush

We consider a grafting density σg of the grafted PE system
such that σg > σ ∗

g [where σ ∗
g ∼ 1/L2

e , with Eq. (4) expressing
Le]. Under this condition, the grafted PE molecules will form
brushes. However, the nature of these brushes (and accordingly
the brush height) will be dictated by the precise value of the
grafting density σg . In case, the σ ∗

g < σg < σosm, the grafted
PE molecules will form Pincus brushes, while if σg > σosm the
grafted PE molecules will form osmotic brushes [22,71]. Here
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σosm is the critical grafting density that dictates the crossover
between the Pincus and the osmotic brush regimes and can be
expressed as [71]

σosm ∼ 1

�BaN2f 2−ν
. (12)

For the PE brushes in the Pincus regime, the brush height
is dictated by the balance of the electrostatic and the elastic
energy of the PE brushes yielding an equilibrium brush height
of Ref. [71]:

d0,PB ∼ a(uf 2σga
2)

1−ν
ν N

2−ν
ν . (13)

On the other hand, for the osmotic brushes, the grafting density
is large enough to ensure that the counterions become strongly
localized, thereby governing the brush properties. Therefore,
for this case, the brush height is determined by the balance of
the osmotic pressure of the counterions and the elastic energy
of the brushes, yielding [22,71]

d0,OB ∼ aNf 1−ν . (14)

For the osmotic brushes, the counterions are strongly bound to
the PE brushes, with the counterion layer thickness dCI being
[79]

dCI ∼ d0,OB + 3
2�GC. (15)

Here �GC = 1
2π�BNf σ

is the Gouy–Chapman length, which is of
the order of few angstroms for a fully charged brush ensuring
dCI ≈ d0,OB .

C. Scaling laws for polyelectrolyte brush bilayers
in intermediate interpenetration regime

The intermediate IP regime is characterized by dg < d0,
where depending on the grafting density, either Eq. (13) or
Eq. (14) will define d0.

For the PE brushes, very much like the polymer brushes, the
monomer-monomer interaction can be described by a classical
parabolic molecular interaction field. This leads to an IP length
δ as [45,70]

δ ∼ a4/3N2/3d−1/3
g . (16)

Equation (16) is also the expression for the height of the
polymer brushes (in the molten state) in the intermediate IP
regime. Such identical expression [Eq. (16)] for the IP length
for both the polymer and the PE brushes in the intermedi-
ate IP regime has already been confirmed by the existing
literature [71].

Equation (16) is a valid scaling law for the molten PE
brushes. For semidilute brushes, we consider that the brushes
are divided into blob-like compartments. Consequently, similar
to previous studies [45,70,71], one should replace a by ξe [see
Eq. (11) for the expression of ξe] and N by N/ge [see Eq. (9)
for the expression of ge and Eq. (6) for the relationship between
ξe and ge]. In addition, since dg < d0, one can expect a uniform
monomer concentration c within all the blobs; therefore, the
concentration c appearing in the expression for ξe [see Eq. (11)]
can be expressed as

c ∼ Nσg

dg

. (17)

Under all these conditions, for semidilute PE brush bilayers
(BBLs) in the intermediate IP regime (i.e., dg < d0) we can
obtain from Eq. (16)

δ ∼ ξ 4/3
e

(
N

ge

)2/3

d−1/3
g ∼ a(a2σg)−1/3N1/3(uf 2)

1−ν
6−3ν .

(18)

Equation (18) follows directly from the expressions provided
in Ref. [71].

D. Scaling laws for polyelectrolyte brush bilayers
in weakly interpenetration regime

For this case d0 < dg < 2d0, where either Eq. (13) or
Eq. (14) defines d0. Obviously, for this case all the Kuhn
segments (or monomers) are not located in the interpenetrated
region. Similar to our previous study [70], here too we
consider that N1 number of monomers (or Kuhn segments) are
outside the interpenetration region while N − N1 number of
monomers are inside the interpenetration region. Accordingly,
we replace a by ξe and N by (N − N1)/ge in Eq. (16).
Furthermore, c appearing in the expression of ξe would be

cδ ∼ (N − N1)σg

δ
. (19)

Also, we use Eq. (6) to relate ξe and ge. Under these conditions,
we may finally obtain from Eq. (16)

δ ∼ a
(
a1/2d−1/2

g

)
(a2σg)−1/2N1/2

(
1 − N1

N

)1/2

(uf 2)
1−ν

4−2ν .

(20)
The next important step is to express N1/N in terms of x =
dg/d0. We assume that the segment of the PE molecule that
is outside the IP regime will definitely form brushes. Let us
consider the height of this brush segment as d1. Therefore,
following Desai et al. [70]:

d1 ∼ dg − d0. (21)

In the case σ ∗
g < σg < σosm, i.e., the brushes form Pincus

brushes, we can write [from Eq. (13)]

d1,PB ∼ K1N
2−ν
ν

1 , d0,PB ∼ K1N
2−ν
ν . (22)

Using Eq. (22) in Eq. (21), we can write that, for Pincus
brushes,

xPB =
(

dg

d0

)
PB

∼ 1 +
(

N1

N

) 2−ν
ν

. (23)

On the other hand, when the brushes form osmotic brushes
(i.e., when σg > σosm), we can have [using Eq. (14)]

d1,OB ∼ K2N1, d0,OB ∼ K2N. (24)

Therefore, using Eq. (24) in Eq. (21), we can write

xOB =
(

dg

d0

)
OB

∼ 1 + N1

N
. (25)
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Consequently, using either Eq. (23) or Eq. (25) in Eq. (20), we
may write

δPB ∼ a(a1/2d−1/2
g )(a2σg)−1/2N1/2

× [1−(x − 1)
ν

2−ν ]1/2(uf 2)
1−ν

4−2ν , (26)

δOB ∼ a
(
a1/2d−1/2

g

)
(a2σg)−1/2N1/2(2 − x)1/2(uf 2)

1−ν
4−2ν .

(27)

Here δPB represents the IP length for PE brushes in weak IP
regime with the brush segment (outside the IP zone) being
described as a Pincus brush. On the other hand, δOB represents
the IP length for PE brushes in weak IP regime with the brush
segment (outside the IP zone) being described as an osmotic
brush.

It is useful to reiterate here the strategy of obtaining the
scaling laws in Eqs. (26) and (27). We start from Eq. (16). We
consider the changes to this equation due to (a) the brush being
in the semidilute regime, (b) a part of the polymer molecule
that is outside the interpenetration region will form a brush
(either Pincus or osmotic, based on the grafting density), and
(c) part of the polymer molecule that is inside the IP zone can
be considered to be divided into blobs, with each blob having
a uniform monomer density. The appropriate mathematical
representations of these considerations (summarized in the first
part of this section) along with the use of Eq. (6) eventually
ensure that we obtain Eq. (26) or Eq. (27) from Eq. (16).

III. MOLECULAR DYNAMICS SIMULATIONS

We employ the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) software package [80] to carry
out the MD simulations for studying a system of 2M = 72
end-grafted PE chains, with M = 36 chains grafted on each
of the two opposing walls. We consider a grafting density of
σg = 0.2/σ 2

LJ . Each PE chain is represented as a bead-spring
system of N beads, with each bead having a radius of σLJ and
a charge of −1e (where e is the electronic charge). Out of these
N beads, one bead is grafted to the wall. This particular bead
remains stationary and is assumed to be devoid of any charge.
Therefore, there are 2 × M × (N − 1) charged polymer beads.
Next, we add in the system 2 × M × (N − 1) beads, each
containing a charge of +e, in order to explicitly model the
counterions and to ensure a net charge neutrality of the system.
The equation of motion of bead i, where i represents all
the beads of the PE chain (except the bead that is fixed at
the grafting surface) as well as the beads representing the
counterions, can be expressed as [70]

m
d2�ri

dt2
= −�∇iUtotal − γDm

d�ri

dt
+ �
i(t), (28)

where m is the mass of bead i (we assume assume identical
mass for all the beads, regardless of whether they represent
monomers or counterions), �ri is the position vector of bead i,
−�∇iUtotal is the total force acting on bead i, γD is the damping
coefficient, and �
i(t) is the time-dependent random force that
bead i experiences. Utotal appearing in Eq. (28) is expressed
differently for the monomers and the counterions. For the

monomers we call it Utotal,m, while for the counterions we call
it Utotal,c, with

Utotal,m = ULJ,bead,ij + ULJ,wall,i + UFENE,i + UCoul,ij ,

(29)

Utotal,c = ULJ,bead,ij + ULJ,wall,i + UCoul,ij . (30)

In the above equations, ULJ,bead,ij represents the shifted
Lennard–Jones (LJ) interaction potential between beads i

and j (j �= i), ULJ,wall,i represents the shifted LJ interaction
potential between bead i and the wall, UCoul,ij represents
the Coulombic interaction potential between beads i and j

(j �= i), and UFENE,i represents the finite extensible nonlinear
elastic (FENE) bond potential between bead i and j (where
j = i + 1, i − 1 and beads i and j represent only the beads
of the PE chain). We refer to Desai et al. [70] for the detailed
expressions for ULJ,bead,ij , ULJ,wall,i , and UFENE,i as well as
the values of the different parameters defining these potentials.
Finally, we can express UCoul,ij as

UCoul,ij = kBT �B

qiqj

rij

, (31)

where qi and qj are charges on beads i and j , rij is the distance
between beads i and j , and �B = σLJ is the Bjerrum length.

We simulate a system on N = 20, 40, 75 PE chains. The
simulations are carried out in an NVT ensemble using a
Langevin thermostat. The electrostatic interactions in the sim-
ulations are calculated by using particle-particle particle-mesh
(PPPM) method [81] for slab geometry [82], with periodic
boundary condition in x plane and y plane but nonperiodic
in the z plane. All the simulations are carried out using a
time step of 0.006τLJ [where τLJ = σLJ (m/εLJ )1/2 with εLJ

being the characteristic LJ energy scale]. The grafted PE chains
along with the counterions, in absence of any interpenetration,
are first equilibrated for 5 × 106 time steps. This equilibrated
system, therefore, consists of PE molecules (grafted to two
opposing plates in a manner such that dg 	 2d0) and oppo-
sitely charged counterions. Subsequently, we bring the two
grafting surfaces closer to each other such that d0 < dg <

2d0. Once the opposing surfaces are at the desired value of
dg/d0, we equilibrate the PE chains by simultaneously using
the “NVE/LIMIT” command and the Langevin thermostat
for 1000–10000 time steps. This procedure ensures that the
displacements in the simulations are not unphysically large.
In the next step, we equilibrate the system for another 3 × 106

time steps, followed by a production run of 2 × 106 time steps.
During this production run, data are collected after every 1000
time steps. Since the typical relaxation time of the PE brush
system that we study is merely a few hundred LJ time units
[83], we believe that our results represent perfectly equilibrated
interpenetrated PE-brush-counterion system. To be even more
certain, we ourselves calculated the autocorrelation function
and the corresponding relaxation time for our system. We
found very similar relaxation times of merely a few hundred LJ
time units as noted in the literature [83] and therefore we are
convinced that our results represent an equilibrium behavior.
In Figs. 1 and 2, we show the MD simulation snapshots for
the PE BBLs for the different degree of interpenetration for
N = 40 and N = 75, respectively. These figures, whose sizes
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FIG. 1. Snapshots of the interpenetrating PE brushes for N = 40
for (a) dg/d0 = 1.75, (b) dg/d0 = 1.4 and (c) dg/d0 = 1.2. The PE
brushes are shown with yellow and red, while the counterions are
shown with blue.

represent the plate gap dg , are the representative snapshots that
are later used to quantify the interpenetration behavior through
a more detailed quantification of the variation of the IP length
δ (Fig. 3) as well as the monomer concentration distribution
(Fig. 4).

FIG. 2. Snapshots of the interpenetrating PE brushes for N = 75
for (a) dg/d0 = 1.75, (b) dg/d0 = 1.4 and (c) dg/d0 = 1.2. The PE
brushes are shown with yellow and red, while the counterions are
shown with blue.

1 1.2 1.4 1.6 1.8 2
dg/d0

0

2

4

6

8

δ

10-1 1002 − dg/d0
100

101

δ

Ref. 75

N=40

N=20

N=75

FIG. 3. Variation of interpenetration length δ (in units of σLJ )
with dg/d0 for different N for polymer (P) and polyelectrolyte (PE)
brushes. The markers are the MD results, while the continuous
lines are the scaling predictions of the form δ = δOB = C1N

1/2(2 −
dg/d0)1/2 [this form of equation is obtained from Eq. (27)]. The fit is
obtained for nearly constant values of C1 for all the three values of N

[(C1)N=75 = 0.86, (C1)N=40 = 0.94, (C1)N=20 = 0.95], establishing
the rigour of the scaling law. In the inset of the figure, we provide this
comparison between the MD and the scaling predictions on a log-log
scale. Clear 1/2-power dependence of δ on 2 − dg/d0 is evident.
Also in the main figure, we provide the δ variation obtained from
the phenomenological scaling prediction of Ref. [75], which states
δ ∼ (dg/d0)−3/2[1 − (dg/1.35d0)2] (i.e., they assume that there is no
IP for dg/d0 > 1.35).

IV. INTERPENETRATION LENGTH δ OF
POLYELECTROLYTE BRUSH BILAYERS

We use the MD simulations to compute the IP length δ

[44] for the PE BBLs for different values of dg/d0 in the
weak IP regime (i.e., d0 < dg < 2d0) and different N . For
the present case, we use a grafting density of σg = 0.2/σ 2

LJ
(where σLJ ∼ 1 nm is the LJ length scale), f = 1, and a = σLJ.
Therefore, σg 	 σosm [see Eq. (12) for σosm] for all the values
of N that we consider, ensuring that the brushes are always in
the osmotic regime. Please note that here by “brushes in the
osmotic regime,” we imply the PE segments that are present
outside the IP regime and are assumed to form brushes (please
see Sec. II D for more details). Therefore, the corresponding
the scaling prediction for the IP length δOB is provided by
Eq. (27)—we can consider this scaling expression of the form
δOB = C1N

1/2(2 − x)1/2. Figure 3 provides the comparison
between the MD simulation result and the scaling prediction
for δ. We witness an excellent match for most of the values
of dg/d0 and N , except for dg/d0 = 1.9 for N = 75. In the
inset of the figure, we provide the log-log plot showing the
clear 1/2-power dependence of δ on 2 − dg/d0. To the best
of our knowledge there has been only one study that probes
the weakly interpenetrated PE BBL by simultaneous use of
MD simulation and scaling prediction [75]—however, the
scaling theory that has been derived in this paper to match the
MD predictions is a “phenomenological” one without being
derived from the rigorous free-energy consideration. On the
contrary, the theory derived here strictly obeys the free-energy
consideration and the corresponding match with respect to the
MD simulation results, demonstrating the dependence of δ

on the extent of interpenetration (IP) and the value of N , is
extremely accurate.
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FIG. 4. Monomer concentration distribution (cmonomer) for different dg/d0 values (see the legend) for (a) N = 20, (b) N = 40, and (c)
N = 75. cmonomer is normalized, i.e.,

∫ dg

0 cmonomerdy = 1. In the inset of each figure, we magnify the monomer concentration distribution near
the channel centerline.

There is another extremely important connotation of Fig. 3,
with respect to the existing studies of weakly interpenetrating
PE BBLs [71,75]. One of these studies, for example, predicts
absolutely no interpenetration (i.e., δ → 0) for weak IP regime
[71]. On the other hand, Kumar and Siedel [75] predicts
interpenetration only for very relatively small values of dg ,
i.e., for dg/d0 � 1.35. In Fig. 3, we also provide this scaling
prediction of Ref. [75]. Both our MD simulations as well
as scaling predictions strongly contradict these findings and
establish that there will be a finite δ as long as dg < 2d0.

V. MONOMER AND COUNTERION
CONCENTRATION DISTRIBUTION

Figure 4 shows the monomer distribution with y for dif-
ferent values of the degree of interpenetration (dg/d0) and N .
For any given N , smaller interpenetration (or larger dg/d0)
leads to a more “single-plate-like” monomer distribution.
Consequently, the monomer density decreases away from the
grafting surface. For any given N , increase in the degree of
interpenetration (or decrease in dg/d0) leads to the onset of
overlap of the PE brushes from the opposing surfaces. There-

fore, monomer concentration decreases much more weakly
away from the grafting surface, eventually ensuring virtually
uniform monomer distribution across the channel for a large
degree of interpenetration (dg/d0 ∼ 1.2). Larger N implies
a larger number of monomers. Therefore, an increase in N

implies that for any given degree of interpenetration (or a given
dg/d0), we find a larger value of the monomer concentration
at a given distance from the wall, regardless of the extent
of lowering of the monomer concentration away from the
grafting surface. Figure 4 demonstrating the existence of finite
monomer concentration near the channel centerline (i.e., the
IP zone) even for much larger dg/d0 (i.e., dg/d0 close to 2) is
perfectly commensurate with the prediction of a finite δ (see
Fig. 3) for such dg/d0 values.

Figure 5 shows the counterion concentration distribution
for different dg/d0 and N . The counterion concentration
distribution, at least qualitatively, obeys the monomer con-
centration distribution for the major part of the nanochannel.
Therefore, the counterion concentration decreases near the
channel centerline (similar to what happens with the monomer
concentration distribution; see Fig. 4) for all values of N for
relatively weaker degree of IP (i.e., larger values of dg/d0).
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FIG. 5. Counterion concentration distribution (ccounterion) for different dg/d0 values (see the legend) for (a) N = 20, (b) N = 40, and (c)
N = 75. ccounterion is normalized, i.e.,

∫ dg

0 ccounteriondy = 1. In the inset of each figure, we magnify the counterion concentration distribution
near the channel centerline.
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Similarly for all N , for a larger degree of IP (or smaller values
of dg/d0), we witness a more or less uniform counterion
concentration distribution (similar to the case of monomer
distribution; see Fig. 4) across the channel cross section. This is
perfectly commensurate with the idea of osmotic PE brushes,
where the counterions remain tightly bound to the brushes. Of
course, there is a quantitative variation between the monomer
and counterion concentration distributions, particularly near
the channel centerline (i.e., the interpenetration zone)—at that
location the monomer concentration decreases steeply while
the corresponding counterion concentration shows a much
flatter decrease. For example, for a given N , the monomer dis-
tribution, for weak IP, demonstrates a much steeper decay away
from the channel walls, while the counterion concentration
distribution shows a much flatter decay away from the wall.

VI. CONCLUSIONS

Our analyses, involving scaling calculations and MD
simulations, establish that, for PE BBLs, finite interpenetration

is likely as long as dg < 2d0, while the existing theories have
proposed that such an interpenetration will occur only for much
smaller values of dg (i.e., when dg is smaller than or slightly
larger than d0). Our conclusions, unlike these studies, are based
on a combination of extensive MD simulations and scaling
calculations that involve rigorous free-energy considerations.
Furthermore, our results provide a unique combined picture
of the monomer and counterion concentration distributions.
These distributions, obeying the condition of osmotic brushes,
follow each other closely qualitatively for the major part of
the channel. Of course, near the channel centerline (i.e., the
location of the interpenetration), these distributions quanti-
tatively deviate from each other—the monomer distribution
demonstrates a much steeper decay as compared with the
counterions. However, they quantitatively deviate from each
other at the channel centerline. We believe that these results,
like the results of our previous paper on weakly interpenetrated
polymer BBLs, will provide a quantitative basis for probing
the physics of the weakly interpenetrated PE BBLs.
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