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Universal size properties of a star-ring polymer structure in disordered environments
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We consider the complex polymer system, consisting of a ring polymer connected to the f1-branched starlike
structure, in a good solvent in the presence of structural inhomogeneities. In particular cases f1 = 1 and f1 = 2,
such a system restores the synthesized tadpole-shaped polystyrenes [Doi et al., Macromolecules 46, 1075 (2013)].
We assume that structural defects are correlated at large distances x according to a power law x−a . Applying
the direct polymer renormalization approach, we evaluate the universal size characteristics such as the ratio of
the radii of gyration of star-ring and star topologies, and compare the effective sizes of single arms in complex
structures and isolated polymers of the same total molecular weight. The nontrivial impact of disorder on these
quantities is analyzed.
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I. INTRODUCTION

In statistical descriptions of conformational properties of
long flexible polymers in a good solvent, one finds a set of
characteristics which are universal, i.e., independent of the
details of microscopic chemical structure of macromolecules
[1,2]. As a typical example of such properties, we may consider
the ratio of the size measures (gyration radii) of linear and

closed ring polymers of the same length L: g
ring
chain ≡ 〈R2

g ring〉
〈R2

g chain〉 ,

which is a universal L-independent quantity and in the ideal-
ized case of Gaussian polymer equals 1/2 [3]. Similarly, one
can compare the size measure of a branched starlike polymer
structure, consisting of f1 connected arms each of length L

connected at one end, and the linear chain of the same length
f1L. In the work by Zimm and Stockmayer [3], an estimate
for the size ratio gstar

chain(f1) in the Gaussian case was found
analytically:

gstar
chain = 3f1 − 2

f 2
1

. (1)

Inserting f1 = 1 or f1 = 2 in this relation, one restores the
trivial result gchain

chain = 1. For any f1 � 3, ratio (1) is smaller
than 1, reflecting the fact that the size of a branched polymer
is always smaller than the size of a linear polymer chain of the
same molecular weight.

Let us recall that the gyration radii of all three above
mentioned polymer topologies scale with length L in the
Gaussian case according to 〈R2

g〉 ∼ L2νGauss with νGauss = 1/2.
Introducing the concept of excluded volume, which refers to
the idea that any segment (monomer) of a macromolecule is
not capable of occupying the space that is already occupied
by another segment, leads in a good solvent regime to dimen-
sional dependence of the scaling exponent: 〈R2

g〉 ∼ L2ν(d) with
ν(d) = 3/(d + 2) [4]. Presence of the excluded volume effect

*viktoria@icmp.lviv.ua

leads also to d dependence of the size ratios g
ring
chain [5–7] and

gstar
chain [8–16].

Both ringlike and starlike polymers play an important role
in both technologies and biophysics. In particular, one can find
the circular polymers inside the living cells of bacteria [17]
and higher eukaryotes [18], where DNA occurs in a closed
ring shape. Many synthetic polymers form circular structures
during polymerization and polycondensation [19–21]. One
can encounters the starlike polymers in studying complex
systems such as gel, rubber, and micellar and other polymeric
and surfactant systems [22–24]. In the present paper, we will
pay attention to the size properties of the “hybrid” complex
polymer structure, consisting of f1 branched linear chains
connected with one closed ring (Fig. 1). In particular cases
f1 and f1 = 2 it has a close relation with experimentally
synthesized tadpole-shaped polystyrene [25]. Such structures
are very intriguing model polymers from the point of view of
viscoelastic properties, since an entanglement of linear parts
and closed loops of different macromolecules could lead to
formation of a strong intermolecular entanglement network.
Also, the shape properties of such a tadpole-shaped structure
have been analyzed numerically in Ref. [26]. Note that the
related more general model of “rosette-like” polymers has been
considered in the Gaussian approximation in Ref. [27]. On the
other hand, it is related to the process of loop formation in
star polymers [28]. It is well known that the loop formation in
macromolecules plays an important role in a number of bio-
chemical processes, such as stabilization of globular proteins
[29–32], transcriptional regularization of genes [33–35], DNA
compactification in the nucleus [36–38], etc. Moreover, such
a system can be considered as a part of a general polymer
network of a more complicated structure [39].

In many physical processes, one faces the problem of the
presence of structural obstacles (impurities) in the system. One
can encounter such a situation when considering polymers in
gels, colloidal solutions [40], intra- and extracellular environ-
ments [41–43], etc. Numerous analytical and numerical studies
[44–47] indicate the considerable impact of structural disorder
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FIG. 1. Schematic presentation of a complex polymer structure
consisting of f1 linear branches and one closed loop.

on the effective polymer size and conformational properties
of macromolecules. The density fluctuations of disorder often
create the complex fractal structures [48]. Such situations
are perfectly captured within the frames of a model with
long-range correlated quenched defects, originally proposed
in Ref. [49]. The defects are correlated on large distances
x according to a power law with a pair correlation function
h(x) ∼ x−a with a < d. Such a model refers to the presence of
defects of fractal structure df = d − a, with d being the space
dimension. The nontrivial impact of such a type of disorder on
the conformational properties of polymers was established, for
the cases of linear chains [50,51], starlike branched polymers
[52,53], and closed ring polymers [54].

The present paper is dedicated to the universal size char-
acteristics of a “star-ring” polymer structure in solution in the
presence of long-range correlated disorder. The layout of the
paper is as follows. We start by presenting the continuous
chain model in Sec. II, then give a brief description of the
direct polymer renormalization method in Sec. III. The results
are presented and discussed in Sec. IV. We end by giving
conclusions and an outlook.

II. THE MODEL

Within the frames of the continuous chain model [55], the
polymer system is considered as a set of trajectories of length
L, parameterized with radius vector �ri(s), i = 1, . . . ,f1 + 1
with s changing from 0 to L (see Fig. 1). All trajectories are
considered to start at the same point forming a structure with
f1 branches and one closed loop. The partition function of such
a system can be presented as

Zf1,1 = 1

Z0

f1+1∏
i=1

∫
d �ri(s) δ[�rf1+1(L) − �rf1+1(0)] e−H . (2)

Here Z0 is partition function of a Gaussian chain given by

Z0 =
f1+1∏
i=1

∫
d �ri(s) e

−
f1+1∑
i=1

∫ L

0 ds [ d �ri (s)
ds

]2

, (3)

where the δ function describes the closed loop structure and H

is the system Hamiltonian:

H =
f1+1∑
i=1

∫ L

0
ds

[
d �ri(s)

ds

]2

+ u

2

f1+1∑
i,j=1

∫ L

0
ds ′

∫ L

0
ds ′′ δ[�ri(s

′) − �rj (s ′′)]

+
f1+1∑
i,j=1

∫ L

0
ds V [�ri(s)]. (4)

Here the first term describes the connectivity of trajectories, the
second one corresponds to the excluded volume interactions
governed by a coupling constant u, and the last term describes
the potential that arises due to the presence of obstacles in the
system. We consider the case when impurities are correlated
on the large distances according to a power law [49]:

V [�ri(s ′)]V [ �rj (s ′′)] = v| �ri(s
′) − �rj (s ′′)|−a, (5)

where (. . .) denotes averaging over different realizations of
disorder and v is a corresponding coupling constant.

Studying the problems connected with randomness (disor-
der) in the system, one usually faces two types of ensemble
averaging. In the so-called annealed case [56], the impurity
variables are a part of the disordered system phase space,
while in the quenched case [57] the free energy (the logarithm
of the partition sum) should be averaged over an ensemble
of realizations of disorder. In general the critical behavior of
systems with quenched and annealed disorder is quite dif-
ferent. However, when studying the universal conformational
properties of long flexible macromolecules, this distinction is
negligible [58], and one can use the annealed averaging, which
is technically simpler. Performing the averaging of the partition
function (2) over different realizations of disorder, taking into
account up to the second moment of cumulant expansion and
recalling (5), we obtain Zf1,f2 in the form (2) with an effective
Hamiltonian:

Heff =
f1+1∑
i=1

∫ L

0
ds

[
d �ri(s)

ds

]2

+ u

2

f1+1∑
i,j=1

∫ L

0
ds ′

∫ L

0
ds ′′ δ[�ri(s

′) − �rj (s ′′)]

− v

2

f1+1∑
i,j=1

∫ L

0
ds ′

∫ L

0
ds ′′ | �ri(s

′) − �rj (s ′′)|−a. (6)

Performing dimensional analysis of the terms in (6), one
finds the dimensions of the couplings in terms of dimension
of contour length L: [u] = [L](4−d)/2, [v] = [L](4−a)/2. The
“upper critical” values of the space dimension (dc = 4) and
the correlation parameter (ac = 4), at which the couplings are
dimensionless play an important role in the renormalization
scheme, as outlined below.
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III. THE METHOD

The observables calculated on the basis of a continuous
chain model contain divergences in the limit of an infinitely
long chain that correspond to the case of an infinite number
of monomers. In order to receive the universal values of
parameters under consideration, those divergences need to
be eliminated. The direct polymer renormalization method
developed by des Cloizeaux [2] allows us to remove those
divergences by adsorbing them into a set of so-called renormal-
ization factors, directly connected to the observable physical
quantities. The finite values of observables are obtained while
evaluated at stable fixed points (FPs) of a renormalization
group. The method is described in more detail in our previous
works, e.g., Ref. [53].

It is important to note that FPs do not depend on the topology
of the polymer under consideration and thus can be obtained
in the simplest case of a single linear chain. The renormalized
coupling constants λR = {uR,vR} are defined by

λR({λ}) = −[Z{λ0}(L)]−2Z({λ0})(L,L)[2πχ0(L,{λ0})]2−dλ ,

(7)

where ZL({λ0}) is a partition function of a single chain,
Z({λ0})(L,L) is a partition function of two interacting chains,
χ0(L,{λ0}) is a so-called renormalization swelling factor,
and dλ are dimensions of corresponding coupling constants,
introduced after Eq. (6): du = (4 − d)/2, dv = (4 − a)/2.

In the limit of infinite linear size of macromolecules, the
renormalized theory remains finite, such that

lim
L→∞

λR({λ}) = λ∗
R. (8)

For negative values of dλ < 0, macromolecules are expected to
behave like Gaussian chains in spite of the interactions between
monomers, thus each λ∗

R = 0 for corresponding dλ < 0. The
concept of expansion in small deviations from the upper
critical dimensions (ε = dc − d, δ = ac − a) of the coupling
constants thus naturally arises. Stable fixed points govern the
asymptotical scaling properties of macromolecules in solutions
and make it possible, e.g., to obtain the reliable values of
universal size ratios.

IV. RESULTS AND DISCUSSIONS

A. Partition function

We start our calculations by considering the partition func-
tion of the star-ring polymer structure. We exploit the Fourier
transform of the δ function with wave vectors �q for the one
corresponding to a loop structure and with wave vector �pu for
those describing excluded volume interaction:

δ[�rf1+1(L) − �rf1+1(0)] = 1

(2π )d

∫
d �q e{−iq[�rf1+1(L)−�rf1+1(0)]},

(9)

δ[�ri(s
′) − �rj (s ′′)] = 1

(2π )d

∫
d �pu e{−ι �pu[�ri (s ′)−�rj (s ′′)]}. (10)

The Fourier transform of (5) can be presented as

v

2(2π )d

∫
d �pv |pv|d−ae−ι �pv [ �ri (s ′)− �rj (s ′′)], (11)

where ι is an imaginary unit. As a result, Zf1,1 can be presented
as

Zf1,1 = 1

Z0

∫
Dr

[
1

(2π )d
e
−

f1+1∑
i=1

∫ L

0 ds [ d �ri (s)
ds

]2

×
∫

d �q exp{−ι�q[�rf1+1(L) − �rf1+1(0)]}

×
(

1 − u

2(2π )d

f1+1∑
i,j=1

∫ L

0
ds ′

∫ L

0
ds ′′

∫
d �pu

× exp{−ι �pu[�ri(s
′) − �rj (s ′′)]}

+ v

2(2π )d

f1+1∑
i,j=1

∫ L

0
ds ′

∫ L

0
ds ′′

∫
d �pv |pv|d−a

× exp{−ι �pv[�ri(s
′) − �rj (s ′′)]}

)]
. (12)

Here
∫
Dr ≡ ∏f1+1

i=1

∫
d �ri(s). Performing the corresponding

integrations and taking into account that Z0 = (2πL)−
d
2 we

receive

Zf1,1 = (2πL)−
d
2

(
1 − zu

f1 (f1 − 3) + 4(f1 + 1)

ε

+ zv

f1 (f1 − 3) + 4 (f1 + 1)

δ
− (zu − zv)

×
{

2(f1 − 1) − f1(f1 − 1)

2
ln(2) + f1(f1 − 3)

2

+ f1

[
2
√

5

5
ln

(
2√

5 + 3

)]})
, (13)

with zu and zv being dimensionless coupling constants:

zu = uL2−d/2

(2π )d/2
, zv = vL2−a/2

(2π )d/2
. (14)

B. Gyration radius of a star-ring structure
and corresponding size ratios

Gyration radius of a polymer structure under consideration
in terms of a continuous model can be presented as

〈R2
g〉 = 1

2L2(f1 + 1)2

×
f1+1∑
i,j=1

∫ L

0

∫ L

0
ds1 ds2〈[�ri(s2) − �rj (s1)]2〉. (15)

Here and below, 〈. . .〉 denotes averaging with an effective
Hamiltonian (6) according to

〈. . .〉 =
∏f1+1

i=1

∫
d �ri(s) δ[�rf1+1(L) − �rf1+1(0)] e−Heff

Zf1,1
.

We make use of the identity

〈[�ri(s2) − �rj (s1)]2〉 = −2
d

d|�k|2 ξ (�k)�k=0,

(16)
ξ (�k) ≡ 〈e−ι�k[�ri (s2)−�rj (s1)]〉,
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FIG. 2. Diagrammatic presentation of contributions into 〈ξ (�k)〉 in
Gaussian approximation. The solid line on a diagram is a schematic
presentation of a polymer path of length L, and arrows denote so-
called restriction points s1 and s2.

and evaluate ξ (�k) in a path integration approach. In calculations
of the contributions into ξ (�k), it is convenient to use the
diagrammatic presentation, as given in Figs. 2 and 3.

In the simplified case of a Gaussian polymer we have
only four diagrams (see Fig. 2). An example of diagram
calculations is given in Appendix A. It is also important to
note that different diagrams are included in final expressions
with different prefactors arising from combinatorics, so that
diagram D01 is taken with prefactor f1, diagram D02 with
1, D03 with f1(f1 − 1)/2 and D04 with f1. As a result,
the gyration radius of the star-ring structure in a Gaussian
approximation reads

〈
R2

g Gauss

〉 = Ld
(
6f 2

1 + 6f1 + 1
)

12(f1 + 1)2
. (17)

In the first order of perturbation theory in couplings zu, zv

the gyration radius can be in general presented as

〈
R2

g

〉 =
〈
R2

g Gauss

〉 + zu

〈
R2

g u

〉 − zv

〈
R2

g v

〉
Zf1,1

,

where zu, zv are dimensionless coupling constants given by
(14) and 〈R2

g u〉, 〈R2
g v〉 are contributions of a set of diagrams

presented in Fig. 3 with interactions governed by correspond-
ing coupling constants. Again, all the diagrams should be taken
into account with corresponding combinatorial prefactors.
Both the prefactors and ε,δ expansions for each of the diagrams
are given in Tables I and II in Appendix B.

The final expression for the gyration radius of star-ring
structure is thus given by

〈
R2

g

〉 = dL(6f 2
1 + 4f1 + 1)

12(f1 + 1)2

{
zz1 +

(
2zu

ε
− 2zv

δ

)

− (zu − zv)

[
1

30

f1(390f 2
1 − 297f1 + 284)

6f 2
1 + 4f1 + 1

− 4

25

f1

√
5 arctan(

√
5/5)(30f 2

1 + 132f1 − 1)

6f 2
1 + 4f1 + 1

− 8 ln(2)f1(f1 − 1)(3f1 − 2)

6f 2
1 + 4f1 + 1

− 2

5
f1

√
5 ln

(
2√

5 + 3

)]}
. (18)

Let us recall the gyration radius of a starlike poly-
mer of the same molecular weight (f1 + 1-arm star

FIG. 3. Diagrammatic presentation of contributions into 〈ξ (�k)〉
in the first order of perturbation theory in coupling constants. No-
tations are as in Fig. 2; dashed lines denote the monomer-monomer
interactions. Each diagram appears twice: once with excluded volume
interaction governed by coupling zu and once with disorder interac-
tion zv .

polymer) [53]:〈
R2

g star

〉 = dL(3f1 + 1)

12(f1 + 1)
1 +

(
2zu

ε
− 2zv

δ

)
− (zu − zv)

×
[

13

12
+ 13

2

f1(f1 − 1)

3f1 + 1
− 4 ln(2)

f1(3f1 − 2)

3f1 + 1

]}
,

(19)
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and the expression for the gyration radius of a single chain of
the same molecular weight [chain with total length (f1 + 1)L]
[53]:

〈
R2

g chain

〉 = dL(f1 + 1)

6

{
1 +

(
2zu

ε
− 2zv

δ

)

− (zu − zv)

[
13

12
− ln(f1 + 1)

]}
. (20)

With expressions (18) and (20) we can obtain the

corresponding universal size ratios g
star−ring
star ≡ 〈R2

g〉
〈R2

g star〉
and

g
star-ring
chain

〈R2
g〉

〈R2
g chain〉

, which will allow us to estimate the relative

effective size of polymers of the same molecular weight but
different topology. These ratios are given by the following
expressions:

g
star−ring
star = 6f 2

1 + 4f1 + 1

6f 2
1 + 8f1 + 2

{
1 − (zu − zv)

×
[

4f1(8f1 + 3)(3f1 − 2) ln(2)

(3f1 + 1)
(
6f 2

1 + 4f1 + 1
)

− 1

60

1392f 3
1 − 1110f 2

1 − 503f1 + 65

(3f1 + 1)
(
6f 2

1 + 4f1 + 1
)

− 4

25

f1

√
5
(
30f 2

1 + 132f1 − 1
)

arctan(
√

5/5)

(3f1 + 1)
(
6f 2

1 + 4f1 + 1
)

− 2

5
f1

√
5 ln

(
2√

5 + 3

)]}
, (21)

g
star−ring
chain = 6f 2

1 + 4f1 + 1

2(f1 + 1)3

{
1 − (zu − zv)

×
[

1

30

f1
(
390f 2

1 − 297f1 + 284
)

6f 2
1 + 4f1 + 1

− 4

25

f1

√
5 arctan(

√
5/5)

(
30f 2

1 + 132f1 − 1
)

6f 2
1 + 4f1 + 1

− 8 ln(2)f1(f1 − 1)(3f1 − 2)

6f 2
1 + 4f1 + 1

− 2

5
f1

√
5 ln

(
2√

5 + 3

)
− 13

12
+ ln(f1 + 1)

]}
.

(22)

We make use of results for fixed point values found previ-
ously for the linear polymer chains in long-range correlated
disorder [50]. There are three distinct fixed points govern-
ing the properties of macromolecule in various regions of

parameters d and a:

Gaussian : z∗
u = 0, z∗

v = 0, (23)

Pure : z∗
u = ε

8
, z∗

v = 0, (24)

LR : z∗
u = δ2

4(ε − δ)
, z∗

v = δ(ε − 2δ)

4(δ − ε)
. (25)

Evaluating (21) and (22) in these three cases, we obtain

g
star-ring
star [Gaussian] = 6f 2

1 + 4f1 + 1

6f 2
1 + 8f1 + 2

, (26)

g
star-ring
star [Pure] = 6f 2

1 + 4f1 + 1

6f 2
1 + 8f1 + 2

[
1 − ε

8
(. . . )

]
, (27)

g
star-ring
star [LR] = 6f 2

1 + 4f1 + 1

6f 2
1 + 8f1 + 2

[
1 − δ

4
(. . . )

]
, (28)

g
star-ring
chain [Gaussian] = 6f 2

1 + 4f1 + 1

2(f1 + 1)3
, (29)

g
star-ring
chain [Pure] = 6f 2

1 + 4f1 + 1

2(f1 + 1)3

[
1 − ε

8
(. . . )

]
, (30)

g
star-ring
chain [LR] = 6f 2

1 + 4f1 + 1

2(f1 + 1)3

[
1 − δ

4
(. . . )

]
, (31)

where (. . . ) denotes a factor that depends only on f1 and is
different for different ratios.

Comparing (26) and (29), one easily notices, that at any
f1 both g

star-ring
star [Gaussian] and g

star-ring
chain [Gaussian] are smaller

than 1. Thus, in a Gaussian approximation the effective size of
a branched polymer structure with one loop is more compact
than both of those of a star polymer or linear chain of the
same molecular weight. The value of g

star-ring
star [Gaussian] is

growing with increasing f1 and gradually reaches the value
of 1, which can be explained by diminishing the role played by
the presence of a single loop with a growing number of linear
arms. On the other hand, gstar-ring

chain [Gaussian] is decreasing with
f1: the polymer of a complex branched structure becomes more
and more compact comparing with a linear chain. To find the
quantitative values for the size ratios (27), (28), (30), and (31)
we estimate them at fixed values of space dimension d = 3
(ε = 1) and various values of correlation parameter a. Results
are presented in Figs. 4 and 5. Note that our results in a pure
solvent at d = 3 can be compared with experimental values
for single-tail (f1 = 1) and twin-tail (f1 = 2) tadpole-shaped
polystyrene molecules (Ref. [25]): g

tadpole
chain [Pure] = 0.86 and

0.80 correspondingly. Note, however, that our analytical results
are obtained in first order approximation and are rather of
qualitative character. To obtain the reliable estimates for the
observables, one needs to proceed to higher order calcula-
tions and apply the special resummation techniques to the
obtained perturbation theory expansions (see, e.g., Ref. [59]).
The presence of excluded volume interactions as well as
the presence of structural disorder in the system makes the
effect of compactification of the effective size of a complex
branched structure less pronounced: the corresponding size
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FIG. 4. Size ratio g
star−ring
star as function of parameter f1, estimated

at different fixed point values. Stars: Eq. (26); squares: Eq. (27) esti-
mated at d = 3 (ε = 1); circles, diamonds, and triangles correspond
to results given by Eq. (28) at different values of correlation parameter
a = 3 (δ = 1), a = 2 (δ = 2), and a = 1 (δ = 3) correspondingly.

ratios become closer to 1. It is interesting to mention that
when correlations of disorder become strong enough, the
corresponding size ratios gradually overcome the value of 1.
Thus, the complex star-ring structure becomes more extended
in space than structures without closed loops.

C. Gyration radius of a single linear arm in a complex structure

Another parameter of interest is the gyration radius of a
single linear arm within the complex polymer structure, which

FIG. 5. Size ratio g
star-ring
chain as function of parameter f1, estimated

at different fixed point values. Squares: Eq. (29); stars: Eq. (30) esti-
mated at d = 3(ε = 1); triangles, diamonds, and circles correspond to
results given by Eq. (28) at different values of correlation parameter
a = 3 (δ = 1), a = 2 (δ = 2), and a = 1 (δ = 3) correspondingly.

can be presented as

〈
R2

g arm

〉 = 1

2L2

∫ L

0

∫ L

0
ds1 ds2〈[�r1(s2) − �r2(s1)]2〉. (32)

In this case, we need to take into account only those
diagrams in Figs. 2 and 3 which are shown in purple, with cor-
responding prefactors: (f1 − 1) for D126,D127,D128,D137;
(f1 − 1)(f1 − 2)/2 for D133; f2(f1 − 1) for D125; and dia-
grams D129, D151, D152, D153, D130, D131, D132, D134,
D135, and D136 should be accounted for without prefactors.
As a result we get the following expression:

〈
R2

g arm

〉 = dL

6

{
1 +

(
2zu

ε
− 2zv

δ

)
− (zu − zv)

×
[

463

120
− 35

8
f1 + 6(f1 − 1) ln(2)

− 2

5
f1

√
5 ln

(
2√

5 + 3

)

+
√

5 arctan(
√

5/5)
27 − 20f1

25

]}
. (33)

Let us recall the expression for the gyration radius of a single
chain of length L [53]:

〈
R2

g chain

〉 = dL

6

[
1 +

(
2zu

ε
− 2zv

δ

)
− (zu − zv)

(
13

12

)]
.

(34)

Thus, we can consider a size ratio garm ≡ 〈R2
g arm〉/〈R2

g chain〉
which reads

garm =
{

1 − (zu − zv)

[
111

40
− 35

8
f1 + 6(f1 − 1) ln(2)

− 2

5
f1

√
5 ln

(
2√

5 + 3

)

+
√

5 arctan(
√

5/5)
27 − 20f1

25

]}
. (35)

Substituting the fixed point values (23)–(25) into (35), we
obtain

garm[Gaussian] = 1, (36)

garm[Pure] = 1 − ε

8
(. . . ), (37)

garm[LR] = 1 − δ

4
(. . . ), (38)

where (. . . ) denotes a factor that depends only on f1 and is
different for different ratios. We estimate the numerical value
of (37) at fixed d = 3 (ε = 1) and (38) at various values of
correlation parameter a. Results are presented in Fig. 6. We
note that the ratio is always larger than 1 and grows with
increasing f1. Thus, the effective size of an arm in a complex
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FIG. 6. Size ratio garm as function of parameter f1, estimated at
different fixed points values. Squares: Eq. (36); stars: Eq. (37) esti-
mated at d = 3 (ε = 1); triangles, diamonds, and circles correspond
to results given by Eq. (38) at different values of correlation parameter
a = 3 (δ = 1), a = 2 (δ = 2), and a = 1 (δ = 3) correspondingly.

polymer structure is more extended in space than the size of a
free single polymer chain. The presence of structural disorder
makes this effect more pronounced.

D. Gyration radius of a single loop in a complex structure

In the same way as in the previous subsection, we can
calculate the gyration radius of a single loop in a complex
star-ring structure. We take into account only diagrams that
are marked in pink in Figs. 2 and 3. As a result, we obtain the

FIG. 7. Size ratio gloop as function of parameter f1, estimated at
different fixed point values. Squares: Eq. (42); stars: Eq. (43) esti-
mated at d = 3(ε = 1); triangles, diamonds, and circles correspond
to results given by Eq. (44) at different values of correlation parameter
a = 3 (δ = 1), a = 2 (δ = 2), and a = 1(δ = 3) correspondingly.

following expression:

〈
R2

g loop

〉 = dL

12

{
1 +

(
2zu

ε
− 2zv

δ

)

− (zu − zv)

[
f1

5
− 36

√
5f1

25
arctan

(√
5

5

)

− 2f1

√
5

5
ln

(
2√

5 + 3

)]}
. (39)

It is interesting to compare this result with that of a gyration
radius of an isolated ring polymer [54]:

〈
R2

g ring

〉 = dL

12

[
1 +

(
2zu

ε
− 2zv

δ

)]
, (40)

so that the corresponding size ratio gloop = 〈R2
g loop〉

〈R2
g ring〉

reads

gloop = 1 − (zu − zv)

[
f1

5
− 36

√
5f1

25
arctan

(√
5

5

)

− 2f1

√
5

5
ln

(
2√

5 + 3

)]
. (41)

Evaluating (41) at different fixed points (23)–(25), we
obtain

gloop[Gaussian] = 1, (42)

gloop[Pure] = 1 − ε

8
(. . .), (43)

gloop[LR] = 1 − δ

4
(. . .), (44)

where (. . . ) denotes a factor that depends only on f1.
To find the quantitative estimates for the size ratio (43)

we evaluate it at fixed values of space dimension d = 3 and
various values of parameter f1. Results are presented in Fig. 7.
We note that the presence of excluded volume interactions
causes the extension of effective size of a loop as a part of
the complex polymer structure as compared with an isolated
polymer ring. This effect becomes more pronounced in the
presence of correlated disorder in a system. Evaluating the
size ratio (44) at various fixed values of parameter δ, we note
an increase of this value with growing correlations of disorder.

V. CONCLUSIONS

In the present paper we analyzed the universal conforma-
tional properties of a complex branched polymer structure,
consisting of f1 linear chains connected with one closed ring.
Such a polymer system could be of interest in processes of loop
formation in branched star polymers [28]. On the other hand,
such a system can be considered as a part of a general polymer
network of a more complicated structure [39].

Since in most real physical processes one encounters the
problem of the presence of structural obstacles (impurities)
in the system which often have complex fractal structures
[48], we turn our attention to analysis of star-ring polymer
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behavior in solution in the presence of defects correlated on
large distances according to a power law with a pair correlation
function h(x) ∼ x−a with a < d.

Applying the direct polymer renormalization approach, we
evaluate the expressions for the universal ratios of the radii
of gyration of a star-ring structure and star polymer (21)
and linear chain (22) of the same total molecular length. In
a Gaussian approximation, the effective size of a branched
polymer structure with one loop is more compact than both
those of a star polymer or linear chain of the same molecular
weight. However, the presence of excluded volume interactions
as well as the presence of structural disorder makes the effect
of compactification of the effective size of complex branched
structure less pronounced. Moreover, as can be seen in Figs. 4
and 5, when correlations of disorder become strong enough,
the corresponding size ratios gradually overcome the value of
1 and the star-ring structure becomes more extended in space
than structures without closed loops. Also, we analyzed the size
ratio (35) of the radii of gyration of a single arm in a complex
structure and free linear polymer chain of the same length. We
found that the effective size of an arm is more extended in space
that of a free chain, and this extension grows in the presence
of long-range-correlated disorder. Finally, we evaluate the size
ratio (41) of the radii of gyration of a loop in a complex structure
and free ring polymer of the same length. Again, we found
that the presence of correlated disorder in a system causes
the extension of the effective size of a loop within the complex
polymer structure as compared with isolated polymer ring, and
this effect is more pronounced with growing correlations of
disorder.

FIG. 8. Example of diagrammatic contribution into the gyration
radius of a star-ring polymer.

APPENDIX A

Here we present an example of diagram calculations. As
an example we choose diagram D145 from Fig. 3, which is
presented in more detail in Fig. 8. According to the general
rules of diagram calculations [2], each segment between any
two points is oriented and bears a wave vector given by a sum
of incoming and outgoing wave vectors injected at interaction
points and end points. Here points s and z are interaction
points associated with wave vector �p, s1, s2 are so-called
restriction points with wave vector �k, and the wave vector �q
corresponds to the loop and has restriction points at 0 and L

of the corresponding trajectory. Each segment of a diagram

bears a factor − �qab
2

2 (sa − sb) where �qab is given by a sum of
incoming and outgoing vectors injected at points sa, sb. The
expression has to be integrated over all wave vectors and over
all independent restriction points and end points:

D145 = (2π )−2d

∫ L

0

∫ L

0
ds dz

∫ L

0

∫ L

0
ds1 ds2

∫
d �q

∫
d �p e− �q2

2 (L−s)− (�q+ �p)2

2 s− �p2

2 z− �k2

2 (s2+s1). (A1)

Integrating over wave vectors �q and �p and taking a derivative over �k according to (16) we receive

D145 = (2π )−dL−d/2
∫ L

0

∫ L

0
ds1 ds2(s2 + s1)

∫ L

0

∫ L

0
ds dz

(
s + z − s2

L

)−d/2

. (A2)

Performing the integration over s1 and s2 and passing to dimensionless variables s̃ = s/L, z̃ = z/L we come to the expression

D145 = (2π )−dL5−d

∫ 1

0

∫ 1

0
ds̃ dz̃(s̃ + z̃ − s̃2)−d/2. (A3)

Integration over z̃ will give

D145 = (2π )−dL−d/2L5−d/2

1 − d/2

[∫ 1

0
ds̃(s̃ + 1 − s̃2)1−d/2 −

∫ 1

0
ds̃(s̃ − s̃2)1−d/2

]
. (A4)

Making the change of variables in first integral s̃ = t + 1/2 and performing both integrations we come to the final expression:

D145 = (2π )−dL−d/2L5−d/2

1 − d/2

[(
5

4

)1−d/2

2F1(1/2,1/2 d − 1; 3/2; 1/5) − B(2 − d/2,2 − d/2)

]
, (A5)

where B is Euler’s beta function and 2F1 is a hypergeometric function.
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TABLE I. ε expansion of expressions, corresponding to diagrams
in Fig. 3.

Name Prefactor ε(δ) expansion

D11 f1f2
3
√

5
100 arctan (

√
5

5 ) + 1
10

D12 f1f2
3
√

5
100 arctan (

√
5

5 ) + 1
10

D13 f1f2
4
3ε

− 16
√

5
15 arctan (

√
5

5 − 5
6 )

D14 f1f2
4
3ε

− 16
√

5
15 arctan (

√
5

5 ) + 5
6

D15 f1f2
8
3ε

D16 f1f2 − 1
6ε

− 2
3

D17 f1f2
4
3ε

− 5
6

D18 f1f2 − 7
3ε

+ 1
2

D19 f1f2(f1−1)(f1−2)
2

4
3ε

− 2
3 ln(2) + 2

3

D110 f1f2 − 1
6ε

− 2
3

D111 f1f2(f1−1)
2 − 4

3ε
− 2

3

D112 f1f2 − 4
3ε

− 1
4

D113 f1f2(f1 − 1) 4
3ε

− 28
√

5
75 arctan (

√
5

5 ) + 7
10

D114 f1f2(f1 − 1) 4
3ε

− 28
√

5
75 arctan (

√
5

5 ) + 7
10

D115 f1f2(f1 − 1) 4
3ε

+ 5
3 − 17

6 ln(2)

D116 f1f2(f1 − 1) 1
12 + 1

6 ln(2)

D117 f2 − 2
15ε

− 1
30

D118 f2
1
6ε

− 1
12

D119 f1f2 − 1
6ε

− 1
12

D120 f2
1
6ε

D121 f1f2(f1−1)
2

1
6ε

− 1
12 ln(2) + 1

12

D122 f2 − 1
10ε

− 1
40

D123 f2
1
6ε

D124 f2 − 1
10ε

− 1
40

D125 f1f2(f1 − 1) 2
3ε

− 2
√

5
15 arctan (

√
5

5 ) + 1
3

D126 f1(f1 − 1) 1
3ε

+ 3
4 − 3

4 ln(2)

D127 f1(f1 − 1) − 4
3 + 13

6 ln(2)

D128 f1(f1 − 1) 1
48

D129 f1f2
2
3ε

− 1
3

D130 f1 − 2
3ε

+ 5
18

APPENDIX B

Here we present the results of ε expansions for the expres-
sions corresponding to the diagrams in Fig. 3 (Tables I and II).

TABLE II. ε expansion of expressions, corresponding to diagrams
in Fig. 3.

D131 f1
1
3ε

− 5
18

D132 f1
1
3ε

− 5
18

D133 f1(f1−1)(f1−2)
2

1
3ε

− 1
6 ln(2) + 1

6

D134 f1
1

72

D135 f2 − 1
3ε

+ 5
36

D136 f3 − 1
3ε

+ 5
36

D137 f1(f1 − 1) − 1
3ε

− 1
6

D138 f1(f1 − 1)(f1 − 2) 2
ε

+ 2 − 7
2 ln(2)

D139 f1(f1 − 1)(f1 − 2) 1
12 + 1

2 ln(2)

D140 f1(f1 − 1)/2 1
24

D141 f1(f1−1)
2

5
6 − 5

6 ln(2)

D142 f1(f1−1)
2

5
6 − 5

6 ln(2)

D143 f1(f1 − 1) 2
ε

− 7
6

D144 f1(f1 − 1) − 3
ε

+ 1
2

D145 f1f2(f1−1)(f1−2)
2

4
ε

− 4
√

5
5 arctan (

√
5

5 ) + 2

D146 f1(f1−1)
2

2
ε

+ 2
3 − 8

3 ln(2)

D147 f1(f1 − 1) − 2
ε

+ 1
4

D148 f1f2(f1−1)
2

4
ε

− 2

D149 f1f2(f1 − 1) 4
ε

− 41
√

5
15 arctan (

√
5

5 ) + 8
3

D150 f1f2(f1 − 1) 49
√

5
75 arctan (

√
5

5 ) + 1
15

D151 f1f2
2
3ε

− 5
√

5
6 arctan (

√
5

5 ) + 13
20

D152 f1f2
13

√
5

15 arctan (
√

5
5 ) − 3

5

D153 f1f2

√
5

75 arctan (
√

5
5 ) + 1

60

D154 f1(f1−1)(f1−2)(f1−3)
6

2
ε

− ln(2) + 1

D155 f1f2

√
15

75 arctan (
√

5
5 ) + 1

30

D156 f1f2
1
6ε

− 11
√

5
75 arctan (

√
5

5 )

− 13
120

D157 f1f2
1
6ε

− 11
√

5
75 arctan (

√
5

5 )

− 13
120

D158 f1(f1−1)(f1−2)
2 − 2

ε
− 1

Note that in order to receive the δ expansions, one needs just
to replace ε with δ. However, it is important to note that this
type of symmetry exists only in one loop approximation.
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